A New Preconditioned Inexact Line-Search Technique for Unconstrained Optimization

Abbas Y. Al-Bayati
College of Computer Sciences and Mathematics
University of Mosul/Iraq
profabbasalbayati@yahoo.com

Received on: 18/12/2006

Ivan S. Latif
College of Scientific Education
University of Salahaddin

Accepted on: 16/04/2007

Abstract

In this paper, we study the global convergence properties of the new class of preconditioned conjugate gradient descent algorithm, when applied to convex objective non-linear unconstrained optimization functions.

We assume that a new inexact line search rule which is similar to the Armijo line-search rule is used. It's an estimation formula to choose a large step-size at each iteration and use the same formula to find the direction search. A new preconditioned conjugate gradient direction search is used to replace the conjugate gradient descent direction of ZIR-algorithm. Numerical results on twenty five well-know test functions with various dimensions show that the new inexact line-search and the new preconditioned conjugate gradient search directions are efficient for solving unconstrained nonlinear optimization problem in many situations.

Keywords: Preconditioned CG, Unconstrained Optimization, Self-Scaling VM-update, inexact Line-Search.

الملخص
في هذا البحث تم دراسـة التقارب الشـامل لخوارزميـة جديدة من خوارزميـات التـدرج المترافق الششروطة
باستخدام دوال غير مقيدة غير خطية محدبة. الخوارزمية الجديدة تعتمد على إيجاد خط بحث جديد مشابه لخط بحث Armijo التي تستخدم في إيجاد خطوات بحث أكبر ويستخدم نفس الصيغة لإيجـاد اتجاه البحث في الخوارزمية الجديدة التي تقلل من كفاءة خوارزمية التترج المترافق المستخدمة. تم استحداث خوارزمية جديدة للتدرج المترافق المشروط باستخدام خوارزمية لأشباه نيوتن. النتائج العملية لـ (25) دالة وبأبعاد مختلفة توضح بأن خط البحث الجديد مع الاتجاه الجديد للخوارزمية المقترحة أكثر كفاءة في إيجاد حلول الدوال اللاخطية وغير المقيدة مقارنة بالخوارزميات المماثلة في مجالات عدة.
الكلمات المفتاحية: مسبقة الشرط CG ، والتحسين الغير مقيد ، والتحجيم الذاتي VM- التحديث ، خط
البحث غير دقيق.

1. Introduction

Some important global convergence result for various methods using line-search procedures have been given [1], [4] the above mentioned line search methods are monotone descent for unconstrained optimization [10], [11]. Non monotone linesearches have been investigated also by many authors see [6], [9]. The Barzilai-Borwein method [2], [8] is a non monotone descent method which is an efficient algorithm for solving some special problem, Zirilli [12] extend the Armijo line search rule ant analyze the global convergence of the corresponding method.

In this paper, we extend the Armijo line-search rule so that we can design a new inexact line search technique and we choose the search directions of AL-Bayati SelfScaling [3] variable metric update which based on two parameter family of rank-two updating formulae. Numerical results show that the new algorithm which enables us to choose large step-size at each iteration and reduce the number of functions. The new algorithm is efficient for solving unconstrained optimization problems.

We consider the following unconstrained optimization problem of n variables,
$\operatorname{Minf} f(x), \quad x \in R^{n}$,
where $f(x)$ is twice continuously differentiable and its gradient g is exist available. We consider iterations of the form
$x_{k+1}=x_{k}+\alpha_{k} d_{k}$
where d_{k} is a search direction and α_{k} is the step-length obtained by means of onedimensional search. In conjugate gradient method when the function is quadratic and the line search is exact, another broad class of methods may be defined by the following search direction:

$$
\begin{equation*}
d_{k}=-H_{k}^{-1} g_{k} \tag{3}
\end{equation*}
$$

where H_{k} is a non singular symmetric matrix. Important special cases are given by
$H_{k}=I$
(Steepest descent direction)
$H_{k}=\nabla^{2} f\left(x_{k}\right) \quad$ (Newton's direction)

Variable Metric (VM) methods are also of the form (3) and in this case H_{k} is not only a function of x_{k}, but depends also on H_{k-1} and x_{k-1}.

All these methods are implemented so that d_{k}, is a descent direction, i.e.
$d_{k}^{T} g_{k}<0$
which guarantees that the function can be decreased by taking a small step along d_{k} for the Newton type method (3). We can ensure that d_{k} is a descent direction by defining H_{k} to be positive definite.

For conjugate gradient method, obtaining descent direction is not easy and requires a careful choice properties of line search methods and it can be studied by measuring the goodness of the search direction and by considering the length of the step. The quality of the angle between the steepest descent direction $-g_{k}$ and the search direction. We can define:
$\cos \left\langle-g_{k}, d_{k}\right\rangle=-g_{k}^{T} d_{k} /\left(\left\|g_{k}\right\|\| \| d_{k} \|\right) \geq \eta_{0}$
The length of the step is determined by the line search iteration. A strategy that will play a central role in this paper is to set scalars $s_{k}, \beta, L, \sigma>0$ with:

$$
s_{k}=-g_{k}^{T} d_{k} /\left(L\left\|d_{k}\right\|^{2}\right), \quad \beta \in(0,1) ; \quad \sigma \in(0,1 / 2)
$$

Let α_{k} be the larges α in $\left\{s_{k}, \beta s_{k}, \beta^{2} s_{k}, \ldots\right\}$ such that
$f_{k}-f\left(x_{k}+\alpha d_{k}\right) \geq-\sigma \alpha g_{k}^{\mathrm{T}} d_{k}$

The inequality ensures that the function is reduced sufficiently, we will call these relations as Armijo condition.

2. Zirlli Inexact Line-Search Algorithm (Zir):

Inexact line-search rule was implemented the following assumptions [7], [11].
(H1) The function $f(x)$ has a lower bound on the level set
$L\left(x_{0}\right)=\left\{x \in R^{n} \mid f(x)-f\left(x_{0}\right)\right\}$ where x_{0} is given
(H2) The gradient $g(x)$ of $f(x)$ is Lipschitz continuous in an open convex set B that contains L_{0} the; i.e., there exists L such that
$\|g(x)-g(y)\| \leq L\|x-y\|, \quad \forall x, y \in B$
The modified Armijo line search rule as [1]:
Set scalars S_{k}, β, L_{k}, μ and σ with $s_{k}=-g_{k}^{T} d_{k} /\left(L\left\|d_{k}\right\|^{2}\right), \beta \in(0,1), L_{k}>0, \mu \in[0,2)$ and $\sigma \in(0,1 / 2)$.

