
 Raf. J. of Comp. & Math’s. , Vol. 9, No. 2, 2012

193

Construct a Tool for Aspect-Oriented Analysis and Design Based on Theme

Approach

Nada N. Saleem
 Nada_N_S@uomosul.edu.iq

Mohammad H. Abdulwahab

College of Computer Sciences and Mathematics

University of Mosul

Received on: 19/10/2011 Accepted on: 14/12/2011

ABSTRACT

In this research, a (RADC-AO) tool was constructed and implemented for the

requirements analysis, design and stub-code generation according to aspect-oriented

(AO) concepts based on theme approach. RADC-AO automatically identifies

crosscutting concerns in natural language requirements text by using natural language

processing (NLP), analyze requirements and apply a set of operations on themes got in

the analysis process, design classes and aspects, draw class diagram, and generates stub-

code.

RADC-AO tested by input complete informal text requirements for payroll

system (that contains security, logging, authorization, in addition to its core

functionality which includes employees information entering, loans information

entering, and payment calculation), RADC-AO successes in the test and gives good

results.

Keyword: aspect-oriented (AO), RADC-AO tool, natural language processing (NLP)

 الاعتماد على منهج الموضوعيتحليل والتصميم في الالجانبية التوجه (RADC-AO)ة بناء الأدا
 محمد هيثم عبدالوهاب ندى نعمت سليم

 جامعة الموصل /لية علوم الحاسوب والرياضياتك
 14/12/2011تاريخ قبول البحث: 19/10/2011تاريخ استلام البحث:

صخالمل

لتحليل المتطلبات الخاصة بالبرمجيات وتصميم (RADC-AO)هذا البحث تم بناء وتنفيذ الأداة في
. (theme)وتوليد الهيكل العام لشفرة البرمجة طبقاً لأفكار البرمجة جانبية التوجه والاعتماد على منهج الموضوع

تمثلة بهيئة نص باللغة الطبيعية المتشابكة في المتطلبات الم (concerns)تحدد الهموم (RADC-AO)الأداة
بشكل آلي باستخدام معالجة اللغة الطبيعية، تحليل المتطلبات وتطبيق مجموعة من العمليات على المواضيع

(themes) المستخرجة من تحليل المتطلبات، تصميم الـ(classes) والـ(aspects) رسم مخطط الـ ،(classes) ،
 ة البرمجة.ومن ثم توليد الهيكل العام لشفر

بإدخال نص كامل لمتطلبات نظام حساب الرواتب، يحتوي هذا النظام (RADC-AO)تم فحص الأداة
 وإدارة معلومات الموظفين إدخال للنظام التي تضم الأساسيةالوظائف إلىعلى)أمنية، توثيق، تفويض، بالإضافة

 الأداة معلومات، حساب الرواتب(. نجحت هذه ال وإدارةالمعلومات الخاصة بالقروض إدخالهذه المعلومات،
(RADC-AO) نتائج جيدة. وأعطتفي الاختبار
 معالجة اللغة الطبيعية, (RADC-AO)الأداة , البرمجة جانبية التوجه الكلمات المفتاحية:

1. Introduction

Natural language processing (NLP) is the attempt to extract a fuller meaning

from free text. This can be put roughly as figuring out who did what to whom, when,

mailto:Nada_N_S@uomosul.edu.iq

 Nada N. Saleem & Mohammad H. Abdulwahab

 194

where, how and why[1]. As (NLP) technology matures, it is increasingly being used to

support other computer applications[2]. There are many uses for the (NLP), the most

important among them are (text preparation, information retrieval, automatic translation

from one natural language to another, natural language interfaces to databases and other

systems, and so on)[3].

Requirements are specifications of what should be implemented[4]. A

requirement can be specified in many styles, may be specified in plain text, as diagrams,

or as tables[5]. One common format for specifying requirements is simply to list each

individual requirement without describing any hierarchy or other explicit relationships

among the requirements[6].

