On SNF-rings, I

Raida D. Mahmood raida.1961@uomosul.edu.iq Department of Mathematics, College of Computer Science and Mathematics University of Mosul, IRAQ Received on: 3/1/2012 Akram S.M. Akr_tel@tu.edu.iq Department of Mathematics, College of Computer Science and Mathematics University of Tikrit, IRAQ

Accepted on: 19/4/2012

ABSTRACT

A ring R is called right SNF-rings if every simple right R-module is N-flat. In this paper, we give some conditions which are sufficient or equivalent for a right SNF-ring to be n-regular (reduced). It is shown that

1- If r(a) is a GW-ideal of R for every $a \in R$. then , R is reduced if and only if R is right SNF-ring.

2- If R is an reversible, then R is regular if and only if R is right GQ-injective and SSNF-ring

Key words: SNF-rings, GW-ideal ,reversible.

حول الحلقات من النمط I, SNF

د. اکرم سالم	د رائدة داؤد محمود
كلية علوم الحاسوب والرياضيات، جامعة تكريت	كلية علوم الحاسوب والرياضيات ، جامعة الموصل
	الملخص

يقال للحلقة R حلقة يمنى من النمطSNF, إذا كان كل مقاس أيمن بسيط على الحلقة R مسطحاً من النمط N . في هذا البحث نحن أعطينا بعض الشروط التي تحقق أو تكافئ الحلقات اليمنى من النمط SNF ، حلقات منتظمة من النمط n (مختزلة) . تبين لنا

النمطr(a) مثالي من النمط–GW في الحلقة R لكل $R \in a$ فأن R حلقة مختزلة إذا وفقط إذا كانت R حلقة من r(a) -1 النمط–SNF النمط–SNF .

2- إذا كانت R حلقة عكوسة فأن Rحلقة منتظمة إذا وفقط إذا كانت حلقة غامرة من النمط GQاليمنى و SSNF. الكلمات المفتاحية: حلقات من النمط SNF , مثاليات من النمط GW ,حلقة عكوسة,

1. Introduction

Throughout this paper, *R* denotes an associative ring with identity and all modules are unitary .We write J = J(R) for the Jacobson radical of *R*, and Y = Y(R) (Z = Z(R)) for the right (left) singular ideal of *R*. The right and left annihilators of a subset *X* of a ring *R* are written as r(X) and l(X). A right R-module M is said to be flat if, given any monomorphism $N \to Q$ of left R-modules *N* and *Q*, the induced homomorphism $M \otimes N \to M \otimes Q$ is also monomorphism [1]. Generalizations on right flat modules have been studied by many authors (see [9] and [3]). In [5] SF rings are defined and studied. A ring *R* is called right (left) SF-ring if every simple right (left) R-module is flat. In [9], Wei and Chen first introduced and characterized a right N-flat modules , and gave many properties. A right R-module is called N-flat , if for any $a \in N(R)$, the map $I_M \otimes i: M \otimes Ra \to M \otimes R$ is monic , where $i: Ra \to R$ is the inclusion mapping. Actually , many authors investigated some properties of rings whose every simple right R-module is N-flat [4] and [9].

Recall that a ring R is called reduced ring if it has no non zero nilpotent elements, or equivalently, $a^2 = 0$, that implies a = 0 for all $a \in R$. A ring R is called reversible

[2] if for $a, b \in R$, ab = 0 implies ba = 0. A ring *R* is said to be Von Neumann regular (or just regular), if $a \in aRa$ for every $a \in R[5]$, a ring *R* is called n-regular [6] if $a \in aRa$ for all $a \in N(R)$. Clearly, Von Neumann regular ring is n-regular, but the converse is not true by [6, Remark 2.19]. A ring *R* is said to be right NPP if aR is projective for all $a \in N(R)$ [6]. A right R-module M is called nil-injective if for any $a \in N(R)$, any R-homomorphism $R \to M$ can be extended to $R \to M$. Or equivalently there exists $m \in M$ such that f(x) = mx for all $x \in aR$ [6,7]. Clearly, a reduced ring is right nil-injective, right NPP and n-regular ring [6].

2. SNF-ring

Following [9], A ring R is called right (left) SNF if every simple right (left) R-module is N-flat.

