Amir A. Mohammed

On ia - Open Sets

Omar v. kahtab

College of Education, University of Mosul

Received on: 22/04/2012 Accepted on: 28/06/2012

ABSTRACT

In this paper, we introduce a new class of open sets defined as follows: A subset A of a topological space (X,τ) is called ia-open set, if there exists a non-empty subset O of X, $O \in \alpha O(X)$, such that $A \subseteq Cl(A \cap O)$. Also, we present the notion of i α -continuous mapping, ia-open mapping, ia-irresolute mapping, ia-totally continuous mapping, i-contra-continuous mapping, $i\alpha$ -contra-continuous mapping and we investigate some properties of these mappings. Furthermore, we introduce some i α -separation axioms and the mappings are related with i α separation axioms.

Keywords: Open totals, Topological space, Types of mappings.

عمر خطاب

حول مجموعات مفتوحة – iα

أمير محمد

كلية التربية، جامعة الموصل

تاربخ القبول: 2012/06/28

تاريخ الاستلام: 2012/04/22

الملخص

في هذا البحث، قدمنا نوعا جديدا من المجاميع المفتوحة المعرفة بالصيغة التالية: المجموعة الجزئية A من الفضاء التبولوجي (X, τ) يقال عنها مجموعة مفتوحة من النوع-iα، إذا وجدت مجموعة جزئية فعلية غير خالية O ، بحيث أن $A \subset Cl(A \cap O)$ بحيث أن $O \in lpha O(X)$. كذلك قدمنا فكرة التطبيق المستمر من النوع- $i\alpha$ ، والتطبيق المفتوح من النوع-iα، والتطبيق المتردد من النوع-iα، و التطبيق الكلي المستمر من النوع-iα ، والتطبيق ضد-المستمر من النوع -i ، والتطبيق ضد-المستمر من النوع –iα مع تحقيق بعض الخصائص لتلك التطبيقات. بالإضافة إلى ذلك، قدمنا بعض بديهيات الفصل من النوع-1α والتطبيقات المرتبطة مع بديهيات الفصل من النوع-1α.

الكلمات المفتاحية : المجاميع المفتوحة ، الفضاء التبولوجي ،أنواع التطبيقات.

1 Introduction and Preliminaries

A Generalization of the concept of open sets is now well-known important notions in topology and its applications. Levine [7] introduced semi-open set and semicontinuous function, Njastad [8] introduced a-open set, Askander [15] introduced iopen set, i-irresolute mapping and i-homeomorphism, Biswas [6] introduced semi-open functions, Mashhour, Hasanein, and El-Deeb [1] introduced α -continuous and α -open mappings, Noiri [16] introduced totally (perfectly) continuous function, Crossley [11] introduced irresolute function, Maheshwari [14] introduced a-irresolute mapping, Beceren [17] introduced semi α-irresolute functions, Donchev [4] introduced contra continuous functions, Donchev and Noiri [5] introduced contra semi continuous functions, Jafari and Noiri [12] introduced Contra- α -continuous functions, Ekici and Caldas [3] introduced clopen-T1, Staum [10] introduced, ultra hausdorff, ultra normal, clopen regular and clopen normal, Ellis [9] introduced ultra regular, Maheshwari [13] introduced s-normal space, Arhangel [2] introduced α -normal space. The main aim of this paper is to introduce and study a new class of open sets which is called ia-open set and we present the notion of i α -continuous mapping, i α -totally continuity mapping and some weak separation axioms for ia-open sets. Furthermore, we investigate some properties of these mappings. In section 2, we define i α -open set, and we investigate the relationship with, open set, semi-open set, α -open set and i-open set. In section 3, we present the notion of ia-continuous mapping, ia-open mapping, ia-irresolute mapping and ia-homeomorphism mapping, and we investigate the relationship between iacontinuous mapping with some types of continuous mappings, the relationship between i α -open mapping, with some types of open mappings and the relationship between i α irresolute mapping with some types of irresolute mappings. Further, we compare i α homeomorphism with i-homeomorphism. In section 4, we introduce new class of
mappings called i α -totally continuous mapping and we introduce i-contra-continuous
mapping and i α -contra-continuous mapping. Further, we study some of their basic
properties. Finally in section 5, we introduce new weak of separation axioms for i α open set and we conclude i α -continuous mappings related with i α -separation axioms.
Throughout this paper, we denote the topology spaces (X, τ) and (Y, σ) simply by X and Y respectively. We recall the following definitions, notations and characterizations. The
closure (resp. interior) of a subset A of a topological space X is denoted by Cl(A) (resp. Int(A)).

Definition 1.1 A subset A of a topological space X is said to be

(i) semi-open set, if $\exists O \in \tau$ such that $O \subseteq A \subseteq Cl(O)$ [7]

(ii) α -open set, if $A \subseteq Int(Cl(Int(A)))$ [8]

(iii) i-open set, if $A \subseteq Cl(A \cap O)$, where $\exists O \in \tau$ and $O \neq X, \phi$ [15]

(iv) clopen set, if A is open and closed.