A concern is anything that is of interest to a stakeholder, whether an end user,

project sponsor, or developer. For example, a concern can be a functional requirement, a

nonfunctional requirement, or a design constraint on the system[7].

Crosscutting concerns are behaviors that span multiple, often unrelated,

implementation modules. In addition to, crosscutting concerns cannot be neatly

separately from each other[8].

Crosscutting concerns are problem when modules in a system may interact

simultaneously with several requirements, which mean that concerns are tightly

intermixed, code tangling occurs. Since crosscutting concerns spread over many

modules, related implementations also spread over those modules. The concerns are

poorly localized, and this is called code scattering[8].

Aspect-oriented programming (AOP) is a novel topic in the software

engineering and languages communities[9], which addresses the construction of

software artifacts that traditional software engineering constructs fail to modularize[10].

AOP solves the tangling and scattering problems that other programming paradigms can

face[11] and [12].

There are a number of approaches for aspect-oriented software development

(AOSD) like Viewpoint-Based Aspect-Oriented Approaches, Goal Based Aspect

Oriented Approaches, and Theme approach. The feature that characterized the theme

approach is that this approach is new while other approaches are emerged as extensions

of some non-AO approaches[13].

The theme is the foundation for the theme approach. A theme is a collection of

structures and behaviors that represent one feature. Theme approach is for aspect

oriented analysis and design; therefore it contains two levels analysis, and design. The

Theme approach is divided into two segments: Theme/Doc and Theme/UML. These

both operate on and refer to the same themes, but depict them at different phases of the

lifecycle. Theme/Doc provides views and functional support for identification and

depiction at the analysis phase, whereas Theme/UML allows standard UML modeling

of relevant structure and behavior for each theme at the design phase[14].

There are many researchers working in the identification of crosscutting

concerns in the requirements based on theme approach and other approaches, following

a brief explanation about their works:

• 3CI tool: created by Busyairah, Zarinah[15][16].

• A novel use of text mining as a technology to assist in the discovery and

verification of early aspects in requirements documents: created by Yan Wu,

Mansour Zand, Harvey Siy, Victor Winter[17].

• Mining Aspects in Requirements: created by Américo Sampaio, Neil Loughran,

Awais Rashid and Paul Rayson[18].

 Construct a Tool for Aspect-Oriented Analysis and Design Based on Theme Approach

 195

(NLP) was used in their researches to identify the crosscutting concerns in the

text requirements, focuses on the crosscutting concerns identification, but neglecting to

focus on analysis or design.

2.1 The Proposed RADC-AO Tool

The RADC-AO is proposed and constructed for aspect-oriented analysis, design

and stub-code generation which is used as a mean to help software engineer to input the

problem requirements in an informal text requirements then automatically output stub-

code according to (AO) concepts. Figure 1 shows RADC-AO capabilities.

Software Engineer

Input

Requirements

Aspect-Oriented

Analysis

Aspect-Oriented

Design

Stub-Code

Generation

Import

Requirements

Write

Requirements

<< include >> << include >>

Extract Themes

from Req.

Theme-

Relationship view

Siplitting too-

general Themes

Grouping Themes

Secify Base,

Aspect Themes

Crosscutting

Themes view

Individual Theme

View

<< include >>

<< include >>

<< include >>

<< include >>

<< include >>

<< include >>

<< include >>

Classes Stub-

Code Generation

Aspects Stub-

Code Generation

<< include >> << include >>

Design Each Class

Individually

Manage Templates

Library

Draw Class

Diagram

Create

Reationships

between Classes

Design Each

Aspect Individually

<< include >>

<< include >>

<< include >>

<< include >>

<< include >>

Unifying Themes

<< include >>

Figure 1: RADC-AO use cases.

2.2 RADC-AO description

 Nada N. Saleem & Mohammad H. Abdulwahab

 196

To describe RADC-AO tool, a brief description of its capabilities must be

explained, these capabilities are:

2.2.1 Inputting Requirements for RADC-AO

RADC-AO proposed tool dealing with informal requirements text. Therefore, it

can read the requirements from text file or from (RADC-AO) tool requirements text

field area.

