On m-Regular Rings

Zubayda M. Ibraheem

Maha F. Khalaf

zubaida_almulla@yahoo.com College of Computer Sciences and Mathematics University of Mosul

Accepted on: 16/05/2011

Received on: 13/02/2011

ABSTRACT

As a generalization of regular rings, we introduce the notion, of m-regular rings, that is for all $a \in R$, there is a fixed positive integer m such that a^m is a Von-Neumann regular element. Some characterization and basic properties of these rings will be given. Also, we study the relation-ship between them and Von-Neumann regular rings, π -regular rings, reduced rings, locally rings, uniform rings and 2-primal rings.

Keyword: m-regular rings, regular rings, reduced rings, locally rings, uniform rings - π and 2-primal rings.

حول الحلقات المنتظمة من النمط-m

زبيدة محمد أبراهيم

z.mohammed@uomosul.edu.iq كلية علوم الحاسوب والرياضيات، جامعة الموصل

تاريخ قبول البحث: 2011/5/16

تاريخ استلام البحث: 2011/2/13

الملخص

كتعميم للحلقات المنتظمة, قدمنا الحلقات المنتظمة من النمط – m على أنها لكل $a \in R$ يوجد عدد صحيح موجب ثابت m بحيث أن a^m يكون منتظم. في هذا البحث درسنا المميزات والخواص الأساسية له وكذلك العلاقة بين الحلقات المنتظمة من النمط – m والحلقات المنتظمة من النمط – π , والحلقات المختزلة والحلقات المحلية والحلقات الموحدة.

كلمات المفتاحية: حلقات منتظمة من النمط $-{
m m}$, حلقات منتظمة, حلقات مختزلة, حلقات محلية, حلقات موجدة, حلقات موجدة من النمط $-\pi$

1-Introduction

Throughout in this paper, R denotes an associative ring with identity. For a subset X of R, the right (left) annihilator of X in R is denoted by r(X) (l(X)). If X={a}, we usually abbreviate it to r(a) (l(a)). We write J(R), Y(R), Z(R), N(R), P(R) for the Jacobson radical, right singular ideal, left singular ideal, the set of all nilpotent element of R and the prime radical of R respectively.

A right R- module M is called p- Injective, if for any principal right ideal aR of R and any right R- homomorphism of aR into M can be extended to one of R into M. The ring R is called right p- Injective if R_R is p- Injective [12]. An ideal I of a ring R is said to be essential if and only if I has a non-zero intersection with every non-zero ideal of R. A ring R is called π -regular, if for each a in R, there exist a positive integer n and an element b in R such that $a^n = a^n b a^n$ [7]. A ring R is called reduced if $a^2 = 0$ implies a = 0 for all a in R [10]. A ring R is said to be reversible if ab = 0 implies ba = 0 for all a in R [3]. Finally a ring R is said to be right (left) duo if every right (left) ideal is a two-sided ideal of R [2].

2- m - Regular ring

This section is devoted to give the definition of m-regular rings with some of its characterization and basic properties.

A ring R is said to be Von-Neumann regular (or just regular) if and only if for each a in R there exists b in R such that a=aba [8].

Definition 2.1 [5]:

Let R be a ring, if there is a fixed positive integer $m \neq 1$ such that for all elements a of R, a^m is regular $(a^m = a^m b a^m)$. Then we say that R is m-regular, and it is left (right) m-regular if $a^m = x a^{m+1} (a^m = a^{m+1} y)$ for some $x, y \in R$. The ring R is (left or right) m-regular if all its elements have this property.

Examples : Z_3, Z_4, Z_8, Z_9 are m-regular rings.

Note: clearly that when m=1, then R is regular ring, but the converse is not true by the following example :

Example [5]: The endomorphism ring of $G = Q \oplus \prod_p Z(p)$ is (left, right) 2-regular but not regular.

Proposition 2.2:

If y is an element of a ring R such that $a^m - a^m y a^m$ is regular element for a fixed positive integer $m \neq 1$, then a is m-regular.

