A New Type of ξ-Open Sets Based on Operations

Haji M. Hasan College of Basic Education University of Duhok

Received on: 22/12/2011

Accepted on: 15/02/2012

ABSTRACT

The aim of this paper is to introduce a new type of ξ -open sets in topological spaces which is called ξ_{γ} -open sets and we study some of their basic properties and characteristics.

Keywords: Open sets , ξ -Space.

نوع جديد من ع – المجموعات المفتوحة على أساس العمليات حاجي حسن كلية التربية الاساسية حامعة دهوك

تاربخ القبول : 2012/02/15

تاريخ الاستلام: 2011/12/22

الملخص

الهدف من هذا البحث هو دراسة نوع جديد من المجموعات المفتوحة من النمط ξ في الفضاءات التوبولوجية والتي سميت بالمجموعات المفتوحة من النمط ξ وتم دراسة بعض صفات وخواص هذه المجموعة. الكلمات المفتاحية: المجموعات المفتوحة ، الفضاء – ξ

1. Introduction

Ogata [9], introduced the concept of an operation on a topology, then after authors defined some other types of sets such as γ -open [9], γ -semi-open [6], γ -pre semi-open [6] and γ - β -open [1] sets in a topological space by using operations. In [4] the concept of ξ -open set in a topological space is introduced and studied.

The purpose of this paper, is to introduce a new class of ξ -open sets namely ξ_{γ} open sets and establish basic properties and relationships with other types of sets, also we define the notions of ξ_{γ} -neighbourhood, ξ_{γ} -derived, ξ_{γ} -closure and ξ_{γ} -interior of a set and give some of their properties which are mostly analogous to those properties of open sets. Throughout this paper, (X, τ) or(briefly, X) mean a topological space on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a topological space X, Cl(A) and Int(A) are denoted respectively the closure and interior of A.

2. Preliminaries.

We start this section by introducing some definitions and results concerning sets and spaces which will be used later.

Definition 2.1. A subset A of a space (X, τ) is called:

- 1) semi-open [7], if $A \subseteq Cl(Int(A))$.
- 2) regular open [2], if A = Int(Cl(A)).

The complement of semi-open (resp., regular open, preopen and α -open) set is said to be semi-closed (resp., regular closed, preclosed and α -closed).

Definition 2.2. [4] An open subset U of a space X is called ξ -open if for each $x \in U$, there exists a semi-closed set F such that $x \in F \subseteq U$. The family of all ξ -open subsets of a topological space (X, τ) is denoted by $\xi O(X, \tau)$ or (briefly $\xi O(X)$). The complement of each ξ -open set is called ξ -closed set. The family of all ξ -closed subsets of a topological space (X, τ) is denoted by $\xi C(X, \tau)$ or (briefly $\xi C(X)$).

Definition 2.3. [5] Let (X, τ) be a topological space. An operation γ on the topology τ is a mapping from τ into power set P(X) such that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V.

Definition 2.4. [8]

- A subset A of a topological space (X, τ) is called γ-open set if for each x∈ A there exists an open set U such that x∈ U and γ(U) ⊆A. Clearly τ_γ ⊆ τ. Complements of γ-open sets are called γ-closed.
- 2) The point $x \in X$ is in the γ -closure of a set $A \subseteq X$, if $\gamma(U) \cap A \neq \phi$, for each open set U containing x. The γ -closure of a set A is denoted by $Cl_{\gamma}(A)$.
- 3) Let (X, τ) be a topological space and A be subset of X, then τ_{γ} -Cl(A) = \cap { F: A \subseteq F, X\ F $\in \tau_{\gamma}$ }.

Definition 2.5. [11] Let (X, τ) be a topological space and A be subset of X, then τ_{γ} -Int(A) = $\cup \{ U : U \text{ is } \gamma\text{-open set and } U \subseteq A \}.$

Definition 2.6. [1] Let (X, τ) be a topological space with an operation γ on τ :

- 1) The γ -derived set of A is defined by {x: for every γ -open set U containing x, U $\cap(A \setminus \{x\}) \neq \phi$ }
- 2) The γ -boundary of A is defined as τ_{γ} -Cl(A) $\cap \tau_{\gamma}$ -Cl(X \ A).