2.2.2 Aspect-Oriented Analysis in RADC-AO

Aspect-oriented Analysis in RADC-AO containing the following steps:

❖ Extracting Themes from Requirements Text

The first step in the aspect-oriented analysis is extracting themes from

requirements, as we previously mentioned that RADC-AO is dealing with informal

textual requirements which lead to dealing with textual natural language. Theme is well

known as an action verb, from this point, there is a need for natural language processing

to determine all verbs from the textual requirements. There are two ways to determine

verbs in requirements: the first is using Part-of-Speech (POS) tagger which does not

provide an indication about the relationship or dependency between (POS) especially

between the verb and its subject, the verb and its direct or indirect object. The second

way is using a parser which indicates the dependency between each (POS) and other

related tokens. RADC-AO uses a parser to extract each verb and its subject and object if

exist from requirements and save the information in two dimensional string.

After parsing process which determines all verbs in requirements, we need to

return each verb to its base. This process is very important because we may face verb

like 'save' and another verb like 'saving' which belong to the same action, but they

appear different.

All linguistic processes are dealing with large database and exploit large amount

of CPU and RAM, therefore and from the beginning we use a stop word list which

contains all unwanted verbs, or trivial verbs and delete these trivial verbs from the string

mentioned above if exist. This step is premature and considered as one operation that

operates on themes named (delete unwanted themes).

After all the previous processes are completed, the matrix named theme-

requirement relationship matrix is created which is depicted in Figure 2, the matrix

containing each requirements and its themes, so it shows crosscutting themes when

theme exists in more than one requirement.

Figure 2: Theme-Requirement Relationship Matrix.

❖ Theme Relationship View Graph

 Construct a Tool for Aspect-Oriented Analysis and Design Based on Theme Approach

 197

RADC-AO uses theme-requirement relationship matrix to draw theme

relationship view by drawing each requirement, drawing each theme without

redundancy, and linking between each requirement and its themes.

❖ Operating on Themes

Operating on themes contains several operations which are:

• Splitting too General Themes

To split a theme, we must be sure that theme was too general, as well known

theme representing a behavior or an action or a verb, and mostly this a verb has an

object, like 'add number' the verb is 'add' and the object is 'number' and all this

information RADC-AO retains it. We must differentiate this 'add number' from 'add

name', the first means a mathematical operation and the second may save the

information name to a database, the differentiation in this case depends on the object.

Therefore, we create a database for categorizing words (objects) into categories like

'number', 'information', 'security', and so on, where we face a theme that belongs to

more than one requirement and every requirement has its own object category. Here, we

must split this theme to these categories, and where we find theme its object not

belonging to any category or it's unknown to RADC-AO database, RADC-AO force the

software engineer to categorize this object manually by hand and save this object and its

category.

• Grouping Synonym Themes (Unifying Themes)

Grouping synonym themes means there are themes that are synonym, but they

are different in their lettering, like 'save', 'store', or 'cipher', 'encode', therefore we want

to take each theme and extract all its synonyms from a database and search in the

remainder themes if there is an accordance with them we merge them.

• Grouping Themes that seem Encompassed by the Same Theme

Grouping themes that seems encompassed by the same theme means that we

may face themes that have some common structure, like 'add name', 'delete name',

'move next', 'move previous', all these themes are database operations and have common

structures, or 'cipher', 'decipher', they are opposite themes, but they have very common

structure, therefore we must group these themes as one parent theme that has the

common structure 'generalization' and the original themes have the distinct structure

'specialization'. To do that RADC-AO contain a database for themes categories

depending on the structure "verb + object category = theme category" it means that if

we face theme 'add' and its object is 'name' and 'name' which belongs to information

category as described in splitting too general themes paragraph, it means that this theme

is dealing with database because we previously specified a rule that provides ('add' +

'information' = 'database'), another theme like 'delete' and its object is 'name' means that

the delete theme also dealing with database, therefore RADC-AO will merge them and

the output is one theme called 'database'. Also, when RADC-AO faces a verb and its

object is unknown to it. It forces the software engineer to determine the new verb's rule

and save the new rule to the database.