Let α_{k} be the larges α in $\left\{s_{k}, \beta s_{k}, \beta^{2} s_{k}, \ldots\right\}$ such that

$$
\begin{equation*}
f\left(x_{k}+\alpha d_{k}\right)-f_{k} \leq \sigma \alpha\left[g_{k}^{T} d_{k}+\left(\frac{1}{2}\right) \alpha \mu\left\|d_{k}\right\|^{2}\right] \tag{8}
\end{equation*}
$$

2.1. Outlines of the Zir Algorithm:

The implementable inexact line search algorithm is stated as follows [12]:
Stepl: Given some parameters, $\sigma \in(0,1 / 2), \quad x_{0} \in R^{n}, \beta \in(0,1), \mu \in(0,2), L_{0}=1$ let and set $K=0, \varepsilon$ is a small parameter.
Step2: If $\left\|g_{k}\right\| \leq \varepsilon$ then stop. Else go to step3.
Step3: Choose d_{k}, to satisfy the angle property (5) and set $d_{k}=-g_{k}$.
Step4: Set $x_{k+1}=x_{k}+\alpha_{k} d_{k}$, where α_{k} is defined by the modified Armijo line search rule (8).
Step5: Set $V_{k}=x_{k+1}-x_{k} ; Y_{k}=g_{k+1}-g_{k}$ and L_{k+1} is determined by

$$
\begin{equation*}
L_{k+1}=\frac{\left\|y_{k}\right\|}{\left\|V_{k}\right\|} \tag{9}
\end{equation*}
$$

Step6: Set $k=k+1$ and go to step 2.

2.2. Some Properties of the Zir Algorithm:

Theorem 2.2.1: Assume that (H1) and (H2) hold, the search direction d_{k} satisfies (4) and α_{k} is determined by the modified Armijo line-search rule. Zir Algorithm generates an infinite sequence $\left\{x_{n}\right\}$ with
$0<L_{k}<m_{k} L$
where m_{k} is appositive integer and $m_{k} \leq M_{0} \leq \infty$ with M_{0} being large positive constant then
$\sum_{k=1}^{\infty}\left(\frac{g_{k}^{T} d_{k}}{\left\|d_{k}\right\|}\right)^{2}<+\infty$
for the details of the proof see [12].
Corollary 2.2.1: If the condition in theorem 2.2.1 hold then

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\frac{g_{k}^{T} d_{k}}{\left\|d_{k}\right\|}\right)=0 \tag{12}
\end{equation*}
$$

In fact, Assumption (H2) can be replaced by the following weaker assumption. (H2') the gradient $g(x)$ of $f(x)$ is uniformly continuous on an open convex set B that contains L_{0} see [9].

3. A New Proposed Preconditioned Inexact Line-Search Algorithm (New):

In this section we propose a new algorithm which implements the step-size α_{k} with inexact line search rule. This formula is implemented with AL-Bayati self-scaling [3] variable metric update.

3.1. Outlines of the New Algorithm:

The outlines of the new proposed Algorithm are stated as follows:
Step1: Given some parameters $\sigma \in\left(0, \frac{1}{2}\right), x_{0} \in R^{n}, \beta \in(0,1), M=10^{8}, H_{0}$ is identity positive definite matrix and $L_{o}^{*}=0.1$. Let, ε is a small parameter and set $K=0$.
Step2: If $\left\|g_{k}\right\| \leq \varepsilon$ then stop. Else go to step3.
Step3: Choose d_{k} to satisfy the angle property (5) and satisfy the new search direction.

$$
d_{k}=\left\{\begin{array}{lc}
-H_{k} g_{k}, & \text { if } k=1, \tag{13}\\
-H_{k} g_{k}+L_{k}^{*} d_{k}, & \text { if } k \geq 1,
\end{array}\right.
$$

Step4: Set $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ where α_{k} is defined later by a new modified line search rule (19), (20).

Step5: Set $V_{k}=x_{k+1}-x_{k}, Y_{k}=g_{k+1}-g_{k}$ and L_{k+1} is determined by

$$
\begin{equation*}
L_{k+1}^{*}=\min \left\{L_{k}^{*}, \frac{g_{k}^{T} H_{k} Y_{k}}{\left\|V_{k}\right\|^{2}}, \frac{Y_{k}^{T} H_{k} Y_{k}}{\left\|V_{k}\right\|}\right\} \tag{14}
\end{equation*}
$$

Step6: Update H_{k} by H_{k+1}, see [3]

$$
\begin{align*}
& H_{k+1}=\left(H_{k}-\frac{H_{k} Y_{k} Y_{k}^{T} H_{k}}{Y_{k} H_{k}^{T} Y_{k}}+W_{k} W_{k}^{T}\right) \mu_{k}+\frac{V_{k} V_{k}^{T}}{V_{k}^{T} Y_{k}} \tag{15}\\
& W_{k}=\left(Y_{k}^{T} H_{k} Y_{k}\right)^{1 / 2}\left[\frac{V_{k}}{V_{k}^{T} Y_{k}}-\frac{H_{k} Y_{k}}{Y_{k}^{T} H_{k} Y_{k}}\right] \tag{16}\\
& \mu_{k}=\frac{Y_{k}^{T} H_{k} Y_{k}}{V_{k} Y_{k}} \tag{17}
\end{align*}
$$

Step7: If available storage is exceeded then employ a restart option either with $k=n$ or $g_{k+1}^{T} g_{k+1}>g_{k+1}^{T} g_{k}$ i.e. orthogonality condition is not satisfy see [7].
Steps: Set $k=k+1$ and go to step2.

3.2. Some Theoretical Properties of the New Algorithm:

We analyze the global convergence of the proposed new inexact line-search algorithm. For the proof of convergence we adopt the assumptions (H1), (H2') on the function f which is commonly used and we suppose that $\left\{H_{k}\right\}$ is a sequence of positive definite matrices. Assume also that there exist parameters $v_{\text {min }}>0$ and $v_{\max }>0$ such that $\forall d \in R^{n}$
$v_{\text {min }} d^{T} d \leq d^{T} H_{k} d \leq v_{\max } d^{T} d$
this condition would be satisfied for instance, if $H_{k} \equiv H$ and H is positive definite as in Al-Bayati VM-update [3]. We analyze the conjugate gradient algorithm that use the following modified line-search formula: Set scalars S_{k}, β, L_{k}, μ and σ with $s_{k}=-g_{k}^{T} d_{k} /\left(L\left\|d_{k}\right\|_{H_{k}}^{2}\right)$
where, $\beta \in(0,1), L_{k}^{*}>0$ is a new parameter, $\mu \in[0,2)$ and $\sigma \in\left(0, v_{\min } / \mu\right)$. Note that the specification of σ ensures $\frac{\rho \mu}{v_{\text {min }}}<1$.