Proof:

Let $x = a^m - a^m y a^m$ Since x is regular, then x = xux for some $u \in R$. Hence $a^m = x + a^m y a^m$

$$= (a^{m} - a^{m} ya^{m}) u (a^{m} - a^{m} ya^{m}) + a^{m} ya^{m}$$

$$= a^{m} (1 - ya^{m}) u (1 - a^{m} y) a^{m} + a^{m} ya^{m}$$

$$= a^{m} [(1 - ya^{m}) u (1 - a^{m} y)] a^{m} + a^{m} ya^{m}$$

$$= a^{m} [(1 - ya^{m}) u (1 - a^{m} y) + y] a^{m}$$
Therefore $a^{m} = a^{m} za^{m}$, where $z = (1 - ya^{m}) u (1 - a^{m} y) + y$.

Theorem 2.3:

A ring R is m-regular if and only if $a^m R$ is generated by idempotent for every $a \in R$ and for a fixed positive integer $m \neq 1$.

Proof:

Let $a \in R$. Choose an idempotent e in R and there exists a fixed positive integer $m \neq 1$, such that $a^m R = eR$. Take $e = a^m b$ for some $b \in R$, then $a^m = ec$ for some c in R, so $ea^m = a^m ba^m$ and $ea^m = ec = ec = a^m$. Therefore $a^m = ea^m = a^m ba^m$. Thus R is m-regular.

Conversely: It is clear.

Theorem 2.4:

If R is m- regular ring without zero divisor element, then R is a division ring.

Proof :

Let $0 \neq a \in R$. Since R is m- regular ring, then there exists b in R such that $a^m = a^m b a^m$, then $0 = a^m - a^m b a^m = a^m (1 - b a^m) = a (a^{m-1} (1 - b a^m))$. Since $a \neq 0$, then $a^{m-1} (1 - b a^m) = 0$. So $a (a^{m-2} (1 - b a^m)) = 0$ \vdots $a (1 - b a^m) = 0$ So $1 - b a^m = 0$ Thus $1 = b a^m$, implies that $1 = (b a^{m-1}) a$.

Hence a is a left invertible. Now, since $1 = (ba^{m-1})a$. Then $a = a(ba^{m-1})a$. Hence $(1-aba^{m-1}) \in l(a) = 0$. So $1 = a(ba^{m-1})$, implies that a is a right invertible. Therefore R is a division ring.

Theorem 2.5:

If P is a primary ideal of a ring R , and if R/p is m-regular, then P is maximal.

Proof:

Let $a \in R$, then $a + p \in R/p$. Since R/p is m-regular ring, then there exists $b + p \in R/p$ such that $a^m + p = (a + p)^m (b + p)(a + p)^m$ $= a^m b a^m + p$. So $a^m - a^m b a^m \in p$, thus $a^m (1 - b a^m) \in p$. Suppose that $a^m \notin p$, then $(1 - b a^m)^n \in p, n \in z^+$. Now, $(1 - b a^m)^n = 1 - \left[\sum_{k=1}^n c_k^n (-1)^{k-1} b^m a^{m(k-1)}\right] a^m \in p$. Let $z = \sum_{k=1}^n c_k^n (-1)^{k-1} b^m a^{m(k-1)}$. Then $1 - z a^m \in p$ and so $1 + p = (z + p)(a^m + p)$. Therefore $a^m + p$ has

Then $1 - za^m \in p$ and so $1 + p = (z + p)(a^m + p)$. Therefore $a^m + p$ has an inverse and hence R/p is a division ring. Therefore P is maximal.

Theorem 2.6:

Let R be a ring with $r(a^{m+1}) \subseteq r(a^m)$ for a fixed positive integer $m \neq 1$. Then R is m-regular if R/r(a) is m-regular.

Proof :

Suppose that R/r(a) is m-regular ring, then for any $a + r(a) \in R/r(a)$, there exists $b + r(a) \in R/r(a)$ such that $(a + r(a))^m = (a + r(a))^m (b + r(a))(a + r(a))^m$

 $a^{m} + r(a) = a^{m}ba^{m} + r(a)$. So $a^{m} - a^{m}ba^{m} \in r(a)$. Hence $a(a^{m} - a^{m}ba^{m}) = 0$ That is $a^{m+1}(1-ba^m)=0$ So $1-ba^m \in r(a^{m+1}) \subseteq r(a^m)$ Hence $a^m(1-ba^m)=0$ Thus $a^m = a^m ba^m$. Therefore *R* is m-regular.