❖ Specifying Base and Aspect Themes

Aspect theme will be designed according to theme approach not according to

object-oriented as base theme, therefore we must specify aspects, aspect is a theme that

 Nada N. Saleem & Mohammad H. Abdulwahab

 198

exists in more than one requirement or concern, the number of times that specific theme

will be triggered to consider it as an aspect called Aspect Triggered Threshold (ATT),

(ATT) is not specific, someone can consider it two times, someone else can consider it

three times, whatever (ATT) can the software engineer specify it by inputbox appearing

to him/her.

The number of times that each theme will be triggered in a given requirements

called (NTT), RADC-AO tool is responsible to calculate (NTT) for all themes and then

comparing it with (ATT) to decide each theme as an aspect or a base.

❖ Crosscutting Theme View

Crosscutting theme view is done by drawing all themes and their interaction

between them (which theme trigger which theme) and then drawing all requirements

and relating each requirement with the most dominant theme of it. Dominant theme is

determined by the software engineer by listing all themes existing in the requirement to

him/her, and he/she chooses the dominant theme from the list.

❖ Individual Theme View

There are two types of the individual theme view in RADC-AO:

• Base theme individual view: which draws each base theme and relates it with all

requirements that exist in them, and relates the base theme with the subjects and

objects relating to it.

• Aspect theme individual view: which draws each aspect theme and relates it

with all requirements that exist in them, and relates the aspect theme with the

subjects and objects relating to it.

2.2.3 Aspect-Oriented Design in RADC-AO

RADC-AO retain all analysis information, it uses this information for the design

process. In the design process, there are two types of design, one for base themes design

(base theme will be a normal class) and another for aspect themes design (aspect themes

will be aspects).

2.2.3.1 Designing Classes:

Designing classes containing the following steps:

❖ Designing each Class Individually

Base theme will be a normal class. In base theme design RADC-AO take each

base theme and extract its category as class name and consider all verbs belong to it as

operations for that class and the objects if exist considered as attributes for that class. In

addition, in the design level software engineer can delete class or create new class and

add operations and attributes as he/she wishes, or renames class. Software engineer in

design level in RADC-AO is supported by a library that contains many templates of

reusable classes design, this library enables the software engineer to import classes or

operations or attributes from it. This library enables software engineer to manage it by

modifying the existing design templates or delete from it or add designs to it.

❖ Drawing Class Diagram

After completion of base theme design, RADC-AO tool will show all the classes

previously designed according to UML class diagram standards, the resulted graph is

shown in workspace that enables software engineer to dynamically treating with class

 Construct a Tool for Aspect-Oriented Analysis and Design Based on Theme Approach

 199

diagram. After drawing a class diagram software engineer is able to create relationships

between classes that are drawn, these relationships are (Inheritance, Aggregation,

Association, Dependency, and Composition).

2.2.3.2 Designing Aspects:

RADC-AO can design aspects in two stages:

Stage 1 – Design Aspect Operations and Attributes:

In aspect theme designing RADC-AO takes each aspect theme and extracts it's

category as aspect name and consider all verbs belong to it as operations for that aspect,

and the objects if exist are considered as attributes for that aspect. In addition, in the

design level software engineer can delete add or delete operation and attributes as

he/she wishes.

Stage 2 – Design Aspect's Joinpoint, Advice kind:

RADC-AO can automatically derive the joinpoints and advice kind from all

previously information that is collected during the analysis stage as follows:

Joinpoint: derived from the knowledge of what is the theme which is before the current

theme (if the current theme not the first theme in the sequence of themes in

requirements) or what is the theme after the current theme (if the current

theme is the first theme in the sequence of themes in requirements) – it

means that what is the theme that trigger the current aspect – this knowledge

is derived from the sequence of themes in requirements, after knowing what

is the theme, RADC-AO know to which class or aspect it belongs from the

design information for aspects and classes. By the previous knowledge,

RADC-AO can define what is the class or aspect ? and what is the operation

that trigger the current operation ?.