Let α_{k} be the larges α in $\left\{s_{k}, \beta s_{k}, \beta^{2} s_{k}, \ldots\right\}$ such that
$f\left(x_{k}+\alpha d_{k}\right)-f_{k} \leq \sigma \alpha\left[g_{k}^{T} d_{k}+\left(\frac{1}{2}\right) \alpha \mu L_{k}\left\|d_{k}\right\|^{2}\right]$
where $\left\|d_{k}\right\|_{H_{k}}=\sqrt{d_{k}^{T} H_{k} d_{k}}$
Lemma 3.2.1: Suppose that x_{k} is given by the new proposed algorithm defined by $\{(2)$, (13), (14) and (19) \} then

$$
\begin{equation*}
g_{k+1}^{T} d_{k}=\rho_{k} g_{k}^{T} d_{k} \tag{21}
\end{equation*}
$$

holds for all k, where

$$
\begin{equation*}
\rho_{k}=1-\frac{\phi_{k} g_{k}^{T} d_{k}}{L_{k}^{*}\left\|d_{k}\right\|_{H_{k}}^{2}} \tag{22}
\end{equation*}
$$

and L_{k}^{*} is known as a new scalar defined in (14). Let

$$
\phi_{k}= \begin{cases}0 & \text { for } \alpha_{k}=0 \tag{23}\\ \frac{y_{k}^{T} V_{k}}{\left\|V_{k}\right\|^{2}} & \text { for } \alpha_{k} \neq 0\end{cases}
$$

Proof:

The case of $\alpha_{k}=0$ implies that $\rho_{k}=1$ and $g_{k+1}=g_{k}$ hence (21) is valid, we now prove for the case of $\alpha_{k} \neq 0$ from (2) and new modified inexact line search α_{k} we have

$$
\begin{aligned}
g_{k+1}^{T} d_{k} & =g_{k}^{T} d_{k}+\left(g_{k+1}-g_{k}\right)^{T} d_{k} \\
& =g_{k}^{T} d_{k}+\alpha_{k}^{-1}\left(g_{k+1}-g_{k}\right)^{T}\left(x_{k+1}-x_{k}\right) \text { from (2) we have } d_{k}=\alpha_{k}^{-1}\left(x_{k+1}-x_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =g_{k}^{T} d_{k}+\alpha_{k}^{-1} \phi_{k}\left\|x_{k+1}-x_{k}\right\|^{2} \text { from (23) } \\
& =g_{k}^{T} d_{k}+\alpha_{k}^{-1} \phi_{k}\left\|d_{k}\right\|^{2} \\
& =g_{k}^{T} d_{k}-\left(\frac{g_{k}^{T} d_{k}}{L_{k}\left\|d_{k}\right\|_{H_{k}}^{2}}\right) \phi_{k}\left\|d_{k}\right\|^{2} \\
& =\left(1-\frac{1}{L_{k}} \phi_{k} \frac{\left\|d_{k}\right\|^{2}}{\left\|d_{k}\right\|_{H_{k}}^{2}}\right) g_{k}^{T} d_{k} \text { from (23) } \\
& =\rho_{k} g_{k}^{T} d_{k}
\end{aligned}
$$

The proof is complete. \#
Theorem 3.2.1: If (H 1) and (H 2 ') hold, then the new algorithm generates an infinite number of sequences $\left\{\alpha_{k}\right\}$ and satisfy
$0<L_{k}^{*}<m L<M$
where m is a positive integer, M is a large positive constant then
$\lim _{k \rightarrow \infty}\left(\frac{-g_{k}^{T} d_{k}}{\left\|d_{k}\right\|}\right)=0$

Proof:

$$
\text { Let } K_{1}=\left\{k \mid \alpha_{k}=s_{k}\right\}, K_{2}=\left\{k \mid \alpha_{k}<s_{k}\right\}
$$

Case (l):

If $k \in K_{1}$ then
$f\left(x_{k}+\alpha d_{k}\right)-f_{k} \leq \sigma \alpha\left[g_{k}^{T} d_{k}+\left(\frac{1}{2}\right) \alpha_{k} L_{k}^{*}\left\|d_{k}\right\|^{2}\right], L^{*}$ is a new parameter defined by (41)

$$
\begin{aligned}
& =-\sigma\left[g_{k}^{T} d_{k} / L_{k}^{*}\left\|d_{k}\right\|^{2}\right]\left[g_{k}^{T} d_{k}-\left(\frac{1}{2}\right) \mu g_{k}^{T} d_{k}\right] \\
& =-\left[\sigma\left(1-\left(\frac{1}{2}\right) \mu\right) / L_{k}^{*}\right]\left(g_{k}^{T} d_{k}\right)^{2} /\left\|d_{k}\right\|^{2}
\end{aligned}
$$

Thus

$$
\begin{equation*}
f\left(x_{k}+\alpha d_{k}\right)-f_{k} \leq-\left[\sigma\left(1-\left(\frac{1}{2}\right) \mu\right) / L_{k}^{*}\right]\left(g_{k}^{T} d_{k}\right)^{2} /\left\|d_{k}\right\|^{2}, \quad k \in K_{1} \tag{27}
\end{equation*}
$$

Let
$\eta_{k}=-\sigma\left(1-\left(\frac{1}{2}\right) \mu\right) / L_{k}^{*}, \quad k \in K_{1}$
By (24) we have
$\eta_{k}=-\sigma\left(1-\left(\frac{1}{2}\right) \mu\right) / L_{k}^{*}$

$$
\begin{aligned}
& \leq-\sigma\left(1-\left(\frac{1}{2}\right) \mu\right) / m L \\
& \leq-\sigma\left(1-\left(\frac{1}{2}\right) \mu\right) / M L \\
& <0
\end{aligned}
$$

Let
$\eta^{\prime} \leq-\sigma\left(1-\left(\frac{1}{2}\right) \mu\right) / M L$
This and (27) imply that $\eta_{k} \leq \eta^{\prime}$ and

$$
\begin{equation*}
f_{k+1}-f_{k} \leq \eta^{\prime}\left(g_{k}^{T} d_{k} /\left\|d_{k}\right\|^{2}\right)^{2}, \quad k \in K_{1} \tag{28}
\end{equation*}
$$

Thus if $k \in K_{1}$, from (28) we can prove that
$\lim _{k \in K_{1}, k \rightarrow \infty}\left(\frac{-g_{k}^{T} d_{k}}{\left\|d_{k}\right\|}\right)=0 . \quad \#$

Case (2):

If $k \in K_{2}$ then $\alpha_{k}<s_{k}$ this show that s_{k}, can not satisfy the new suggested line search and thus $\alpha_{k}<\beta s_{k}$ we show that $\alpha=\alpha_{k} / \beta$ were α_{k} be the larges α in $\left\{s_{k}, \beta s_{k}, \beta^{2} s_{k}, \ldots\right\}$ can not satisfy (14) and thus
$f\left(x_{k}+\frac{\alpha_{k} d_{k}}{\beta}\right)-f_{k} \leq \sigma \alpha_{k} \beta\left[g_{k}^{T} d_{k}+\frac{\left(\frac{1}{2}\right) \alpha_{k} \mu L_{k}^{*}\left\|d_{k}\right\|^{2}}{\beta}\right]$
using the mean-value theorem on the left hand side of the above inequality, we see that there exists $\theta_{k} \in[0,1]$ such that

$$
g\left(x_{k}+\frac{\theta_{k} \alpha_{k} d_{k}}{\beta}\right)>\sigma \alpha_{k} / \beta\left[g_{k}^{T} d_{k}+\frac{\left(\frac{1}{2}\right) \alpha_{k} \mu L_{k}^{*}\left\|d_{k}\right\|^{2}}{\beta}\right]
$$