The family of all semi-open (resp. α -open, i-open, clopen) sets of a topological space is denoted by SO(X)(resp. $\alpha O(X)$, iO(X), CO(X)). The complement of semi-open (resp. α -open, i-open) sets of a topological space X is called semi-closed (resp. α -closed, i-closed) sets.

Definition 1.2 Let X and Y be a topological spaces, a mapping $f: X \to Y$ is said to be

- (i) semi-continuous [7] if the inverse image of every open subset of *Y* is semi-open set in *X*.
- (ii) α -continuous [1] if the inverse image of every open subset of Y is an α -open set in X.
- (iii) i-continuous [15] if the inverse image of every open subset of Y is an i-open set inX.
- (iv) totally (perfectly) continuous [16] if the inverse image of every open subset of *Y* is clopen set in *X*.
- (v) irresolute [11] if the inverse image of every semi-open subset of Y is semi-open subset in X.
- (vi) α -irresolute [14] if the inverse image of every α -open subset of *Y* is an α -open subset in *X*.
- (vii) semi α -irresolute [17] if the inverse image of every α -open subset of Y is semiopen subset in X.
- (viii) i-irresolute [15] if the inverse image of every i-open subset of *Y* is an i-open subset in *X*.
- (ix)contra-continuous [4] if the inverse image of every open subset of *Y* is closed set in *X*.
- (x) contra semi continuous [5] if the inverse image of every open subset of Y is semiclosed set in X.
- (xi) contra α -continuous [12] if the inverse image of every of open subset of *Y* is an α -closed set in *X*.
- (xii) semi-open [6] if the image of every open set in X is semi-open set in Y.
- (xiii) α -open [1] if the image of every open set in X is an α -open set in Y.
- (xiv) i-open [15] if the image of every open set in X is an i-open set in Y.

Definition 1.3 Let X and Y be a topology space, a bijective mapping $f: X \to Y$ is said to be i-homeomorphism [15] if f is an i-continuous and i-open.

Lemma 1.4 Every open set in a topological space is an i-open set [15].

Lemma 1.6 Every semi-open set in a topological space is an i-open set [15].

Lemma 1.8 Every α -open set in a topological space is an i-open set [15].

2 Sets That are ia-Open Sets and Some Relations With Other Important Sets

In this section, we introduce a new class of open sets which is called i α -open set and we investigate the relationship with, open set, semi-open set, α -open set and i-open set.

Definition 2.1 A subset A of the topological space X is said to be i α -open set if there exists a non-empty subset O of X, $O \in \alpha O(X)$, such that $A \subseteq Cl(A \cap O)$. The complement of the i α -open set is called i α -closed. We denote the family of all i α -open sets of a topological space X by $i\alpha O(X)$.

Example 2.2

Let $X = \{a,b,c\}, \tau = \{\emptyset, \{b\}, \{b,c\}, X\}, SO(X) = \alpha O(X) = \{\emptyset, \{b\}, \{a,b\}, \{b,c\}, X\} \text{ and } i\alpha O(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}, X\}.$ Note that $SO(X) = \alpha O(X) \subset i\alpha O(X).$

Example 2.3

Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a, d\}, \{b, c\}, X\} = \alpha O(X), i\alpha O(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, d\}, \{b, c\}, X\}.$

Example 2.4

Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ ia $O(X) = \{\emptyset, \{a\}, \{b\}, \{a, c\}, \{b, c\}, X\}.$

Lemma 2.5 Every i-open set in any topological space is an $i\alpha$ -open set.

Proof. Let X be any topological space and $A \subseteq X$ be any i-open set. Therefore, $A \subseteq Cl(A \cap O)$, where $\exists O \in \tau$ and $O \neq X, \phi$. Since, every open is an α -open[8], then $\exists O \in \alpha O(X)$. We obtain $A \subseteq Cl(A \cap O)$, where $\exists O \in \alpha O(X)$ and $O \neq X, \phi$. Thus, A is an i α -open set \blacksquare The following example shows that i α -open set need not be i-open set

Example 2.6 Let $X = \{1,2,3,4\}, \tau = \{\emptyset,\{4\},X\}, iO(X) = \{\emptyset,\{4\},\{1,4\},\{2,4\},\{3,4\},\{1,2,4\}, \{1,3,4\},\{2,3,4\},X\} \subset i\alpha O(X)\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3,\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}, \{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},X\}.$

Remark 2.7

(i) The intersection of i α -open sets is not necessary to be i α -open set as shown in the example 2.4.

(ii) The union of i α -open set is not necessary to be i α -open set as shown in the example 2.3.