Recall that, a ring R is called bounded index of nilpotency [4] if there exists a positive integer n such that $a^n = 0$, for all nilpotent elements a in R. As a result of Theorem 2.6 we obtain the following corollary:

Corollary 2.7:

A ring R is m-regular if and only if R is bounded index of nilpotency and R/r(a) is m-regular for all $a \in R$.

Theorem 2.8:

Let I be an ideal of R. If R/I is a right m-regular and I is a right n-regular. Then R is right mn-regular.

Proof :

Let $x \in R$, then $x + I \in R/I$.

Since R/I is right m-regular, then there exists $y + I \in R/I$ such that: $(x+I)^m = (x+I)^{m+1}(y+1)$ which implies that $x^m + 1 = x^{m+1}y + I$ and hence $x^m - x^{m+1}y \in I$. Since I is right n-regular ideal, then there exists $z \in I$, such that $(x^m - x^{m+1}y)^n = (x^m - x^{m+1}y)^{n+1}z$, implies that $x^{mn} - x^{mn-1}x^{m+1}y + x^{mn-2}\frac{(x^{m+1}y)^2}{24} - \dots + (x^{m+1}y)^n =$

$$\left[x^{mn+m} - x^{mn}x^{m+1}y + x^{mn+m-2}\frac{(x^{m+1}y)^2}{2!} - \dots + (x^{m+1}y)^{n+1}\right]z$$

Then

$$x^{mn} = x^{mn-1}x^{m+1}y - x^{mn-2} \frac{x^{2m+2}y^2}{2!} + \dots - x^{mn+n}y^n + \left[x^{mn+n} - x^{mn}x^{m+1}y + x^{mn+m-2} \frac{x^{2m+2}y^2}{2!} - \dots + x^{mn+m+n+1}y^{n+1}\right]z$$

So $x^{mn} = x^{mn+1} \begin{bmatrix}x^{m-1}y - x^{-3} \frac{x^{2m+2}y^2}{2!} + \dots - x^{n-1}y^n + \\ x^{n-1} - x^m y + x^{m-3} \frac{x^{2m+2}y^2}{2!} - \dots + x^{m+n}y^{n+1}\\ z\end{bmatrix}$

Thus $x^{mn} = x^{mn+1}y$,

where

$$y = x^{m-1}y - x^{-3}\frac{x^{2m+2}y^2}{2!} + \dots + x^{n-1}y^n + \left(x^{n-1} - x^my + x^{m-3}\frac{x^{2m+2}y^2}{2!} - \dots + x^{m+n}y^{n+1}\right)z$$

Therefore R is a right mn-regular .

Proposition 2.9:

Let R be a ring in which every maximal right ideal is m-regular. Then R is right non-singular ring if $r(a^m) \subset r(a)$ for all $a \in R$ and a fixed positive integer $m \neq 1$.

Proof:

If $Y(R) \neq 0$, then there exists $0 \neq a \in Y(R)$ such that $a^2 = 0$. First suppose that $aR + r(a) \neq R$. Thus, there is a maximal ideal M such that $aR + r(a) \subseteq M$. Since M is right m-regular, then there exists $b \in M$ and a fixed positive integer $m \neq 1$ such that $a^m = a^{m+1}b$. It follows that $a^m(1-ab)=0$, that is $(1-ab) \in r(a^m) \subset r(a) \subset M$. Hence $1 \in M$, a contradiction. Therefore aR + r(a) = R. In particular, ar + d = 1 for some $r \in R$ and $d \in r(a)$. Then $a^2r = a$. Thus a = 0, that is Y(R) = 0.

Proposition 2.10 :

Let *R* be m-regular ring, then J(R) is nilideal.

Proof:

Let $0 \neq a \in J(R)$, then $a^m \in J(R)$. Since R is m-regular, so there exists $c \in R$ such that $a^m = a^m c a^m$.

Hence $(1-ca^m)$ is invertable, so there exists $u \in R$ such that $u(1-ca^m)=1$. It follows that $u(a^m - a^m ca^m) = a^m = 0$. Thus a is nilpotent element .Therefore J(R) is nilideal.

Corollary 2.11:

Let *R* be a reduced m-regular ring. Then J(R) = (0).