Advice kind: if the current theme is not the first theme in the sequence of themes in the

requirements graph, then the advice kind is 'after', if the current theme is

the first theme in the sequence of themes in requirements then the advice

kind is 'before'.

After RADC-AO determines the joinpoint and advice kind, software engineer

easily can change the design of joinpoint or advice kind.

2.2.4 Stub-Code Generation

RADC-AO uses the design information got from design process to produce stub-

code for the classes and aspects belonged to system that is analyzed and designed by

RADC-AO.

All the previous steps included in RADC-AO tool can be abstracted in a

flowchart, Figure 3 represents the flowchart of the RADC-AO steps.

 Nada N. Saleem & Mohammad H. Abdulwahab

 200

Start

End

Read informal

requirements text

Extract themes from

requirements

Draw theme

relationship view

Operating on themes

including:

- splitting too general

themes.

- unifying themes.

- grouping themes

Specifying base,

aspect themes

Draw crosscutting

theme view

Draw individual

theme view

Design each class

individually

Draw class

diagram

Design each aspect

individually

Stub-code

generation

Analysis process Design process Stub-code generation

Figure 3: RADC-AO tool flowchart.

3. RADC-AO Testing and Results:

RADC-AO was tested by using it to construct a payroll system. This payroll

system includes the next functions:

1. Enter information about employees in the organization.

2. Update employee's information.

3. Delete employee's information.

4. Enter employee's loan information.

5. Update employee's loan information.

6. Delete employee's loan information.

7. Enter login information for each payroll system's users.

8. Calculate the payment for each employee.

9. The payroll system must automatically save each used function in the payroll

system, who uses this function, what is the date and time of the use.

10. Reviewing the information collected in function 9.

When the payroll system runs, it must ask the user for his username and

passwords to check them with previously saved usernames and password for all

system's users. The payroll system allows two types of employees to use it

(administrator and normal employee). Administrator can use all functions in the system,

where normal employee can use (1, 2, 3, 4, 5, 6) functions only.

 Construct a Tool for Aspect-Oriented Analysis and Design Based on Theme Approach

 201

When user enters information it must be coded before it will be saved, and when

system shows information to the user, it must be encoded before it will be showed.

The payroll system has a set of textual requirements that are entered to the

RADC-AO. The followings are the set of requirements:

1. User must enter username, password. system must check username, password.

only authorized user can log the system, system add this action to history.

2. Administrator can enter employee's information and the system must cipher this

information before save the information. system add this action to history.

3. User can enter employee's pay information and the system must cipher this

information before save the information. system add this action to history.

4. User can enter employee's loan information and the system must cipher this

information before save the information. system add this action to history.

5. User can delete employee's pay information, system add this action to history.

6. User can delete employee's loan information, system add this action to history.

7. User can update employee's pay information, system add this action to history.

8. User can update employee's loan information, system add this action to history.

9. System must check authority before system allow user to entering to history.

10. System must check authority before system allow user to entering to team

information

11. System must check authority before system allow user to entering calculate pay.

12. System must decipher all ciphered information then system shows information.

In order to complete the analysis, design and stub-code generation to the payroll

system, sequential steps must be applied, these steps are explained in following

paragraphs and figures:

1. Entering the payroll requirements.

2. Extracting themes from requirements. Figure 4 shows themes (base verb), its subject

and object if exist in each requirement.

Figure 4: The Result of Extracting Themes Step.

 Nada N. Saleem & Mohammad H. Abdulwahab

 202

3. Drawing theme relationship view, Figure 5 shows the theme relationship view for the

payroll system, where blue nodes represent themes, red nodes represent

requirements.

Figure 5: Theme Relationship View for the Payroll System.

4. Splitting, unifying and grouping operations on themes, Figure 6 shows the resulted

relationship view after splitting, unifying and grouping operations applied on the

payroll system.