3 Mappings That are ia-Continuous and ia-Homeomorphism

In this section, we present the notion of i α -continuous mapping, i α -irresolute mapping and i α -homeomorphism mapping.

Definition 3.1 Let *X*, *Y* be a topological spaces, a mapping $f : X \to Y$ is said to be iacontinuous, if the inverse image of every open subset of *Y* is an ia-open set in *X*.

Example 3.2 Let $X=Y=\{a,b,c\}, \tau=\{\emptyset,\{b\},\{c\},\{b,c\},X\}, i\alpha O(X)=\{\emptyset,\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},X\}$ and $\sigma=\{\emptyset,\{a,b\},X\}$. Clearly, the identity mapping $f: X \to Y$ is an iacontinuous.

Proposition 3.3 Every i-continuous mapping is an iα-continuous.

Proof. Let $f: X \to Y$ be an i-continuous mapping and V be any open subset in Y. Since, f is an i-continuous, then $f^{-1}(V)$ is an i-open set in X. Since, every i-open set is an ia-open set by lemma 2.5, then $f^{-1}(V)$ is an ia-open set in X. Therefore, f is an ia-continuous \blacksquare

Remark 3.4 The following example shows that i α -continuous mapping need not be continuous, semi-continuous, α -continuous and i-continuous mappings.

Example 3.5 Let $X=\{a,b,c\}$ and $Y=\{1,2,3\}$, $\tau=\{\emptyset,\{b\},X\}$, $SO(X)=\alpha O(X)=iO(X)=\{\emptyset,\{b\},\{a,b\},\{b,c\},X\}$, $i\alpha O(X)=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},X\}$, $\sigma=\{\emptyset,\{2\},Y\}$. A mapping $f: X \to Y$ is defined by $f\{a\}=\{2\}$, $f\{b\}=\{1\}$, $f\{c\}=\{3\}$. Clearly, f is an i α -continuous, but f is not continuous, f is not semi-continuous, f is not α -continuous and f is not i-continuous because for open subset $\{2\}$,

 $f^{1}{2} = {a} \notin \tau \text{ and } f^{-1}{2} = {a} \notin SO(X) = \alpha O(X) = iO(X).$

Definition 3.6 Let X and Y be a topological space, a mapping $f: X \to Y$ is said to be i α -open, if the image of every open set in X is an i α -open set in Y.

Example 3.7 Let $X=Y\{a,b,c\}$, $\tau=\{\emptyset,\{b,c\},X\}$, $\sigma=\{\emptyset,\{a\},Y\}$, and $i\alpha O(Y)=\{\emptyset,\{a\},\{b\},\{c\},\{a,c\},\{b,c\},Y\}$. Clearly, the identity mapping $f: X \to Y$ is an i α -open.

Proposition 3.8 Every i-open mapping is an iα-open.

Proof. Let $f: X \to Y$ be an i-open mapping and V be any open set in X. Since, f is an i-open, then f(V) is an i-open set in Y. Since, every i-open set is an i α -open set by lemma 2.5, then f(V) is an i α -open set in Y. Therefore, f is an i α -open \blacksquare

Remark 3.9 The following example shows that i α -open mapping need not be open, semi-open, α -open and i-open mappings.

Example3.10 Let Let $X=Y=\{1,2,3\}$, $\tau=\{\emptyset,\{3\},X\}$ $\sigma=\{\emptyset,\{1\},Y\},SO(Y)=\alpha O(Y)=iO(Y)$, = $\{\emptyset,\{1\},\{1,2\},\{1,3\},Y\}$, $i\alpha O(Y)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},Y\}$. A mapping $f: X \to Y$ is defined by f(1)=2, f(2)=1, f(3)=3. Clearly, f is an i α -open, but f is not open, f is not semi-open, f is not α -open and f is not i-open because for open subset $\{3\}$, $f^{-1}\{3\}=\{3\}\notin\sigma$ and $f^{-1}\{3\}=\{3\}\notin SO(Y)=\alpha O(Y)=iO(Y)$.

Definition 3.11 Let X and Y be a topological space, a mapping $f : X \to Y$ is said to be i α -irresolute, if the inverse image of every i α -open subset of Y is an i α -open subset in X.

Example 3.12 Let $X=Y=\{a,b,c\}, \tau=\{\emptyset,\{b\},X\},i\alpha O(X)=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},X\}, \sigma=\{\emptyset,\{c\},Y\}$ and $i\alpha O(Y)=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},Y\}$. Clearly, the identity mapping $f: X \to Y$ is an i α -irresolute.

Proposition 3.13 Every i-irresolute mapping is an iα-irresolute.

Proof. Let $f: X \to Y$ be an i-irresolute mapping and V be any i α -open set in Y. Since, f is an i-irresolute, then $f^{-1}(V)$ is an i-open set in X. Hence, i α -open set in X by lemma 2.5. Therefore, f is an i α -irresolute

Remark 3.14 The following example shows that i α -irresolute mapping need not be irresolute, semi α -irresolute, α -irresolute and i-irresolute mappings.