Definition 2.7. [4] Let (X, τ) be a topological space and A $\subseteq X$, then:

- 1) ξ -interior of A is the union of all ξ -open sets contained in A.
- 2) ξ -closure of A is the intersection of all ξ -closed sets containing A.

Lemma 2.8. [4]

- 1) Let (Y, τ_Y) be a subspace of (X, τ) . If $F \in SC(X, \tau)$ and $F \subseteq Y$, then $F \in SC(Y, \tau_Y)$.
- 2) Let (Y, τ_Y) be a subspace of (X, τ) . If $F \in SC(Y, \tau_Y)$ and $Y \in SC(X, \tau)$, then $F \in SC(X, \tau)$.

Lemma 2.9 [4]

- 1) Let Y be a regular open subspace of a space X. If $G \in \xi O(Y)$, then $G \in \xi O(X)$.
- 2) Let Y be a subspace of a space X and $Y \in SC(X)$. If $G \in \xi O(X)$ and $G \subseteq Y$, then $G \in \xi O(Y)$.

3. ξ_{γ} -Open Sets

In this section, a new class of ξ -open sets called ξ_{γ} -open sets in topological spaces is introduced. We define γ to be a mapping on $\xi O(X)$ into P(X) and we say that $\gamma: \xi O(X) \rightarrow P(X)$ is an ξ -operation on $\xi O(X)$ if $V \subseteq \gamma(V)$, for each $V \in \xi O(X)$.

Definition 3.1 A subset A of a space X is called ξ_{γ} -open if for each point $x \in A$, there exist an ξ -open set U such that $x \in U \subseteq \gamma(U) \subseteq A$.

The family of all ξ_{γ} -open subset of a topological space (X, τ) is denoted by $\xi_{\gamma}O(X, \tau)$ or (briefly $\xi_{\gamma}O(X)$).

A subset B of a space X is called ξ_{γ} -closed if X \B is ξ_{γ} -open. The family of all ξ_{γ} -closed subsets of a topological space (X, τ) is denoted by $\xi_{\gamma}C(X, \tau)$ or (briefly $\xi_{\gamma}C(X)$).

Remark 3.2 From the definition of the operation γ , it is clear that $\gamma(X)=X$ for any ξ -operation γ . For competence, it is assumed that $\gamma(\phi)=\phi$ for any ξ -operation γ .

Remark 3.3 It is clear from the definition that every ξ_{γ} -open subset of a space X is ξ -open, but the converse is not true in general as shown in the following example:

Example 3.5. Consider $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$. Define an ξ -operation γ by

$$\gamma(A) = \begin{cases} A & \text{if } a \in A \\ \\ X & \text{if } a \notin A \end{cases}$$

Then {c} is open and ξ -open but {c} $\notin \xi_{\gamma}O(X)$.

Proposition 3.6. Every ξ_{γ} -open set of a space X is γ -open.

Proof. Let A be ξ_{γ} -open in a topological space (X, τ) , then for each point $x \in A$, there exists an ξ -open set U such that $x \in U \subseteq \gamma(U) \subseteq A$. Since every ξ -open set is open, this implies that A is a γ -open set.

The following example shows that the converse of the above proposition is not true in general.

Example 3.7 Consider $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{a\}\}$. Define an ξ -operation γ by $\gamma(A) = A$, for any subset A of X. Then, $\{a\}$ is γ -open set but not ξ -open set. Hence, it is not ξ_{γ} -open.

The following result shows that any union of ξ_{γ} -open sets in a topological space (X, τ) is ξ_{γ} -open.

Proposition 3.8 Let $\{A_{\lambda}\}_{\lambda \in \Delta}$ be a collection of ξ_{γ} -open sets in a topological space (X, τ). Then, $\bigcup_{\lambda \in \Delta} A_{\lambda}$ is ξ_{γ} -open.

Proof. Let $x \in \bigcup_{\lambda \in \Delta} A_{\lambda}$, then $x \in A_{\lambda}$ for some $\lambda \in \Delta$. Since, A_{λ} is an ξ_{γ} -open set, then there exists an ξ_{γ} -open set U containing x and $\gamma(U) \subseteq A_{\lambda} \subseteq \bigcup_{\lambda \in \Delta} A_{\lambda}$. Therefore, $\bigcup_{\lambda \in \Delta} A_{\lambda}$ is an ξ_{γ} -open set in a topological space (X, τ) .