Figure 6: Theme relationship view after splitting, unifying, grouping themes view for the

payroll system.

As depicted in Figure 6, the number of themes is decreased because (add, enter,

update, delete) themes merged in database theme, and so on.

5. Specifying base and aspect themes by enter the (ATT) value in an input message.

6. Crosscutting theme view, Figure 7 shows a part of the crosscutting theme view.

 Construct a Tool for Aspect-Oriented Analysis and Design Based on Theme Approach

 203

Figure 7: A Part of Crosscutting Theme View.

As depicted in Figure 7, each requirement is represented in the red node and

linked to the most dominant theme for it, themes in one requirement are lined by an

arrow starts with the triggering theme and ends with the triggered theme.

7. Drawing individual base themes view, Figure 8 shows a part of base themes

individual view.

Figure 8: Part of the base themes individual view of the payroll system.

In Figure 8, the gray node represents the base theme, red nodes represent

requirements that contain the base theme, yellow nodes represent the subject of that

base theme and the green nodes represent the objects of that base theme.

8. Drawing aspect themes individual view, Figure 9 shows a part of aspect themes

individual view.

 Nada N. Saleem & Mohammad H. Abdulwahab

 204

Figure 9: Part of the Aspect Themes Individual View of the Payroll System.

In Figure 9, the gray node represents the aspect theme, red nodes represent

requirements that contain the aspect theme, yellow nodes represent the subject of that

base theme and the green nodes represent the objects of that aspect theme.

9. Designing each class (its origin base theme) individually, figure 10 shows how each

class can be designed individually, how to create new classes by new class button,

rename classes, delete classes, create new attributes, delete attributes, create new

operations, delete operation, managing templates library.

Figure 10: Design each Class Individually for the Payroll System.

10. Drawing class diagram for classes that are designed in step 9. Figure 11 shows the

class diagram for the payroll system.

 Construct a Tool for Aspect-Oriented Analysis and Design Based on Theme Approach

 205

Figure 11: Payroll system class diagram.

11. Designing each Aspect Individually. Figure 12 shows how this step done.

Figure 12: Design each Aspect Individually for the Payroll System.

12. Designing each aspect's adevices kind, Figure 13 shows how RADC-AO extracts

the design of each aspect's adevices kind and poincuts, how software engineer can

modify the extracted previous design.

Figure 13: Joinpoints and Advices Kind Design for the Payroll System.

 Nada N. Saleem & Mohammad H. Abdulwahab

 206

13. Stub-code generation for classes and aspects, next is an example of generated stub-

code for log class and security aspect :

class log

{

String username;

void enter ()

{

}

log ()

{

}

}

 //END OF CLASS

aspect security_ASP

{

String information;

int information;

int information;

String information;

cipher(): call (database.enter(..));

after : enter

{

}

String decipher(): call (database.show(..));

before : show

{

}

}

//END OF ASPECT

From the previous results RADC-AO successes in the test as the followings:

- Identifying the crosscutting concerns in the requirements text by a set of (NLP)

steps.

- Successfully implementing all operations on themes (splitting, unifying, and

grouping).

- It is automatically extracting classes and aspect design information like operations

and attributes, and enables the software engineer to dynamically complete the design

like operation type, attribute type and relationship between classes.

- Successes in facilitating the generation of class diagram.

- Facilitating the programming by generate stub-code.

4. Conclusions

Through the building and testing of the RADC-AO, we conclude the following:

- It is possible and very successful to automate the disturbing and complex levels

of software development process.

- It is possible and very successful to integrate the (NLP) paradigm into software

engineering stages especially those that require linguistic processing like

requirements.

 Construct a Tool for Aspect-Oriented Analysis and Design Based on Theme Approach

 207

- It is possible to produce linguistic rules that can help in software analysis and

design process.

- It is possible to depend on the results produced from automated tools for their

accuracy.

5. Future Work

Through the importance of software engineering in the software development it

must be automated and computerized. From this point, the most important

recommendations are:

- Expanding RADC-AO services domain through developing it to abstract

requirements as use case diagram.