Proof :

If $J(R) \neq (0)$, then there exists $a \in J(R)$ with $b \in R$ such that $a^m = a^m b a^m$, then $a^m - a^m b a^m = 0$. Hence $a^m (1 - b a^m) = 0$. Since $a \in J(R)$, that is $a^m \in J(R)$ and $b a^m \in J(R)$, therefore

 $1-ba^m$ is invertable.

Then there exists an invertable $u \in R$ such that $(1 - ba^m)u = 1$, implies that $(a^m - a^m ba^m)u = a^m$. Thus $a^m = 0$. Since *R* is reduced. Therefore a = 0.

Preposition 2.12 :

Let R be semi-prime m-regular ring. Then the Center of R is right and left m-regular ring .

Proof:

Let $0 \neq a \in Cent(R)$, the Center of R, and let $a^2 = 0$, then $a^2R = 0$, which gives aRa = 0. Since R is semi-prime, then a=0[6 p. 9.2.7]. Therefore Cent(R) is reduced.

Now, let $c \in Cent(R)$, then there exists $b \in R$ and a fixed positive integer $m \neq 1$ such that $c^m = c^m b c^m$ (R is m-regular). If we set $d = c^{2m} b^3 \in Cent(R)$. Now, $c^{m+1}d = c^{m+1}c^{2m}b^3$

$$= cc^{m}c^{m}c^{m}bbb = cc^{m}bc^{m}b$$
$$= cc^{m}bc^{m}b$$
$$= c^{m+1}b$$

Since *R* is m-regular, then every element is left and right m-regular, hence $c^{m+1}b = c^m$

$$(c^{m} - c^{m+1}d)^{2} = (c^{m} - c^{m+1}d)(c^{m} - c^{m+1}d)$$

= $c^{2m} - c^{2m+1}d - c^{m+1}dc^{m} + (c^{m+1}d)(c^{m+1}d)$
= $c^{2m} - c^{2m+1}d - c^{m+1}dc^{m} + c^{m+1}dc^{m+1}d$
= $c^{2m} - c^{m}c^{m+1}d - c^{m+1}dc^{m} + c^{2m} = 0$

Since Cent(R) is reduced. Thus $c^m - c^{m+1}d = 0$ Then $c^m = c^{m+1}d$ and $c^m = dc^{m+1}$

Therefore Cent(R) is right and left m-regular ring.

Proposition 2.13:

Let I be any right ideal of a duo ring R. Then an element a of I is m-regular if and only if it is m-regular element in the ring R.

Proof:

Let a be m-regular element in I, and let b be any element of the ideal (a) generated by a in R. Then we have $b = na + ua + av + \sum u_i av_i$, where *n* is a positive integer and u and v are elements of R. Since a is m-regular element then there exists an element $x \in I$ such that $a^m = a^m x a^m$, $m \neq 1$ is a fixed positive integer. Consequently

$$b^{m} = [na + ua + av + \sum u_{i} av_{i}]^{m}$$

= $[(na + ua) + (av + \sum u_{i} av_{i})]^{m}$
= $(na + ua)^{m} + (na + ua)^{m-1}(av + \sum u_{i} av_{i}) + (na + ua)^{m-2} \frac{(av + \sum u_{i} av_{i})^{2}}{2!} + \dots + (av + \sum u_{i} av_{i})^{m}$

Hence we have $b \in (a)'$, where (a)' denotes an ideal generated by a in I. Therefore b is m-regular and the element a is m- regular element in R. The converse part is clear.

Proposition 2.14:

A ring R is m-regular ring if and only if $r(a^m)$ is direct summand with every principal left ideal for a fixed integer $m \neq 1$.

Proof:

Suppose that $r(a^m) \oplus Ra^m = R$, for every a in R and a fixed positive integer $m \neq 1$. In particular $x + ba^m = 1$, then $a^m x + a^m ba^m = a^m$. So $a^m = a^m ba^m$. Therefore R is m-regular.

Conversely: Assume that R is m-regular, then for each a in R $a^m = a^m b a^m$ for some b in R, then $a^m(1-ba^m)=0$. So $(1-ba^m)\in r(a^m)$. Now, since $1=ba^m+(1-ba^m)$ then $R = Ra^m + r(a^m)$. Now to prove $Ra^m \cap r(a^m)=0$. Let $x \in Ra^m \cap r(a^m)$, then $x \in Ra^m$ and $a^m x = 0$ and so $x = ba^m$ for some b in R then $a^m ba^m = 0$. So $a^m = 0$. Therefore x=0.