The following lemma , which is due to [9] , plays a central role in several of our proofs .

Lemma 2.1 :

- 1- Let *B* be a right R-module and there exists R-short exact sequence $0 \rightarrow K \xrightarrow{j} F \xrightarrow{g} B \rightarrow 0$ where *F* is N-flat, then *B* is N-flat if and only if $K \bigcap Fa = Ka$ for all $a \in N(R)$.
- 2- Let *I* be a right ideal of *R*. then R/I is N-flat right R-module if and only if $Ia = I \cap Ra$ for all $a \in N(R)$.
- 3- Let *R* be a ring then, *R* is n-regular ring if and only if every right R- module is N-flat .

Following [5], a ring R is called MERT ring if every maximal essential right ideal is a two-sided ideal of R.

Clearly, a right SF-ring is right SNF-ring, but the converse is not true. Because there exists a reduced MERT ring which is not regular, there exists a reduced MERT ring R which is not right SF by [12,Theorem 1]. On the other hand, by [9, Theorem 4.7], reduced ring is right SNF, so there exists a right SNF-ring which is not right SF [9].

Examples (3) :

1- Let Z_2 be the ring of integer modulo 2 and let $G = \{g : g^3 = 1\}$ be acyclic group ,the group ring $Z_2G = \{0,1,g,g^2,1+g,1+g^2,g+g^2,1+g+g^2\}$ is reduced nregular ring and SF-ring ,therefore it is SNF-ring .

2- Let Z_2 be the ring of integer modulo 2, then $R = \left\{ \begin{bmatrix} Z_2 & Z_2 \\ Z_2 & Z_2 \end{bmatrix} \right\}$ is SNF-ring but

not reduced .

3- The ring of integers Z is SNF-ring but not SF-ring.

Lemma 2.2: [2]

Let *R* be a reversible ring , then r(a) = l(a) for all $a \in R$.

Following [7], a ring R is said to be right (left) Nduo if aR(Ra) is an ideal of R for all $a \in N(R)$.

Proposition 2.3 :

Let *R* be a right N duo, SNF- ring , then Y(R) = 0.

Proof:

Suppose that $Y(R) \neq 0$ then, Y(R) contains a non-zero element *a* such that $a^2 = 0$.let $x \in l(a)$, $r \in R$. Since *R* is right N duo, *aR* is an ideal of *R*. Hence, ra = at for some $t \in R$. Therefore, xra = xat = 0. This proves that l(a) is a right ideal of *R*. Therefore, there exists a maximal right ideal of *R* such that $l(a) \subseteq M$. Since *R* is right SNF-ring and $a \in l(a) \subseteq M$, by lemma (2.1), there exists $b \in M$ such that a = ba, that is $(1-b) \in l(a) \subseteq M$ and so $1 \in M$, a contradiction. Therefore, Y(R) = 0.

Theorem 2.4:

Let R be a reversible ring .Then , R is a right SNF-ring if and only if R is n-regular ring .

Proof:

Suppose that R is n-regular, then R is SNF-ring , lemma(2.1(3))

Conversely: Let $a \in N(R)$. We claim that aR + r(a) = R. If not, then there exists a maximal right ideal M of R such that $aR + r(a) \subseteq M$. Since R is right SNF-ring, R/M is an N-flat right R-module. By lemma (2.1), a = xa for some $x \in M$. Since R is reversible, a = ax. Hence, $(1-x) \in r(a) \subseteq M$ and so $1 \in M$, which is a contradiction. Therefore, aR + r(a) = R. Hence, ab + z = 1 for some $b \in R$ and $z \in r(a)$. Since , az = 0, this gives a = aba. Thus, R is n-regular.

From Theorem (2.4) and definition of C(R) we give the following Corollary :

Corollary 2.5 :

The center (C(R)) of any right (left) SNF-ring is n-regular ring.

Following [13], a left (right) ideal *L* of a ring *R* is called generalized weak ideal (GW-ideal), if for any $a \in L$, there existsn>0 such that $a^n R \subseteq L$ ($Ra^n \subseteq L$).

Theorem 2.6 :

Let R be a ring such that r(a) is a GW-ideal of R for every $a \in R$. Then, R is reduced if and only if R is right SNF-ring.