Example 3.15 Let $X=Y=\{a,b,c\}, \tau=\{\emptyset,\{a\},X\}, SO(X)=\alpha O(X)=iO(X)=\{\emptyset,\{a\},\{a,b\},\{a,c\},X\}, i\alpha O(X)=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},X\}, \sigma=\{\emptyset,\{c\},Y\}, SO(Y)=\alpha O(Y)=iO(Y)=\{\emptyset,\{c\},\{a,c\},\{b,c\},Y\} \text{ and } i\alpha O(Y)=\{\emptyset,\{a\},\{b\},\{c\},\{a,c\},\{b,c\},Y\}.$ Clearly,

the identity mapping $f: X \to Y$ is an i α -irresolute, but f is not irresolute, f is not α -irresolute, f is not semi α -irresolute and f is not i-irresolute because for semi-open, α -open and i-open subset $\{c\}, f^{-1}\{c\} = \{c\} \notin SO(X) = \alpha O(X) = iO(X)$.

Proposition 3.16 Every iα-irresolute mapping is an iα-continuous.

Proof. Let $f: X \to Y$ be an i α -irresolute mapping and V be any open set in Y. Since, every open set is an i α -open set. Since, f is an i α -irresolute, then $f^{-1}(V)$ is an i α -open set in X. Therefore f is an i α - continuous The converse of the above proposition need not be true as shown in the following example

Example 4.17 Let $X=Y=\{a,b,c\}, \tau=\{\emptyset,\{a,b\},X\}, i\alpha O(X)=\{\emptyset,\{a\},\{b\},\{a,c\},\{b,c\},X\}, \sigma=\{\emptyset,\{a,c\},Y\}$ and $i\alpha O(Y)=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},Y\}$. Clearly, the identity mapping $f: X \to Y$ is an i α -continuous, but f is not i α -irresolute because for i α -open set $\{c\}, f^{-1}\{c\}=\{c\} \notin i\alpha O(X)$.

Definition 3.18 Let X and Y be a topological space, a bijective mapping $f: X \to Y$ is said to be ia-homeomorphism if f is an ia-continuous and ia-open.

Theorem 3.19 If $f: X \to Y$ is an i-homomorphism, then $f: X \to Y$ is an ia-homomorphism.

Proof. Since, every i-continuous mapping is an i α -continuous by proposition 3.3. Also, since every i-open mapping is an i α -open 3.8. Further, since *f* is bijective. Therefore, *f* is an i α -homomorphism \blacksquare The converse of the above theorem need not be true as shown in the following example

Example 3.20

Let $X=Y=\{a,b,c\}, \tau=\{\emptyset,\{a\},X\}, iO(X)=\{\emptyset,\{a\},\{a,b\},\{a,c\},X\}, \alpha O(X)=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},X\}, \sigma=\{\emptyset,\{b\},Y\}, iO(Y)=\{\emptyset,\{b\},\{a,b\},\{b,c\},Y\}$ and $i\alpha O(Y)=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},Y\}$. Clearly, the identity mapping $f: X \to Y$ is an iahomomorphism, but it is not i-homomorphism because f is not i-continuous, since for open subset $\{b\}, f^{-1}\{b\}=\{b\} \notin iO(X)$.

4 Mappings That are iα-Totally Continuous and iα-Contra-Continuous

In this section, we introduce new classes of mappings called i α -totally continuous, i-contra-continuous and i α -contra-continuous.

Definition 4.1 Let X and Y be a topological space, a mapping $f : X \to Y$ is said to be iatotally continuous, if the inverse image of every ia-open subset of Y is clopen set in X.

Example 4.2 Let $X=Y=\{a,b,c\}, \tau=\{\emptyset,\{a\},\{b,c\},X\}, \sigma=\{\emptyset,\{a\},Y\}$ and $i\alpha O(Y)=\{\emptyset,\{a\},\{b\},\{c\},\{a,c\},\{b,c\},Y\}$. The mapping $f: X \to Y$ is defined by $f\{a\}=\{a\}, f\{b\}=f\{c\}=b$. Clearly, f is an i α -totally continuous mapping.

Theorem 4.3 Every iα-totally continuous mapping is totally continuous.

Proof. Let $f: X \to Y$ be ia-totally continuous and V be any open set in Y. Since, every open set is an ia-open set, then V is an ia-open set in Y. Since, f is an ia-totally continuous mapping, then $f^{-1}(V)$ is clopen set in X. Therefore, f is totally continuous. The converse of the above theorem need not be true as shown in the following example

Example 4.4 Let $X=Y=\{a,b,c\}, \tau=\{\emptyset,\{a\},\{b,c\},X\} \sigma=\{\emptyset,\{a\},Y\}$ and $i\alpha O(Y)=\{\emptyset,\{a\},\{b\},\{c\},\{a,c\},\{b,c\},Y\}$. Clearly, the identity mapping is totally $f: X \to Y$

continuous, but f is not ia-totally continuous because for ia-open set $\{a,c\}$, $f^{-1}\{a,c\} = \{a,c\} \notin CO(X)$.