3- The Relation between m-Regular Ring and Other Rings

In this section we give the relation between m-regular rings and regular rings, reduced rings, local rings, $\pi - regular$ rings and uniform rings.

Proposition 3.1 :

Every reduced regular ring is left and right m-regular ring.

Proof:

Let *R* be a regular ring, and let $a \in R$, then there exists an element $b \in R$ such that a = aba, then a - aba = 0. It follows that a(1-ba)=0, that is $(1-ba) \in r(a) = l(a) \subset l(a^m)$. Hence $(1-ba)a^m = 0$. So $a^m = ba^{m+1}$, that is R is left m-regular ring. Now, (1-ab)a = 0, implies that $(1-ab) \in l(a) = r(a) \subset r(a^m)$. Thus $a^m (1-ab) = 0$. So $a^m = a^{m+1}b$. Therefore R is right m-regular ring.

Corollary 3.2:

Let R be a ring whose maximal right ideals are right m-regular. Then R is right and left m-regular, if $r(a^m) \subset r(a)$ for all $a \in R$, and a fixed positive integer $m \neq 1$.

Proof:

Let $0 \neq a \in R$. We claim first aR + r(a) = R. If not, there exists a maximal right ideal M containing aR + r(a). Since M is a right m-regular ideal, then there exists $b \in M$ such that $a^m = a^{m+1}b$. It follows that $a^m(1-ab)=0$, that is $1-ab \in r(a^m) \subset r(a)$, then $1-ab \in r(a)$, since $a \in M$ then $ab \in M$ and so $1 \in M$, contradiction. Therefore R = aR + r(a). In particular 1 = ar + d for some $r \in R$ and $d \in r(a)$. Hence $a = a^2r + ad$ implies $a = a^2r$ and then by Proposition (3.1), R is a right and left m-regular ring.

Proposition 3.3:

Let R be a ring whose maximal right ideals are right m-regular. Then every right R-modules is p-injective if $r(a^m) \subset r(a)$, for all $a \in R$.

Proof:

By a similar method of proof used in Corollary (3.2), we have $a = a^2r$ for some r in R, then a = ara. Now, let $f: aR \to L$ be any right R-homomorphism, and let $f(ar) = y \in L$ [L is an R-module]. Then for any $c \in R$; f(ac) = f(arac) = f(ar)ac = yac. This means that every right R-module is p-injective.

Lemma 3.4: [9]

If R is a right p-injective, then J(R) = Y(R).

Corollary 3.5:

Let R be m-regular ring. Then r(a) is essential in R for any a in R, if the set of non units elements is an ideal of R, with $r(a^m) \subset r(a)$ for a fixed positive integer $m \neq 1$.

Proof:

Let S be the set of non units element. Then S is contained in unique maximal ideal M by (p.158 in [11]), that is; J(R) is a unique maximal left ideal of R. Hence $Ra \neq R$ and $a \in J(R)$, and J(R) is m-regular, that is J(R) is a right m-regular and hence by Proposition(3.3) R is p-injective module, which implies that J(R) = Y(R) by Lemma (3.4). So, $a \in Y(R)$, therefore r(a) is essential.

Recall that, a ring R is said to be uniform if all non zero- ideal of R is essential.

Recall that, a ring R is said to be local [6] if it has a unique maximal ideal.

Proposition 3.6:

Let R be a right m-regular ring, satisfies $r(a^m) \subset r(a)$ for all $a \in R$. Then R is local ring if and only if R is uniform ring.

Proof:

Let R be a right m-regular, if R is local, then for all non-zero element $a \in R$, aR essential. Now, if $aR \neq R$, then there exists a maximal ideal M such that $aR \subset M$ and since R is local ring, then M=J(R) that is $a \in J(R)$, then every ideal is right m-regular and by Proposition(3.3). That is R is right p-injective and by Lemma (3.4), we have $a \in Y(R)$, that is r(a) is essential for every $a \in R$ and hence R is uniform ring.