Proof:

Suppose *R* is reduced, then *R* is SNF-ring [9, Theorem 4.2]. Conversely : Assume that *R* is SNF-ring and $0 \neq b \in R$ such that $b^2 = 0$. Let $x \in l(b)$, then $b \in r(x)$. Since r(x) is a GW-ideal of R and $b^2 = 0$ we have $Rb \subseteq r(x)$. This proves that l(b) is a right ideal of *R*. Therefore, there exists a maximal right ideal *M* of *R* such that $l(b) \subseteq M$. Since *R* is a right SNF-ring and $b \in l(b) \subseteq M$ by Lemma (2.1), b = cb for some $c \in M$, $1 - c \in l(b) \subseteq M$ and so $1 \in M$, a contradiction, Therefore, *R* is reduced.

Following [8], a ring R is called weakly normal if for all $a, r \in R$ and $e \in E(R)$, ea = 0 implies *areR* is nil right ideal of R, where E(R) stands for the set of all idempotent elements of R.

The following result is given in [8]

Lemma 2.7:

Let *R* be a weakly normal ring and $x \in R$. If *x* is Von Neumanregular , then $x \in Rx^2 \cap x^2R$.

In the next result, we give another condition for SNF-ring to be a reduced ring .

Theorem 2.8 :

Let R be a ring and every principal right ideal is a maximal .Then R is reduced if and only if R is right SNF-ring and weakly normal.

Proof:

Let R be reduced, then it is clear R is weakly normal ,and SNF-ring .

Conversely : Let $a \in R$ with $a^2 = 0$ and every principal right ideal is a maximal, then M = aR. Since *R* is right SNF-ring, R/aR is an N-flat right R-module .By Lemma (2.1) a = ba for some $b \in aR$.Therefore, a = ara (b = ar) for some $r \in R$.By Lemma (2.7), $a \in Ra^2 = 0$, which implies a = 0. Thus, *R* is a reduced ring.

Next, we recall the following result of Wei and Chen [6] which proved the link between nil-injective and n-regular rings .

Theorem 2.8 :

The following conditions are equivalent for a ring R

- 1- *R* is a n-regular ring.
- 2- Every left R-module is nil-injective .
- 3- Every cyclic left R-module is nil-injective .
- 4- *R* is left nil-injective left NPP ring.

From Theorems (2.4 and 2.8) and Lemma (2.1), we get the following theorem.

Theorem 2.19 :

Let R be a reversible ring. Then , R is a right SNF-ring , if and only if R is nilinjective . \blacksquare

3- Rings whose simple singular right R-module are N-flat

In this section , we give an investigation of several properties for rings whose simple singular right R-modules are N-flat . Also , we study the relations between such rings and weakly regular ring .

Definition 3.1 :

A ring R is said to be right SSNF-ring , if every simple singular right R-module is N-flat .

Theorem 3.2 :

If R is SSNF-ring with $l(a) \subseteq r(a)$, for every $a \in R$ then : 1- $Y(R) \cap Z(R) = 0$ 2- $Y(R) \cap J(R) = 0$

Proof :

1) If $Y(R) \cap Z(R) \neq 0$, then there exists $0 \neq b \in Y(R) \cap Z(R)$ such that $b^2 = 0$. We claim that RbR + r(b) = R. Otherwise, there exists a maximal essential right ideal *M* of *R* containing RbR + r(b). So, R/M is a simple singular right R-module and

then it is right N-flat by hypothesis .Hence, b = cb for some $c \in M$ (Lemma2.1), and so $(1-b) \in l(b) \subseteq r(b) \subset M$. Thus $1 \in M$, which is a contradiction. Therefore 1 = x + y, $x \in RbR$, $y \in r(b)$ and so b = bx. Since $RbR \subseteq Z(R)$, $x \in Z(R)$. Thus l(1-x) = 0 and b = 0, which is a contradiction. Therefore $Y(R) \cap Z(R) = 0$.

2) Suppose $Y(R) \cap J(R) \neq 0$, there exists $0 \neq b \in J(R) \cap Y(R)$ such that $b^2 = 0$, we will prove that RbR + r(b) = R. If not there exists a maximal right ideal *M* of *R* containing RbR + r(b). Following the proof of (1) we get b = bd for some $d \in RbR \subseteq J(R)$, b(1-d) = 0. Since $d \in J(R)$, (1-d) is invertible. This implies that b = 0, which is a required contradiction. Therefore, $Y(R) \cap J(R) = 0$.