The following example shows that the intersection of two ξ_{γ} -open sets need not be an ξ_{γ} -open set.

Example 3.9 Consider $X = \{a, b, c\}$ with discrete topology on X. Define an ξ -operation γ by

$$\gamma(A) = \begin{cases} \{a,b\} & \text{if } A = \{a\} \text{ or } \{b\} \\ A & \text{otherwise} \end{cases}$$

Let A ={a, b} and B ={b, c}, it is clear that A and B are ξ_{γ} -open sets, but A \cap B={b} is not ξ_{γ} -open set.

From the above example, we notice that the family of all ξ_{γ} -open subsets of a space X is a supratopology and need not be a topology in general.

Proposition 3.10 The set A is ξ_{γ} -open in the space (X, τ) if and only if for each $x \in A$, there exists an ξ -open set B such that $x \in B \subseteq A$.

Proof. Suppose that A is an ξ_{γ} -open set in the space (X, τ). Then, for each $x \in A$, put B=A is an ξ -open set such that $x \in B \subseteq A$.

Conversely, suppose that for each $x \in A$, there exists an ξ -open set B_x such that $x \in B_x \subseteq A$, thus $A = \bigcup B_x$ where $B_x \in \xi_{\gamma}O(X)$ for each $x \in A$. Therefore, A is ξ_{γ} -open set.

Definition 3.11 Let (X, τ) be a topological space. A mapping $\gamma : \xi O(X) \to P(X)$ is said to be :

- 1) ξ -identity on $\xi O(X)$ if $\gamma(A) = A$ for all $A \in \xi O(X)$.
- 2) ξ -monotone on $\xi O(X)$ if for all A, B $\in \xi O(X)$, A \subseteq B implies $\gamma(A) \subseteq \gamma(B)$.
- 3) ξ -idempotent on $\xi O(X)$ if $\gamma(\gamma(A)) = \gamma(A)$ for all $A \in \xi O(X)$.
- 4) ξ -additive on $\xi O(X)$ if $\gamma(A \cup B) = \gamma(A) \cup \gamma(B)$ for all $A, B \in \xi O(X)$.
- If $\bigcup_{i \in I} \gamma(A_i) \subseteq \gamma(\bigcup_{i \in I} A_i)$ for any collection $\{A_i\}_{i \in I} \subseteq \xi O(X)$, then γ is said to be ξ -subadditive on $\xi O(X)$.

Proposition 3.12. Let γ be an ξ -operation. Then, γ is ξ -monotone on $\xi O(X)$ if and only if γ is subadditive on $\xi O(X)$.

Proof. Let γ be ξ -monotone on $\xi O(X)$ and let $\{A_i\}_{i \in I} \subseteq \xi O(X)$. Then, for each $i \in I$, $\gamma(A_i) \subseteq \gamma(\bigcup_{i \in I} A_i)$ and thus $\bigcup_{i \in I} \gamma(A_i) \subseteq \gamma(\bigcup_{i \in I} A_i)$. Therefore, γ is ξ - subadditive on $\xi O(X)$.

Conversely, if γ is subadditive on $\xi O(X)$, and $A, B \in \xi O(X)$ with $A \subseteq B$, then $\gamma(A) \subseteq \gamma(A) \cup \gamma(B) \subseteq \gamma(A \cup B) = \gamma(B)$. Thus, γ is ξ -monotone on $\xi O(X)$.

The following result shows that if γ is ξ -monotone, then the family of ξ_{γ} -open sets is a topology on X.

Proposition 3.13 If γ is ξ -monotone, then the family of ξ_{γ} -open sets is a topology on X.