Theorem 4.5 Every iα-totally continuous mapping is an iα-irresolute.

Proof. Let $f: X \to Y$ be ia-totally continuous and V be an ia-open set in Y. Since, f is an ia-totally continuous mapping, then $f^{-1}(V)$ is clopen set in X, which implies $f^{-1}(V)$ open, it follow $f^{-1}(V)$ ia-open set in X. Therefore, f is an ia-irresolute The converse of the above theorem need not be true as shown in the following example

Example 4.6 Let $X=Y=\{1,2,3\}$, $\tau=\{\emptyset,\{2\},X\}$, $i\alpha O(X)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},X\}$ $\sigma=\{\emptyset,\{1,2\},Y\}$ and $i\alpha O(Y)=\{\emptyset,\{1\},\{2\},\{1,2\},\{1,3\},\{2,3\},Y\}$. Clearly, the identity mapping $f: X \to Y$ is an i α -irresolute, but f is not i α -totally continuous because for i α -open subset $\{1,3\}, f^{-1}\{1,3\}=\{1,3\} \notin CO(X)$.

Theorem 4.7 The composition of two i α -totally continuous mapping is also i α -totally continuous.

Proof. Let -be any ia Vtotally continuous. Let -o iabe any tw $g: Y \to Z$ and $f: X \to Y$ open in Z. Since, g is an ia-totally continuous, then $g^{-1}(V)$ is clopen set in Y, which implies $f^{-1}(V)$ open set, it follow $f^{-1}(V)$ ia-open set. Since, f is an ia-totally continuous, then $f^{-1}(g^{-1}(V))=(g \circ f)^{-1}(V)$ is clopen in X. Therefore, $gof: X \to Z$ is an ia-totally continuous.

Theorem 4.8 If $f: X \to Y$ be an i α -totally continuous and be an i α $g: Y \to Z$ irresolute, then $gof: X \to Z$ is an i α -totally continuous.

Proof. Let $f: X \to Y$ be ia-totally continuous and $g: Y \to Z$ be ia-irresolute. Let V be ia-open set in Z. Since, g is an ia-irresolute, then $g^{-1}(V)$ is an ia-open set in Y. Since, f is an ia-totally continuous, then $f^{-1}((g^{-1}(V))=(g \circ f)^{-1}(V))$ is clopen set in X. Therefore, $g \circ f: X \to Z$ is an ia-totally continuous.

Theorem 4.9 If $f: X \to Y$ is an i α -totally continuous and is an i $\alpha g: Y \to Z$ continuous, then $gof: X \to Z$ is totally continuous.

Proof. Let continuous . Let -is an ia $g: Y \to Z$ totally continuous and -be ia $f: X \to Y$ V be an open set in Z. Since, g is an ia-continuous, then $g^{-1}(V)$ is an ia-open set in Y. Since, f is an ia-totally continuous, then $f^{-1}(g^{-1}(V))=(g \circ f)^{-1}(V)$ is clopen set in X. Therefore, $gof: X \to Z$ is totally continuous

Definition 4.10 Let *X*, *Y* be a topological spaces, a mapping $f: X \to Y$ is said to be iacontra-continuous (resp. i-contra-continuous), if the inverse image of every open subset of *Y* is an ia-closed (resp. i-closed) set in *X*.

Example 4.11 Let $X=Y=\{a,b,c\}, \tau=\{\emptyset,\{a\},X\}, \sigma=\{\emptyset,\{c\},Y\}$ and $i\alpha O(X)=\{\emptyset,\{a\},\{b\},\{c\},\{a,c\},\{b,c\},X\}$. Clearly, the identity mapping $f: X \to Y$ is an i-contracontinuous and i α -contra-continuous.

Proposition 4.12 Every contra-continuous mapping is an i-contra-continuous.

Proof. Let $f: X \to Y$ be contra continuous mapping and *V* any open set in *Y*. Since, *f* is contra continuous, then $f^{-1}(V)$ is closed sets in *X*. Since, every closed set is an i-closed set, then $f^{-1}(V)$ is an i-closed set in *X*. Therefore, *f* is an i-contra-continuous Similarly we have the following results.

Proposition 4.13 Every contra semi-continuous mapping is an i-contra-continuous.

Proof. Clear since every semi-open set is an i-open set

Proposition 4.14 Every contra α-continuous mapping is an i-contra-continuous.