Therefore

$$
\begin{equation*}
g\left(x_{k}+\frac{\theta_{k} \alpha_{k} d_{k}}{\beta}\right)^{T} d_{k}>\rho\left[g_{k}^{T} d_{k}+\frac{\left(\frac{1}{2}\right) \alpha_{k} \mu L_{k}^{*}\left\|d_{k}\right\|^{2}}{\beta}\right] \tag{30}
\end{equation*}
$$

in this case of $k \in K_{2}$, by (19) and (20) we have
$f\left(x_{k}+\alpha d_{k}\right)-f_{k} \leq \sigma \alpha\left[g_{k}^{T} d_{k}+\left(\frac{1}{2}\right) \alpha_{k} L_{k}^{*}\left\|d_{k}\right\|^{2}\right]$

$$
\begin{aligned}
& \leq \sigma \alpha\left[g_{k}^{T} d_{k}+\left(\frac{1}{2}\right) s_{k} L_{k}^{*}\left\|d_{k}\right\|^{2}\right] \\
& \leq \sigma \alpha_{k}\left[1+\left(\frac{1}{2}\right) \mu\right] g_{k}^{T} d_{k}
\end{aligned}
$$

By (H1) we have

$$
\begin{equation*}
\lim _{k \in K_{2}, k \rightarrow \infty}\left(\frac{-g_{k}^{T} d_{k}}{\left\|d_{k}\right\|}\right)=0 \tag{31}
\end{equation*}
$$

If there exist $\varepsilon>0$ and an infinite subset $K_{3} \subseteq K_{2}$ such that
$\frac{-g_{k}^{T} d_{k}}{\left\|d_{k}\right\|} \geq \varepsilon, \quad \forall k \in K_{3}$
then by (31), (32) we have

$$
\begin{equation*}
\lim _{k \in K_{3}, k \rightarrow \infty} \alpha_{k}\left\|d_{k}\right\|=0 \tag{33}
\end{equation*}
$$

by (30) we have

$$
\begin{equation*}
g\left(x_{k}+\frac{\theta_{k} \alpha_{k} d_{k}}{\beta}\right)^{T} d_{k} \geq \rho g_{k}^{T} d_{k}, \quad k \in K_{3} \tag{34}
\end{equation*}
$$

where $\theta_{k} \in[0,1]$ is defined in the proof. By the Cauchy Schwarz inequality and (34) we have

$$
\begin{aligned}
\left\|g\left(x_{k}+\frac{\theta_{k} \alpha_{k} d_{k}}{\beta}\right)-g_{k}\right\| & =\left\|g\left(x_{k}+\frac{\theta_{k} \alpha_{k} d_{k}}{\beta}\right)-g_{k}\right\| \frac{\left\|d_{k}\right\|^{2}}{\left\|d_{k}\right\|^{2}} \\
& \geq \frac{\left[g\left(x_{k}+\frac{\theta_{k} \alpha_{k} d_{k}}{\beta}\right)-g_{k}\right]^{T} d_{k}}{\left\|d_{k}\right\|^{2}} \\
& \geq \frac{-(1-\rho) g_{k}^{T} d_{k}}{\left\|d_{k}\right\|^{2}}, \quad k \in K_{3}
\end{aligned}
$$

by (H^{\prime}) and (31) we obtain

$$
\lim _{k \in K_{3}, k \rightarrow \infty}\left(\frac{-g_{k}^{T} d_{k}}{\left\|d_{k}\right\|}\right)=0
$$

which contradicts (32) this show that

$$
\begin{equation*}
\lim _{k \in K_{2}, k \rightarrow \infty}\left(\frac{-g_{k}^{T} d_{k}}{\left\|d_{k}\right\|}\right)=0 \tag{35}
\end{equation*}
$$

by (29), (35) and noting that $K_{1} \cup K_{2}=\{1,2, \ldots\}$ we show that (25) holds. \#
Lemma 3.2.2.: suppose that (H 1), ($\mathrm{H} 2^{\prime}$) holds and x_{k} is given by the new proposed algorithm defined by $\{(2),(13),(14)$ and (19) $\}$ then

$$
\begin{equation*}
\sum_{d_{k} \neq 0} \frac{-g_{k}^{T} d_{k}}{\left\|d_{k}\right\|}<\infty \tag{36}
\end{equation*}
$$

Proof:

By the mean value theorem we have
$f\left(x_{k+1}\right)-f\left(x_{k}\right)=\bar{g}^{T}\left(x_{k+1}-x_{k}\right)$
from (19) we have

$$
\begin{equation*}
f\left(x_{k+1}\right)-f\left(x_{k}\right) \leq-\sigma\left[1-\left(\frac{1}{2}\right) \mu L_{k}\right] \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}} \tag{37}
\end{equation*}
$$

which implies that $f\left(x_{k+1}\right) \leq f\left(x_{k}\right)$. It follows by assumption (H1), (H2') that $\lim _{k \rightarrow \infty} f\left(x_{k}\right)$ exists thus from (18) and (37) we have

$$
\frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}} \leq v_{\max } \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|_{H_{k}}^{2}} \leq \frac{v_{\max }}{\sigma\left[1-\left(\frac{1}{2}\right) \mu L_{k}\right]}\left[f\left(x_{k+1}\right)-f\left(x_{k}\right)\right]
$$

this finishes our proof. \#

4. Numerical results:

In this section, we compare the numerical behavior of the new algorithm with the Zir algorithm for different dimensions of test functions. Comparative test were performed with (25) (specified in the Appendices 1 and 2) well-Known test function see [5]. All the results are obtained with newly-programmed FORTRAN routines which employ double precautions. We solve each of these test function by the:
1- Zirlli algorithm (Zir).
2- The new algorithm (New).
and for each algorithm we used the following stopping criterion $\left\|g_{k+1}\right\|<1 \times 10^{-5}$.
All the numerical results are summarized in Table (1), Table (2) and Table (3). They present the numbers of iterations (NOI) versus the numbers of function evaluations (NOF) that are need to obtain the condition $\left\|g_{k+1}\right\|<1 \times 10^{-5}$ while Table (3) gives the percentage performance of the new algorithm based on both NOI and NOF against the original Zit algorithm.

The important thing is that the new algorithm solves each particular problem measured by NOI and NOF respectively, while the other algorithm may fail in some cases. Moreover, the new proposed algorithm always performs more stably and efficiently.

Namely there are about (50-52)\% on NOI for all dimensions also there are (6378) \% improvements on NOF for all test functions.

Table (1). Comparison between the New and Zri algorithms using different values of $12<\mathrm{N}<5000$ for $1^{\text {st }}$ test functions