- Creating code templates library for common used codes to produce a complete

code for common situations.

- Improving the analysis and design processes by making RADC-AO iterative and

supply it with software metrics.

- Developing it to extract the relationship between classes and aspects

automatically.

- Automating the determining dominant theme of each requirement.

 Nada N. Saleem & Mohammad H. Abdulwahab

 208

REFERENCES

[1] Anne Kao, Stephen R. Poteet, (2007), "Natural Language Processing and Text

Minning", chapter one, Springer, United States of America.

[2] Thomas C. Rindflesch, (1996), "Natural Language Processing", Cambridge

Journals, Annual Review of Applied Linguistics, Volume 16, page 70-85.

[3] Igor Bolshakov, Alexander Gelbukh, (2004), "Computational Linguistics",

chapter 3, 1st Edition, Mexico.

[4] Karl E. Wiegers, (2003), "Software Requirements", chapter one, 2nd Edition,

Microsoft press, Washington.

[5] Soren Lauesen, (2002), "Software requirements Styles and techniques", chapter

1, 1st Edition, Addison Wiley, Great Britain.

[6] Robin F. Goldsmith, (2004), "Discovering real business requirements for

software products success", chapter 11, 1st Edition.

[7] Ivar Jacobson, Pan-Wei Ng, (2004), "Aspect-Oriented Software Development

with Use Cases", Addison Wesley Professional, United States of America.

[8] Niklas Påhlsson, (2002), "Aspect-Oriented Programming: An Introduction to

Aspect-Oriented Programming and AspectJ", Topic Report for Software

Engineering, Department of Technology University of Kalmar, SWEDEN.

[9] John Viega, Jeffrey Voas, (2000), "Can Aspect-Oriented Programming Lead to

More Reliable Software ?", IEEE Journal, Volume 17, Issue 6, pages: 19-21.

[10] Stefan Hanenberg, Sebastian Kleinschmager, Manuel Josupeit-Walter, (2009),

"Does Aspect-Oriented Programming Increase the Development Speed for

Crosscutting Code ? An Empirical Study", 3rd International Symposium on

Empirical Software Engineering and Measurement.

[11] Filho, F., Rubira, C., Garcia, A., (2005), "A Quantitative Study on the

Aspectization of Exception Handling", Workshop on Exception Handling in OO

Systems (held with ECOOP), Glasgow, Scotland.

[12] Sasa Subotic, Judith Bishop, Stefan Gruner, (2006), "Aspect-Oriented

Programming for a Distributed Framework", South African Computer Journal,

Suid Afrikaanse Rekenaar Tydskrif 37, pp.81-89.

[13] Ruzanna Chitchyan, Awais Rashid, Pete Sawyer, Alessandro Garcia, Mónica

Pinto Alarcon, Jethro Bakker, Bedir Tekinerdogan, Siobhán Clarke, Andrew

Jackson, (2005), "Survey of Analysis and Design Approaches", chapter 3,

AOSD Europe.

[14] Elisa Baniassad, Siobhan Clarke, (2004), "Theme: An Approach for Aspect-

Oriented Analysis and Design", Proceedings of the 26th International Conference

on Software Engineering.

[15] Ali, B. S., Kasirum, Z. M., (2008), "3CI : A Tool for Crosscutting Concern

Identification", International Conference on Computational Intelligence for

Modeling Control & Automation.

[16] Busyairah Syd Ali, Zarinah Mohd. Kasirun, (2008), "Crosscutting Concern

Identification at Requirements Level", Malaysian Journal of Computer Science.

[17] Yan Wu, Mansour Zand, Harvey Siy, Victor Winter, (2006), "Systematic text-

mining approach for deriving aspects and patterns from domain knowledge",

ICSE 2006 Workshop on Early Aspects, Shanghai, China.

[18] Américo Sampaio, Neil Loughran, Awais Rashid and Paul Rayson, (2005),

"Minning Aspects in Requirements", Computing Department, Lancaster

University, Lancaster, UK.