Proof. Clear since every α -open set is an i-open set \blacksquare The converse of the propositions 4.12, 4.13 and 4.14 need not be true in general as shown in the following example

Example 4.15 Let $X=Y=\{a,b,c\}, \tau=\{\emptyset,\{a,c\},X\}, iO(X)=\{\emptyset,\{a\},\{c\},\{a,c\},\{b,c\}, X\}$ and $\sigma=\{\emptyset,\{c\},Y\}$. Clearly, the identity mapping $f: X \to Y$ is is an i-contra continuous, but *f* is not contra-continuous, *f* is not contra semi-continuous, *f* is not contra a-continuous because for open subset $f^{-1}\{c\}=\{c\}$ is not closed in *X*, $f^{-1}\{c\}=\{c\}$ is not semi-closed in *X* and $f^{-1}\{c\}=\{c\}$ is not α -closed in *X*.

Proposition 4.16 Every i-contra-continuous mapping is an iα-contra-continuous.

Proof. Let $f: X \to Y$ be an i-contra continuous mapping and V any open set in Y. Since, f is an i-contra continuous, then $f^{-1}(V)$ is an i-closed sets in X. Since, every iclosed set is an i α -closed, then $f^{-1}(V)$ is an i α -closed set in X. Therefore, f is an i α contra-continuous

Remark 4.17 The following example shows that $i\alpha$ -contra-continuous mapping need not be contra-continuous, contra semi-continuous, contra- α -continuous and i-contra-continuous mappings.

Example 4.18 Let $X=Y=\{a,b,c\}$, $\tau=\{\emptyset,\{a\},X\}$, $SO(X)=\alpha O(X)=iO(X)=\{\emptyset,\{a\},\{a,b\},\{a,c\},X\}$, $i\alpha O(X)=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},X\}$, $\sigma=\{\emptyset,\{c\},Y\}$. A mapping continuous, -contra-is an $i\alpha f(c)=a$. Clearly, f(b)=b,f(a)=c, f is defined by $f:X \to Y$ but f is not contra-continuous, f is not contra semi continuous, f is not contra a-continuous and f is not i-contra-continuous because for open subset $\{c\}, f^{-1}\{c\}=\{a\}$ is not closed, $f^{-1}\{c\}=\{a\}$ is not semi-closed, $f^{-1}\{c\}=\{a\}$ is not α -closed and $f^{-1}\{c\}=\{a\}$ is not i-closed in X.

Theorem 4.19 Every totally continuous mapping is an iα-contra continuous.

Proof. Let $f: X \to Y$ be totally continuous and *V* be any open set in *Y*. Since, *f* is totally continuous mapping, then $f^{-1}(V)$ is clopen set in *X*, and hence closed, it follows i α -closed set. Therefore, *f* is an i α -contra-continuous The converse of the above theorem need not be true as shown in the following example

Example 4.20 Let $X=Y=\{a,b,c\}, \tau=\{\emptyset,\{c\},X\}, \sigma=\{\emptyset,\{a\},Y\}$ and $i\alpha O(X)=\{\emptyset,\{a\},\{b\},\{c\},\{a,c\},\{b,c\},X\}$. Clearly, the identity mapping -contra-is an $i\alpha \quad f:X \to Y$ continuous, but *f* is not totally continuous because for open subset $f^{-1}\{a\}=\{a\}\notin CO(X)$.

5 Separation Axioms with ia-open Set

In this section, we introduce some new weak of separation axioms with ia-open sets.

Definition 5.1 A topological space *X* is said to be

(i) $i\alpha T_o$ if for each pair distinct points of X, there exists $i\alpha$ -open set containing one point but not the other.

(ii) $i\alpha - T_1$ (resp. clopen $-T_1$ [3]) if for each pair of distinct points of X, there exists two iaopen (resp. clopen) sets containing one point but not the other.

(iii)i α - T_2 (resp. ultra hausdorff (U T_2)[10]) if for each pair of distinct points of X can be separated by disjoint i α -open (resp. clopen) sets.

(iv)i α -regular (resp. ultra regular [9]) if for each closed set *F* not containing a point in *X* can be separated by disjoint i α -open (resp. clopen) sets.

(v) clopen regular [10] if for each clopen set F not containing a point in X can be separated by disjoint open sets.

(vi)i α -normal (resp. ultra normal[10], s-normal[13], α -normal[2]) if for each of nonempty disjoint closed sets in X can be separated by disjoint i α -open (resp. clopen, semiopen, α -open) sets.

(vii) clopen normal [10] if for each of non-empty disjoint clopen sets in X can be separated by disjoint open sets.

(viii) $i\alpha - T_{1/2}$ if every $i\alpha$ -closed is i-closed in X.