	TEST			ir	(NOI)					New	NOF(N		
N . OF Test	FUNCTI ON	$\begin{gathered} \mathrm{N}= \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{N}= \\ & 36 \end{aligned}$	$\begin{aligned} & \mathrm{N}= \\ & 360 \end{aligned}$	$\begin{gathered} \mathrm{N}= \\ 1080 \end{gathered}$	$\begin{gathered} \mathrm{N}= \\ 4320 \end{gathered}$	$\begin{gathered} \mathrm{N}= \\ 5000 \end{gathered}$	$\begin{aligned} & \mathrm{N}= \\ & 12 \end{aligned}$	$\begin{gathered} \mathrm{N}= \\ 36 \end{gathered}$	$\begin{aligned} & \mathrm{N}= \\ & 360 \end{aligned}$	$\begin{gathered} \mathrm{N}= \\ 1080 \end{gathered}$	$\begin{gathered} \mathrm{N}= \\ 4320 \end{gathered}$	$\begin{gathered} \mathrm{N}= \\ 5000 \end{gathered}$
1	EX-beal	$\begin{aligned} & 804 \\ & 644 \end{aligned}$	$\begin{aligned} & 855 \\ & 684 \end{aligned}$	$\begin{aligned} & 956 \\ & 764 \end{aligned}$	$\begin{gathered} 1004 \\ 802 \end{gathered}$	$\begin{gathered} 1073 \\ 855 \end{gathered}$	$\begin{gathered} 1086 \\ 872 \end{gathered}$	$\begin{aligned} & 137 \\ & 115 \end{aligned}$	$\begin{aligned} & 142 \\ & 128 \end{aligned}$	$\begin{aligned} & 153 \\ & 141 \end{aligned}$	$\begin{aligned} & 158 \\ & 146 \end{aligned}$	$\begin{aligned} & 165 \\ & 150 \end{aligned}$	$\begin{aligned} & 168 \\ & 152 \end{aligned}$
2	GENedger	$\begin{aligned} & 53 \\ & 22 \end{aligned}$	$\begin{aligned} & 55 \\ & 24 \end{aligned}$	$\begin{aligned} & 59 \\ & 26 \end{aligned}$	$\begin{aligned} & 61 \\ & 27 \end{aligned}$	$\begin{aligned} & 63 \\ & 28 \end{aligned}$	$\begin{aligned} & 65 \\ & 29 \end{aligned}$	$\begin{aligned} & 24 \\ & 21 \end{aligned}$	$\begin{aligned} & 25 \\ & 23 \end{aligned}$	$\begin{aligned} & 27 \\ & 25 \end{aligned}$	$\begin{aligned} & 28 \\ & 26 \end{aligned}$	$\begin{aligned} & 30 \\ & 28 \end{aligned}$	$\begin{aligned} & 31 \\ & 29 \end{aligned}$
3	Full Hession	$\begin{aligned} & 85 \\ & 19 \end{aligned}$	$\begin{gathered} 116 \\ 22 \end{gathered}$	$\begin{gathered} 183 \\ 25 \end{gathered}$	$\begin{gathered} 265 \\ 32 \end{gathered}$	$\begin{gathered} \hline 154 \\ 16 \end{gathered}$	$\begin{gathered} 154 \\ 16 \end{gathered}$	$\begin{aligned} & 25 \\ & 21 \end{aligned}$	$\begin{aligned} & 30 \\ & 27 \end{aligned}$	$\begin{aligned} & 38 \\ & 35 \end{aligned}$	$\begin{aligned} & 42 \\ & 39 \end{aligned}$	$\begin{aligned} & 47 \\ & 44 \end{aligned}$	$\begin{aligned} & 48 \\ & 45 \end{aligned}$
4	GEN-Q2	$\begin{aligned} & 164 \\ & 162 \end{aligned}$	$\begin{aligned} & 164 \\ & 162 \end{aligned}$	$\begin{aligned} & 160 \\ & 157 \end{aligned}$	$\begin{aligned} & 159 \\ & 156 \end{aligned}$	$\begin{aligned} & 159 \\ & 156 \end{aligned}$	$\begin{aligned} & 159 \\ & 156 \end{aligned}$	$\begin{aligned} & 160 \\ & 137 \end{aligned}$					
5	Digonal4	$\begin{aligned} & 91 \\ & 17 \end{aligned}$	$\begin{aligned} & 97 \\ & 18 \end{aligned}$	$\begin{gathered} 103 \\ 19 \end{gathered}$	$\begin{gathered} 109 \\ 20 \end{gathered}$	$\begin{gathered} 115 \\ 21 \end{gathered}$	$\begin{gathered} 118 \\ 22 \end{gathered}$	$\begin{aligned} & 22 \\ & 15 \end{aligned}$	$\begin{aligned} & 22 \\ & 15 \end{aligned}$	$\begin{aligned} & 23 \\ & 16 \end{aligned}$			
6	GENquadratic	$\begin{aligned} & 243 \\ & 169 \end{aligned}$	$\begin{aligned} & 241 \\ & 235 \end{aligned}$	$\begin{gathered} 104 \\ 94 \end{gathered}$	$\begin{aligned} & 107 \\ & 103 \end{aligned}$	$\begin{aligned} & 118 \\ & 116 \end{aligned}$	$\begin{aligned} & 124 \\ & 122 \end{aligned}$	$\begin{aligned} & 126 \\ & 123 \end{aligned}$	$\begin{aligned} & 128 \\ & 124 \end{aligned}$				
7	. Digonal6	$\begin{aligned} & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 21 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \\ & 22 \end{aligned}$	$\begin{aligned} & 25 \\ & 23 \end{aligned}$	$\begin{aligned} & 26 \\ & 24 \\ & \hline \end{aligned}$	26 24	15 12	16 14	18	19	20 18	$\begin{aligned} & 20 \\ & 18 \\ & \hline \end{aligned}$
8	GEN- Wolf	$\begin{aligned} & 207 \\ & 166 \end{aligned}$	$\begin{aligned} & 277 \\ & 254 \end{aligned}$	$\begin{aligned} & 301 \\ & 289 \end{aligned}$	$\begin{aligned} & 364 \\ & 324 \end{aligned}$	$\begin{aligned} & 382 \\ & 328 \end{aligned}$	$\begin{aligned} & 394 \\ & 332 \end{aligned}$	$\begin{aligned} & 274 \\ & 250 \end{aligned}$	$\begin{aligned} & 296 \\ & 286 \end{aligned}$	$\begin{aligned} & 325 \\ & 323 \end{aligned}$	$\begin{aligned} & 360 \\ & 332 \end{aligned}$	$\begin{aligned} & 380 \\ & 361 \end{aligned}$	$\begin{aligned} & 389 \\ & 364 \end{aligned}$
9	GEN- Shallow	$\begin{aligned} & 763 \\ & 422 \end{aligned}$	$\begin{aligned} & 817 \\ & 449 \end{aligned}$	$\begin{aligned} & 931 \\ & 506 \end{aligned}$	$\begin{aligned} & 985 \\ & 533 \end{aligned}$	$\begin{aligned} & 992 \\ & 554 \end{aligned}$	$\begin{aligned} & 998 \\ & 556 \end{aligned}$	$\begin{aligned} & 155 \\ & 153 \end{aligned}$	$\begin{aligned} & 160 \\ & 158 \end{aligned}$	$\begin{aligned} & 171 \\ & 169 \end{aligned}$	$\begin{aligned} & 177 \\ & 175 \end{aligned}$	$\begin{aligned} & 177 \\ & 175 \end{aligned}$	$\begin{aligned} & 177 \\ & 175 \end{aligned}$
10	Quadratic	$\begin{gathered} 106 \\ 30 \end{gathered}$	$\begin{gathered} 531 \\ 94 \end{gathered}$	$\begin{gathered} \hline 3043 \\ 373 \\ \hline \end{gathered}$	$\begin{gathered} 3140 \\ 433 \end{gathered}$	$\begin{gathered} 3280 \\ 482 \end{gathered}$	$\begin{gathered} 3328 \\ 506 \end{gathered}$	$\begin{aligned} & 19 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 32 \end{aligned}$	$\begin{aligned} & 238 \\ & 204 \end{aligned}$	$\begin{aligned} & 269 \\ & 224 \end{aligned}$	$\begin{aligned} & 291 \\ & 243 \end{aligned}$	$\begin{aligned} & 298 \\ & 247 \end{aligned}$
General TOTAL of 7 functions		$\begin{aligned} & 2536 \\ & 1668 \end{aligned}$	$\begin{aligned} & 3174 \\ & 1961 \end{aligned}$	$\begin{aligned} & 6001 \\ & 2416 \end{aligned}$	$\begin{aligned} & 6353 \\ & 2585 \end{aligned}$	$\begin{aligned} & \hline 6485 \\ & 2699 \end{aligned}$	$\begin{aligned} & 6569 \\ & 2748 \end{aligned}$	$\begin{aligned} & 935 \\ & 833 \end{aligned}$	$\begin{aligned} & 993 \\ & 923 \end{aligned}$	$\begin{aligned} & 1271 \\ & 1185 \end{aligned}$	$\begin{aligned} & 1360 \\ & 1234 \end{aligned}$	$\begin{aligned} & 1419 \\ & 1295 \end{aligned}$	$\begin{aligned} & 1442 \\ & 1307 \end{aligned}$