Conversely: Assume that R is uniform, that is r(a) is essential for every $a \in R$, and hence $a \in Y(R)$. Since R is right m-regular and by Proposition(3.3).That is R is right p-injective and by Lemma (3.4) Y(R) = J(R). Thus $a \in J(R)$. Hence (1-a) is invertible. Therefore R is local ring by [6, Proposition 10.1.3].

Proposition 3.7:

Let R be a reversible ring. Then R is reduced ring if every maximal essential right ideal of R is right m-regular.

Proof:

Let $0 \neq a \in R$ such that $a^2 = 0$. If there exists a maximal right ideal M of R containing r(a), then M must be an essential right ideal. Otherwise M = r(e), $0 \neq e^2 = e \in R$, since R reversible, then $a \in M = r(e) = l(e)$ hence ea = 0 and we get $e \in l(a) = r(a) \subseteq M = r(e)$ that is $e^2 = 0$, contradiction. Hence M is essential and so M is right m-regular, then there exists $b \in M$ and an integer $m \neq 1$ such that $a^m = a^{m+1}b$.

It follows that $a^m(1-ab)=0$, that is $1-ab \in r(a^m)$ since *R* is reversible. Then $r(a^m)=r(a)$, so $1-ab \in r(a) \subseteq M$, and we get $1 \in M$, contradiction. Therefore *R* is reduced.

Theorem 3.8:

Let *R* be local ring. Then *R* is m-regular if and only if *R* is π -regular ring with bounded index of nilpotency.

Proof :

Let *R* be m-regular ring. Then it is obvious that *R* is π -regular with bounded index of nilpotency.

Now, let $a \in R$, then if $aR \neq R$, then there exists a maximal ideal M such that $aR \subset M$. Since R is local ring, then M = J(R) that is $a \in J(R)$ and by Proposition (2.10), $a \in N(R)$, that is there exists a positive integer n such that $a^n = 0 = a^n b a^n$. But R has property bounded index of nilpotency. Therefore R is m-regular ring. Now, if aR = R and Ra = R (Since R is locally).

Then ar = 1 and ca = 1, for some $c, r \in R$

That is $a^2 r = a$ and $ca^2 = a$

Hence $a^m = a^{m+1}r$ and $a^m = ca^{m+1}$, for a fixed positive integer $m \neq 1$. That is *R* is right and left m-regular. Therefore *R* is m-regular.

<u>REFERENCES</u>

- [1] Birkenmeier, G.F., Kim, J.Y. and park, J.K. (1994), "A Connection Between Weak Regularity And The Simplicity Of Prime Factor Rings", American Math. Sco. 122(1), pp.53-58.
- [2] Brown, S.H. (1973), "Rings Over Which Every Simple Modular Is Rationally Complete", canad. J. Math. 25 pp.693-701.
- [3] Cohn, P.M. (1999), "Reversible Rings "Bull. London Math. Soc., 31, pp. 641-648.
- [4] Fisher, J.W. and R.L. Snider (1974), "On The Von Neumann Regularity Of Rings With Prime Factor Rings" pacific Journal Math. 64, pp,135-144.
- [5] Fuchs, L. and Rangaswamy, K.M. (1968), "On Generalized Regular Rings", Math. Zeitschr. 107, pp.71-81.
- [6] Michiel Hazewinkel, Nadiya Gubareni and V.V. kirichenko, (2004), "Algebras, Rings And Modules" V.1 kuluwer Academic publishers.
- [7] McCoy, N.H. (1939), "Generalized Regular Rings", Bull. Amer. Math. Soc. Vol. 45, pp 175-178.
- [8] Neumann, J.V. (1936), "On Regular Rings" Princeton N. J. Vol. 22, pp 707-713.
- [9] Nicholson, W.K. and Yousif, M.F. (1995), "Principally Injective Rings", J. Algebra, 174, pp. 77-93.
- [10] Stenstrom, B. (1977), "Ring Of Quotient", Springer–Verlag, Berlin Heidelberg, New York.
- [11] Thomas W. Hungerford (2004), "An Introduction To Abstract Algebra", Cleveland state university.
- [12] Yue Chi. Ming, R. (1974), "On Von Neumann Regular Rings", proc, Edinburgh Math. Soc. 19, pp. 89-91.