Remark 5.2 The following example shows that i α -normal need not be normal, s-normal, α -normal spaces

Example 5.3 Let $X = \{1,2,3,4,5\}, \tau = \{\emptyset, \{1,2,3\}, \{1,2,3,4\}, \{1,2,3,5\}, X\}$ and $i\alpha O(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \{4,5\}, \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{1,4,5\}, \{2,3,4\}, \{2,3,5\}, \{2,4,5\}, \{3,4,5\}, \{1,2,3,4\}, \{1,2,3,5\}, \{1,3,4,5\}, \{1,2,4,5\}, \{2,3,4,5\}, X\}$. Clearly, the space X is $i\alpha - T_o$, $i\alpha - T_I$, $i\alpha - T_2$, $i\alpha$ -regular, $i\alpha$ -normal and $i\alpha - T_{I/2}$, but X is not normal, s-normal and α -normal.

Theorem 5.4 if a mapping continuous mapping and the –contra-is an i α $f: X \to Y$ space X is an i α - $T_{1/2}$, then f is an i-contra-continuous.

Proof. Let . *Y* is any open set in *V* continuous mapping and –racont-ia $f: X \to Y$ Since, *f* is an ia-contra-continuous mapping, then $f^{-1}(V)$ is an ia-closed in *X*. Since, *X* is an ia- $f^{-1}(V)$ is i-closed in *X*. Therefore, *f* is an i-contra-continuous

Theorem 5.5 If $f: X \to Y$ is an i α -totally continuous injection mapping and Y is an i α - T_1 , then X is clopen- T_1 .

Proof. Let x and y be any two distinct points in X. Since, f is an injective, we have f(x) and $f(y) \in Y$ such that $f(x) \neq f(y)$. Since, Y is an $i\alpha$ -T₁, there exists $i\alpha$ -open sets U and V in Y such that $f(x) \in U$, $f(y) \notin U$ and $f(y) \in V$, $f(x) \notin V$. Therefore, we have $x \in f^{-1}(U)$, $y \notin f^{-1}(U)$ and $y \in f^{-1}(V)$ and $x \notin f^{-1}(V)$, where $f^{-1}(U)$ and $f^{-1}(V)$ are clopen subsets of X because f is an i α -totally continuous. This shows that X is clopen-T₁

Theorem 5.6 If $f: X \to Y$ is an i α -totally continuous injection mapping and *Y* is an i α -*T*_o, then *X* is ultra-Hausdorff (U*T*₂).

Proof. Let *a* and *b* be any pair of distinct points of *X* and *f* be an injective, then $f(a) \neq f(b)$ in *Y*. Since *Y* is an $i\alpha$ - T_o , there exists $i\alpha$ -open set *U* containing f(a) but not f(b), then we have $a \in f^{-1}(U)$ and $b \notin f^{-1}(U)$. Since, *f* is an $i\alpha$ -totally continuous, then $f^{-1}(U)$ is clopen in *X*. Also $a \in f^{-1}(U)$ and $b \in X - f^{-1}(U)$. This implies every pair of distinct points of *X* can be separated by disjoint clopen sets in *X*. Therefore, *X* is ultra-Hausdorff

Theorem 5.7 Let $f: X \to Y$ be a closed i α -continuous injection mapping. If *Y* is an i α -normal, then *X* is an i α -normal.

Proof. Let F_1 and F_2 be disjoint closed subsets of X. Since, f is closed and injective, f (F_1) and f (F_2) are disjoint closed subsets of Y. Since, Y is an $i\alpha$ -normal, f (F_1) and f (F_2) are separated by disjoint $i\alpha$ -open sets V_1 and V_2 respectively. Therefore, we obtain, $F_1 \subset f^{-1}(V_1)$ and $F_2 \subset f^{-1}(V_2)$. Since, f is an $i\alpha$ -continuous, then $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are $i\alpha$ -open sets in X. Also, $f^{-1}(V_1) \cap f^{-1}(V_1) = f^{-1}(V_1 \cap V_2) = \emptyset$. Thus, for each pair of non-

empty disjoint closed sets in X can be separated by disjoint i α -open sets. Therefore, X is an i α -normal

Theorem 5.8 If $f: X \to Y$ is an i α -totally continuous closed injection mapping and *Y* is an i α -normal, then *X* is ultra-normal.

Proof. Let F_1 and F_2 be disjoint closed subsets of X. Since, f is closed and injective, f (F_1) and f (F_2) are disjoint closed subsets of Y. Since, Y is an i α -normal, f (F_1) and f (F_2) are separated by disjoint i α -open sets V_1 and V_2 respectively. Therefore, we obtain, $F_1 \subset f^{-1}(V_1)$ and $F_2 \subset f^{-1}(V_2)$. Since, f is an i α -totally continuous, then $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are clopen sets in X. Also, $f^{-1}(V_1) \cap f^{-1}(V_2) = f^{-1}(V_1 \cap V_2) = \emptyset$. Thus, for each pair of non-empty disjoint closed sets in X can be separated by disjoint clopen sets in X. Therefore, X is ultra-normal

Theorem 5.9 Let $f: X \to Y$ be a totally continuous closed injection mapping, if Y is an i α -regular, then X is ultra-regular.