Table (2). Comparison between the New and Zir algorithms using different values of $12<$ $\mathrm{N}<5000$ for $2^{\text {nd }}$ test functions

		Zir NOF(NOI)						New NOf(NOI)					
$\begin{aligned} & \mathrm{N} . \\ & \mathrm{OF} \\ & \text { Test } \end{aligned}$	FUNCTI ON	12	36	360	1080	4320	5000	12	36	360	1080	4320	5000
1	GEN- Helical	F	F	F	F	F	F	$\begin{aligned} & 70 \\ & 53 \end{aligned}$	$\begin{aligned} & 71 \\ & 57 \end{aligned}$	$\begin{aligned} & 73 \\ & 59 \end{aligned}$	$\begin{aligned} & 74 \\ & 60 \end{aligned}$	$\begin{aligned} & 76 \\ & 62 \end{aligned}$	$\begin{aligned} & \hline 76 \\ & 62 \end{aligned}$
2	Fred	F	F	F	F	F	F	$\begin{aligned} & 139 \\ & 125 \end{aligned}$	$\begin{aligned} & 142 \\ & 136 \end{aligned}$	$\begin{aligned} & 147 \\ & 144 \end{aligned}$	$\begin{aligned} & 149 \\ & 146 \end{aligned}$	$\begin{aligned} & 153 \\ & 150 \end{aligned}$	$\begin{aligned} & 153 \\ & 150 \end{aligned}$
3	liarwhid	F	F	F	F	F	F	$\begin{gathered} 107 \\ 95 \end{gathered}$	$\begin{aligned} & 694 \\ & 424 \end{aligned}$	$\begin{aligned} & \hline 240 \\ & 227 \end{aligned}$	$\begin{aligned} & 214 \\ & 200 \end{aligned}$	$\begin{aligned} & 214 \\ & 200 \end{aligned}$	$\begin{aligned} & 214 \\ & 200 \end{aligned}$
4	starcase	F	F	F	F	F	F	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	$\begin{aligned} & 52 \\ & 44 \end{aligned}$	$\begin{aligned} & 446 \\ & 426 \end{aligned}$	$\begin{aligned} & 1310 \\ & 1279 \end{aligned}$	$\begin{aligned} & 1360 \\ & 1292 \end{aligned}$	$\begin{aligned} & 1392 \\ & 1301 \end{aligned}$
5	TDP	F	F	F	F	F	F	$\begin{aligned} & 144 \\ & 130 \end{aligned}$	$\begin{aligned} & 211 \\ & 183 \end{aligned}$	$\begin{aligned} & 1179 \\ & 1087 \end{aligned}$	$\begin{aligned} & 2467 \\ & 2163 \end{aligned}$	$\begin{aligned} & 2616 \\ & 2282 \end{aligned}$	$\begin{aligned} & 2616 \\ & 2282 \end{aligned}$
6	Biggsb	F	F	F	F	F	F	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{aligned} & 32 \\ & 23 \end{aligned}$	$\begin{aligned} & 232 \\ & 214 \end{aligned}$	$\begin{aligned} & 668 \\ & 214 \end{aligned}$	$\begin{aligned} & \hline 684 \\ & 656 \end{aligned}$	$\begin{aligned} & 702 \\ & 674 \end{aligned}$
7	Miele	F	F	F	F	F	F	$\begin{aligned} & 184 \\ & 146 \\ & \hline \end{aligned}$	$\begin{array}{r} 194 \\ 160 \\ \hline \end{array}$	$\begin{array}{r} \hline 269 \\ 187 \\ \hline \end{array}$	$\begin{aligned} & 268 \\ & 195 \\ & \hline \end{aligned}$	$\begin{aligned} & 268 \\ & 195 \\ & \hline \end{aligned}$	$\begin{aligned} & 268 \\ & 195 \\ & \hline \end{aligned}$
8	GENPowell	F	F	F	F	F	F	$\begin{aligned} & 203 \\ & 131 \end{aligned}$	$\begin{aligned} & 209 \\ & 141 \end{aligned}$	$\begin{aligned} & 211 \\ & 145 \end{aligned}$	$\begin{aligned} & 216 \\ & 145 \end{aligned}$	$\begin{aligned} & 217 \\ & 246 \end{aligned}$	$\begin{aligned} & 218 \\ & 247 \end{aligned}$
9	$\begin{gathered} \text { EX- } \\ \text { Fredent\& } \\ \text { Roth } \end{gathered}$	F	F	F	F	F	F	$\begin{aligned} & 196 \\ & 177 \end{aligned}$	$\begin{aligned} & 199 \\ & 191 \end{aligned}$	$\begin{aligned} & 204 \\ & 201 \end{aligned}$	$\begin{aligned} & 206 \\ & 203 \end{aligned}$	$\begin{aligned} & 208 \\ & 204 \end{aligned}$	$\begin{aligned} & 208 \\ & 204 \end{aligned}$
10	TR1	F	F	F	F	F	F	$\begin{aligned} & \hline 74 \\ & 61 \end{aligned}$	$\begin{aligned} & 260 \\ & 230 \end{aligned}$	$\begin{aligned} & 1311 \\ & 1001 \end{aligned}$	$\begin{aligned} & \hline 1770 \\ & 1196 \\ & \hline \end{aligned}$	$\begin{aligned} & 1820 \\ & 1204 \end{aligned}$	$\begin{aligned} & 1846 \\ & 1242 \end{aligned}$
11	Almost Peturbed quadratic	F	F	F	F	F	F	$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 38 \\ & 32 \end{aligned}$	$\begin{aligned} & 247 \\ & 201 \end{aligned}$	$\begin{aligned} & 470 \\ & 354 \end{aligned}$	$\begin{aligned} & 482 \\ & 402 \end{aligned}$	$\begin{aligned} & 488 \\ & 404 \end{aligned}$
12	QDP	F	F	F	F	F	F	$\begin{aligned} & 23 \\ & 13 \end{aligned}$	$\begin{aligned} & 43 \\ & 25 \end{aligned}$	$\begin{gathered} 112 \\ 57 \end{gathered}$	$\begin{aligned} & 171 \\ & 88 \end{aligned}$	$\begin{gathered} 192 \\ 91 \end{gathered}$	$\begin{gathered} 198 \\ 93 \end{gathered}$
13	GenCentar	F	F	F	F	F	F	$\begin{aligned} & 91 \\ & 69 \end{aligned}$	$\begin{aligned} & 92 \\ & 75 \end{aligned}$	$\begin{aligned} & 95 \\ & 78 \end{aligned}$	$\begin{aligned} & 96 \\ & 79 \end{aligned}$	$\begin{aligned} & 96 \\ & 79 \end{aligned}$	$\begin{aligned} & 96 \\ & 79 \end{aligned}$
14	sinquadrat ic	F	F	F	F	F	F	$\begin{gathered} 146 \\ 75 \end{gathered}$	$\begin{aligned} & 224 \\ & 124 \end{aligned}$	$\begin{aligned} & 385 \\ & 206 \end{aligned}$	$\begin{aligned} & 190 \\ & 161 \end{aligned}$	$\begin{aligned} & 190 \\ & 161 \end{aligned}$	$\begin{aligned} & 190 \\ & 161 \end{aligned}$
15	OSP	F	F	F	F	F	F	$\begin{aligned} & 833 \\ & 483 \end{aligned}$	$\begin{aligned} & 2674 \\ & 1918 \end{aligned}$	$\begin{aligned} & 2720 \\ & 1964 \end{aligned}$	$\begin{aligned} & 2842 \\ & 1981 \end{aligned}$	$\begin{aligned} & 2989 \\ & 2018 \end{aligned}$	$\begin{aligned} & 2996 \\ & 2068 \end{aligned}$