Recall that a ring R is right GQ-injective [11] if, for any right ideal I isomorphic to a complement right ideal of R, every right R-homomorphism of I into R extends to an endomorphism of R. In [11], shows that if R is right GQ-injective ring, then J(R) = Y(R), R/J(R) is regular.

The next result is considered a necessary and sufficient condition for SSNF-rings to be regular ring.

Theorem 3.3 :

Let R be reversible ring. Then, the following statements are equivalent:

1) *R* is regular ring

2) *R* is a right GQ-injective ring and right SSNF-ring .

Proof:

- $1 \rightarrow 2$ Observe that if *R* is regular then *R* is n-regular and so every right R-module is N-flat by [9, Theorem 4.2] .So we are done.
- 2→1 From Theorem (3.2) $J(R) \cap Y(R) = 0$. Since , *R* is right GQ-injective , then J(R) = Y(R) = 0 and *R* is regular ring .

Following [7], a ring R is called strongly min-able if every right minimal idempotent element is left semicentral.

Theorem 3.4 :

Let R be a strongly right min-able, MERT ring. If R is right SSNF-ring, then R is a right weakly regular ring.

Proof:

We shall show that RaR + r(a) = R, for any $a \in N(R)$. Suppose that there exists $b \in N(R)$ such that $RbR + r(b) \neq R$. Then, there exists a maximal right ideal M of R containing RbR + r(b). If M is not essential in R. Then, M is a direct summand of R because M is maximal. Now, we can write M = r(e) for some $0 \neq e^2 = e \in R$ and hence eb = 0. Because eR is a minimal right ideal of R and R is a strongly right minable ring , be = ebe = 0. Thus, $e \in r(b) \subseteq M = r(e)$, whence e = 0. This is a contradiction. Therefore, M must be an essential right ideal of R. Thus, R/M is N-flat and so b = cb for some $c \in M$ (Lemma 2.1), $1 \in M$ (R is MERT). a contradiction. Therefore, RaR + r(a) = R. In particular xay + z = 1, $x, y \in R$, $z \in r(a)$. So, axay = a. Hence, R is a weakly regular ring.

REFERENCES

- [1] Chose, S.U. (1960), Direct Products of Modules, Trans. Amer. Math. Soc. pp. 457-473.
- [2] Cohn, P.M. ,(1999), "Reversible ring" ;Bull. London Math. Soc., 31, p.p 641-648 .
- [3] Mahmood , R.D. and Mohammed , H.Q.(2011), On N-flat rings, AL-Raf. J. of Computer Science and Math. Vol.8 , No. 1, 71-77.
- [4] Mahmood, R.D. and Younis, M.T.(2011), On n-regular rings, AL- Raf. J. of Computer science and Math., Vol.8, No. 2, 53-59.
- [5] Rege, M.B.(1986), On Von Neumann regular rings and SF-rings, Math. Japonica, 31(6), 927-936.
- [6] Wei, J.C. and Chen, J.H. (2007), Nil-injective rings ,International Electronic Journal of Algebra , Vol.2:1-21 .
- [7] Wei, J.C. and Libin, Li ,(2010), Nilpotent elements and reduced ring, Turk J. Math., 34:1-13.
- [8] Wei, J.C. and Libin, Li, (2011), Weakly normal rings, Turk J. Math., 35:1-11.
- [9] Wei, J. and Chen, J.(2008), NPP rings, reduced rings and SNF rings, International Electronic Journal of Algebra, Vol. 4, 9-26.
- [10] Wei, J. C. (2007), On simple singular YJ-injective modules, Sou. Asian Bull. of Math. ,31 ,1009-1018.
- [11] Yue Chi Ming , Roger , (1983) , On quasi –injectivity and VonNeumann regularity , Moun. Math. 95, 25-32 .
- [12] Zhang , J. and Du , X.N. (1993) , Von Neumann regularity of SF rings , Comm. Algebra , 21, 2445-2451 .
- [13] Zhou, H. (2007), Left SF-rings and regular rings, Comm. inAlgebra, 35, 3842-3850.