Proof. Let *F* be a closed set not containing *x*. Since, *f* is closed, we have f(F) is a closed set in *Y* not containing f(x). Since, *Y* is an i α -regular, there exists disjoint i α -open sets *A* and *B* such that $f(x) \in A$ and $f(F) \subset B$, which imply $x \in f^{-1}(A)$ and $F \subset f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are clopen sets in *X* because *f* is totally continuous. Moreover, since *f* is an injective, we have $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\emptyset) = \emptyset$. Thus, for a pair of a point and a closed set not containing a point in *X* can be separated by disjoint clopen sets. Therefore, *X* is ultra-regular

Theorem 5.10 Ifopen mapping from a -is totally continuous injective ia $f: X \to Y$ clopen regular space X into a space Y, then Y is an ia–regular.

Proof. Let *F* be a closed set in *Y* and $y \notin F$. Take y = f(x). Since, *f* is totally continuous, $f^{-1}(F)$ is clopen in *X*. Let $G=f^{-1}(F)$, then we have $x \notin G$. Since, *X* is clopen regular, there exists disjoint open sets *U* and *V* such that $G \subset U$ and $x \in V$. This implies $F=f(G) \subset f(U)$ and $y = f(x) \in V$. Further, since *f* is an injective and i α -open, we have $f(U) \cap f(V) = f(U) = f(U) = f(\emptyset) = \emptyset$, f(U) and f(V) are an i α -open sets in *Y*. Thus, for each closed set *F* in *Y* and each $y \notin F$, there exists disjoint i α -open sets f(U) and f(V) in *Y* such that $F \subset f(U)$ and $y \in f(V)$. Therefore, *Y* is an i α -regular

Theorem 5.11 If $f: X \to Y$ is a totally continuous injective and i α -open mapping from clopen normal space X into a space Y, then Y is an i α -normal.

Proof. Let F_1 and F_2 be any two disjoint closed sets in *Y*. Since, *f* is totally continuous, $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are clopen subsets of *X*. Take $U = f^{-1}(F_1)$ and $V = f^{-1}(F_2)$. Since, *f* is an injective, we have $U \cap V = f^{-1}(F_1) \cap f^{-1}(F_2) = f^{-1}(F_1 \cap F_2) = f^{-1}(\emptyset) = \emptyset$. Since, *X* is clopen normal, there exists disjoint open sets *A* and *B* such that $U \subset A$ and $V \subset B$. This implies $F_1 = f(U) \subset f(A)$ and $F_2 = f(V) \subset f(B)$. Further, since *f* is an injective ia-open, then f(A)and f(B) are disjoint ia-open sets. Thus, each pair of disjoint closed sets in *Y* can be separated by disjoint ia-open sets. Therefore, *Y* is an ia-normal

<u>REFERENCES</u>

- [1] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar. 41 (1983), no. 3-4, 213–218.
- [2] Arhangel. Skii A. V., Ludwig L., On α -normal and β -normal spaces, Comment. Math Univ. Carolinae 42.3 (2001), 507–519.
- [3] E. Ekici and M. Caldas, Slightly –continuous functions, Bol. Soc. Para Mat., 22(2) (2004), 63 74.
- [4] J. Donchev, Contra continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19 (1996), 303-310.
- [5] J. Donchev and T. Noiri, Contra semi continuous functions, Math. Panonica.,10, No. 2, 1999, 154-168.
- [6] N. Biswas, Some mappings in topological spaces, Bull. Cal. Math. Soc., 61 (1969), 127 133.
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly,70(1963), 36–41.
- [8] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961– 970.
- [9] R. L. Ellis, A non-Archimedean analogue of the Tietze-Urysohn extension theorem, Nederl. Akad. Wetensch. Proc. Ser.A, 70 (1967), 332 333.
- [10] R. Staum, The algebra of bounded continuous functions into a non-archimedean field, Pacific J. Math., 50 (1974), 169 185.
- [11] S. G. Crossley and S. K. Hildebrand. Semi-topological properties. Fund. Math1972, (74), 233-254.
- [12] S. Jafari and T. Noiri, Contra-α-continuous functions between topological spaces, Iranian Int. J. Sci. 2 (2001), 153–167.
- [13] S. N. Maheshwari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.), 22 (68) (1978), 27-29.
- [14] S. N. Maheswari and S. S. Thakur. On α-irresolute mappings. Tamkang J. Math, (1980) 11:209-214.
- [15] S. W. Askander, M.Sc. Thesis, The property of Extended and Non-Extended Topological for semi-open , α -open and i-open sets with application, college of Education, university of Mosul(2011).
- [16] T. Noiri, Super continuity and some strong forms of continuity, Indian J. Pure Appl. Math.15(3) (1984), 241–250.
- [17] Y. Beceren. On semi α -irresolute functions. J. Indian. Acad.