Table (3). Percentage performance of the New algorithm against Zri algorithm for 100% in both NOI and NOF

N	Costs	NEW
12	NOF	63.13
	NOI	50.06
36	NOF	68.72
	NOI	52.93
360	NOF	78.82
	NOI	50.95
1080	NOF	78.59
	NOI	52.26
4320	NOF	78.12
	NOI	52.02
5000	NOF	78.05
	NOI	52.44

5. Conclusions:

In this paper, a new PCG-algorithm with a self-scaling VM-update and a new search direction formula is proposed. A modified formula of an inexact line search is implemented to solve a large-scale unconstrained optimization test functions. Our numerical results supports our claim and also indicate that the new algorithm sufficiently decrease the function values and iterations and it needs an extra line search conditions satisfied near the stationary point of the proposed line search procedure.

Appendix 1:

All the test functions used in Table (1) for this paper arc from general literature. See [5]:

1. Generalized Beale Function:
$f(x)=\sum_{i=1}^{n / 2}\left[1.5-x_{2 i}+\left(1-x_{2 i}\right)\right]^{2}+\left[2.25-x_{2 i-1}\left(1-x_{2 i}^{2}\right)\right]^{2}+\left[2.625-x_{2 i-1}\left(1-x_{2 i}^{2}\right]^{2}\right.$, $x_{0}=[-1 .,-1 ., . .,-1 .,-1$.$] .$

2. Generalized Edger Function:

$f(x)=\sum_{i=1}^{n / 2}\left(x_{2 i-1}-2\right)^{4}+\left(x_{2 i-1}-2\right)^{2} x_{2 i}^{2}+\left(x_{2 i}+1\right)^{2}$,
$x_{0}=[1 ., 0 ., \ldots, 1 ., 0$.$] .$

3. Full Hessian Function:

$$
\begin{aligned}
& f(x)=\left(\sum_{i=1}^{n} x_{i}\right)^{2}+\sum_{i=1}^{n}\left(x_{i} \exp \left(x_{i}\right)-2 x_{i}-x_{i}^{2}\right), \\
& x_{0}=[1 ., 1 ., \ldots, 1 .] .
\end{aligned}
$$

4. Generalized quadratic Function GQ2:
$f(x)=\left(x_{1}^{2}-1\right)^{2}+\sum_{i=2}^{n}\left(x_{i}^{2}-x_{i-1}-2\right)^{2}$,
$x_{0}=[1 ., 1,, \ldots, 1].$.
5. Diagonal 4 Function:
$f(x)=\sum_{i=1}^{n / 2} \frac{1}{2}\left(x_{2 i-1}^{2}+c x_{2 i}^{2}\right)$,
$x_{0}=[1,1, \ldots, 1], \mathrm{c}=100$.
6. Generalized quadratic Function GQ1
$f(x)=\sum_{i=1}^{n-1} x_{i}^{2}+\left(x_{i+1}+x_{i}^{2}\right)^{2}$,
$x_{0}=[1 ., 1, \ldots, 1].$.
7. Diagonal 6 Function:
$f(x)=\sum_{i=1}^{n}\left(\exp \left(x_{i}\right)-\left(1+x_{i}\right)\right)$,
$x_{0}=[1 ., 1 ., \ldots, 1 ., 1$.$] .$
8. Generalized Wolfe Function:
$f(x)=\left(-x_{1}\left(3-x_{1} / 2\right)+2 x_{2}-1\right)^{2}+\sum_{i=1}^{n-1}\left(x_{i-1}-x_{i}\left(3-x_{i} / 2+2 x_{i+1}-1\right)\right)^{2}+\left(x_{n-1}-x_{n}\left(3-x_{n} / 2\right)-1\right)^{2}$,
$x_{0}=[-1 ., \ldots,-1$.$] .$
9. Generalized Shallow function:
$f(x)=\sum_{i=1}^{n / 2}\left(x_{2 i-1}^{2}-x_{2 i}\right)^{2}+\left(1-x_{2 i-1}\right)^{2}$,
$x_{0}=[-2 .,-2 ., \ldots,-2 .,-2$.$] .$
10. Quadratic Function QF2:
$f(x)=\frac{1}{2} \sum_{i=1}^{n} i\left(x_{i}^{2}-1\right)^{2}-x_{n}$,
$x_{0}=[0.5,0.5, \ldots, 0.5]$.

Appendix 2:

All the test Functions used in Table (2) far this paper are from general literature .See [5]:

1. General Helical Function:
$f(x)=\sum_{i=1}^{n / 3}\left(100 x_{3 i}-10 * H_{i}\right)^{2}+100\left(R_{i}-1\right)^{2}+x_{3 i}^{2}$,
where $R_{i}=\operatorname{sqrt}\left(x_{3 i-2}^{2}+x_{3 i-1}^{2}\right), H_{i}=$

$$
(2 \pi)^{-1} \tan ^{-1} \frac{x_{3 i-1}}{x_{3 i-2}} \quad \text { if } x_{3 i-2}>0
$$

$$
0.5+(2 \pi)^{-1} \tan ^{-1} \frac{x_{3 i-1}}{x_{3 i-2}} \text { if } x_{3 i-2}<0
$$

$x_{0}=[-1 ., 0 ., 0,-1 ., 0],. 0 .$.
2. Extended Fred Function:
$f(x)=\sum_{i=1}^{n / 2}\left(-13+x_{2 i-1}+\left(5-x_{2 i}\right)+\left(x_{2 i}-2\right)\left(x_{2 i}\right)\right)^{2}+\sum_{j=1}^{n / 2}\left(-29+x_{2 i-1}+\left(1-x_{2 i}\right)+\left(x_{2 i}-14\right)\left(x_{2 i}\right)\right)^{2}$,
$x_{0}=[1 ., 2,, \ldots, n]$
3. Liarwhd Function (cut):
$f(x)=\sum_{i=1}^{n} 4\left(-x_{1}+x_{i}^{2}\right)^{2}+\sum_{i=1}^{n}\left(x_{i}-1\right)^{2}$,
$x_{0}=[4 ., 4 ., \ldots, 4$.$] .$
4. Staircase 2 Function:
$f(x)=\sum_{i=1}^{n}\left[\left(\sum_{j=1}^{i} x_{j}\right)-i\right]^{2}$,
$x_{0}=[0 ., 0 ., \ldots, 0$.$] .$
5. Tridiagonal Perturbed Quadratic Function:
$f(x)=x_{i}^{2}+\sum_{i=2}^{n-1} i x_{i}^{2}+\left(x_{i-1}+x_{i}+x_{i+1}\right)^{2}$,
$x_{0}=[0.5,0.5 ., \ldots, 0.5]$.
6. Biggsbl Function (CUTE):
$f(x)=\left(x_{i}-1\right)^{2}+\sum_{i=1}^{n-1}\left(x_{i+1}-x_{i}\right)^{2}+\left(1-x_{n}\right)^{2}$,
$x_{0}=[1 ., 1 ., \ldots, 1].$.
7. Mill and Cornwell function:
$f(x)=\sum_{i=1}^{n / 4}\left[\exp \left(x_{4 i-3}+10 x_{4 i-2}\right)^{2}+5\left(x_{4 i-1}-x_{4 i}\right)^{2}\left(x_{4 i-2}-2 x_{4 i-1}\right)^{4}+10\left(x_{4 i-3}-x_{4 i}\right)^{4}\right]$,
$x_{0}=[1 ., 2 ., 2 ., 2 ., . ., 1 ., 2 ., 2 ., 2$.
8. Generalized Powell function:
$f(x)=\sum_{i=1}^{n / 3}\left\{3-\left[\frac{1}{1+\left(x_{i}-x_{2 i}\right)^{2}}\right]-\sin \left(\frac{\pi x_{2 i} x_{3 i}}{2}\right)-\exp \left[-\left(\frac{x_{i}+x_{3 i}}{x_{2 i}}-2\right)^{2}\right]\right\}$,
$x_{0}=[0 ., 1 ., 2 ., \ldots, 0 ., 1 ., 2$.$] .$
9. Extended Freudenstein \& Roth Function:
$f(x)=\sum_{i=1}^{n / 2}\left(-13+x_{2 i-1}+\left(\left(5-x_{2 i}\right) x_{2 i}-2\right) x_{2 i}\right)^{2}+\left(-29+x_{2 i-1}+\left(\left(x_{2 i}+1\right) x_{2 i}-14\right) x_{2 i}\right)^{2}$, $x_{0}=[0.5 .,-2 ., 0.5,-2 ., \ldots, 0.5,-2$.$] .$
10.Extended Tridigonal-1 Function:
$f(X)=\sum_{i=1}^{n / 2}\left(x_{2 i-1}+x_{2 i}-3\right)^{2}+\left(x_{2 i-1}-x_{2 i}+1\right)^{4}$,
$x_{0}=[2,2, \ldots, 2]$.
11. Almost Perturbed Quadratic Function:
$f(x)=\sum_{i=1}^{n} i x_{i}^{2}+\frac{1}{100}\left(x_{1}+x_{n}\right)^{2}$,
$x_{0}=[0.5,0.5, \ldots, 0.5]$.
12. Quadratic Diagonal Perturbed Function:
$f(x)=\left(\sum_{i=1}^{n} x_{i}\right)^{2}+\sum_{i=1}^{n} \frac{i}{100} x_{i}^{2}$,
$x_{0}=[0.5,0.5, \ldots, 0.5]$.
13. Generalized Cant real Function:
$f(x)=\sum_{i=1}^{n / 4}\left[\left(\exp \left(x_{4 i}-3\right)-x_{4 i-2}\right)^{4}+100\left(x_{4 i-2}-x_{4 i-1}\right)^{6}+\left(\arctan \left(x_{4 i-1}-x_{4 i}\right)\right)^{4}+x_{4 i-3}\right]$,
$x_{0}=[1 ., 2 ., 2 ., 2 ., \ldots, 1 ., 2 ., 2 ., 2].$.
14. Sinquad Function (CUTE):
$f(x)=\left(x_{i}-1\right)^{4}+\sum_{i=1}^{n / 2}\left(\sin \left(x_{i}-x_{n}\right)-x_{1}^{2}+x_{i}^{2}\right)^{2}+\left(x_{n}^{2}-x_{1}^{2}\right)^{2}$,
$x_{0}=[0.1,0.1, \ldots, 0.1]$.
15. Generalized OSP (Oren and Spedicato) Function:
$f(x)=\left[\sum_{i=1}^{n} i x_{i}^{2}\right]^{2}$,
$x_{0}=[1 ., \ldots, 1$.$] .$

REFERENCES

[1] L. Armijo, "Minimization of function having Lipschitz continuous first partial derivatives", pacific. J. Math., Vol.(16), pp. 1-13, (1966)
[2] Barzilai and J. M. Borwein, "Tow-point size gradient methods", IMA J. Numer. Anal., Vol.(8), PP. 141-148, (1988).
[3] A.Y. Al-Bayati, "A new family of self-scaling VM-algorithms", Journal of Education and Science, Mosul University, Mosul, Iraq (1991).
[4] A.I. Cohen, "Stepsize analysis for descent Methods", J. Optim. theo. \& Appli., Vol. (33), PP. 187-205, (1981).
[5] J. Nocedal, "Unconstrained Optimization Test Function Research Institute for Informatics", Center for advanced Modeling and Optimization, Bucharestl, Romania. April 28, (2005).
[6] J. Nocedal, "Theory of Algorithms for Unconstrained Optimization", Acta. Numer., Vol. (l), pp. 199-242, (1992).
[7] J. Nocedal and J. S. Wright, "Numerical Optimization", Spring-Verlag, New York, (1999).
[8] M. Raydan, "On the Barazilai Borwein Gradient Choice of Steplength for the Gradient Method", IAM J. Numer. Anal., Vol.(13), pp.321-326, (1993).
[9] W.Y. Sun; J.Y. Han and J. Sun, "Global Convergence of Nonmonotone Descent Methods for Unconstrained Optimization Problems", J. Copmut. \&c Appli. Math., Vol.(14), pp. 89-98, (2002).
[10] M.N. Vrahatis; G.S. Androulakis, and G.E. Manoussakis, "A New Unconstrained Optimization Method for Imprecise Function and Gradient Values", J Math. Anal tic Appl., Vol.(197), PP. 586-607, (1996).
[11] Y. Yuan, "Numerical Methods for Nonlinear Programming", Shanghai Scientific Technical Publishers, (1993).
[12] F. Zirilli, "New Inexact Line Search Method for Unconstrained Optimization", J. Optrm. Theo. \& Appl., Vol. (127), PP. 425-446, (2005).