Proof. Clearly ϕ , $X \in \xi_{\gamma}O(X)$ and by Proposition3.8, the union of any family ξ_{γ} -open sets is ξ_{γ} -open set. To complete the proof, it is enough to show that the finite intersection of ξ_{γ} -open sets is an ξ_{γ} -open set. Let A and B be two ξ_{γ} -open sets and let $x \in A \cap B$, then $x \in A$ and $x \in B$, so there exists ξ_{γ} -open sets namely U and V such that $x \in U \subseteq \gamma(U) \subseteq A$ and $x \in V \subseteq \gamma(V) \subseteq B$, since U and V are ξ -open sets then $U \cap V$ is ξ -open, but $U \cap V \subseteq U$ and $U \cap V \subseteq V$, but γ is ξ -monotone operation, therefore $\gamma(U \cap V) \subseteq \gamma(U) \cap \gamma(V) \subseteq A \cap B$. Thus, $A \cap B$ is an ξ_{γ} -open set. This completes the proof.

Proposition 3.14 Let Y be a semi-closed subspace of a space X. If $A \in \xi_{\gamma}O(X, \tau)$ and $A \subseteq Y$, then $A \in \xi_{\gamma}O(Y, \tau_Y)$, where γ is ξ -identity on $\xi O(Y)$.

Proof. Let $A \in \xi_{\gamma}O(X, \tau)$, then $A \in \xi O(X, \tau)$ and for each $x \in A$ there exists an ξ -open set U in X such that $x \in U \subseteq \gamma(U) \subseteq A$. Since, $A \in \xi O(X, \tau)$ and $A \subseteq Y$, where Y is semi-closed in X, then by Proposition 2.14, $U \in \xi_{\gamma}/O(Y, \tau_Y)$. Hence, $A \in \xi_{\gamma}/O(Y, \tau_Y)$.

Proposition 3.15 Let Y be a regular open subspace of a space (X, τ) and γ is an ξ -identity on $\xi O(X)$. If $A \in \xi_{\gamma} O(Y, \tau_Y)$ and $Y \in \xi O(X, \tau)$, then $A \in \xi_{\gamma} O(X, \tau)$.

Proof. Let $A \in \xi_{\gamma} / O(Y, \tau_Y)$, then $A \in \xi O(Y, \tau_Y)$ and for each $x \in A$ there exists an ξ -open set U in Y such that $x \in U \subseteq \gamma / (U) \subseteq A$. Since, $Y \in \xi O(X, \tau)$ and $A \in \xi O(Y, \tau_Y)$, then by Proposition 2.13, $U \in \xi O(X, \tau)$. Hence, $A \in \xi_{\gamma} O(X, \tau)$.

4. Other Properties of ξ_{γ} -Open Sets

In this section, we define and study some properties of ξ_{γ} -neighbourhood of a point, ξ_{γ} -derived, ξ_{γ} -closure and ξ_{γ} -interior of sets via ξ_{γ} -open sets.

Definition 4.1 Let (X, τ) be a topological space and $x \in X$, then a subset N of X is said to be ξ_{γ} -neighbourhood of x, if there exists an ξ_{γ} -open set U in X such that $x \in U \subseteq N$.

Proposition 4.2 Let (X, τ) be a topological space. A subset A of X is ξ_{γ} -open if and only if it is an ξ_{γ} -neighbourhood of each its points.

Proof. Let $A \subseteq X$ be an ξ_{γ} -open set. Since, for every $x \in A$, $x \in A \subseteq A$ and A is ξ_{γ} -open, then A is an ξ_{γ} -neighbourhood of each its points.

Conversely, suppose that A is an ξ_{γ} -neighbourhood of each its points. Then, for each $x \in A$, there exists $B_x \in \xi_{\gamma}O(X)$ such that $B_x \subseteq A$. Then, $A = \bigcup \{ B_x : x \in A \}$. Since, each B_x is ξ_{γ} -open, It follows that A is an ξ_{γ} -open set.

Definition 4.3 Let (X, τ) be a topological space with an operation γ on $\xi O(X)$. A point $x \in X$ is said to be ξ_{γ} -limit point of a set A if for each ξ_{γ} -open set U containing x, then U $\cap(A \setminus \{x\}) \neq \phi$. The set of all ξ_{γ} -limit points of A is called ξ_{γ} -derived set of A and denoted by ξ_{γ} -D(A).

Proposition 4.5 Let A and B be subsets of a space X. If $A \subseteq B$, then ξ_{γ} -D(A) $\subseteq \xi_{\gamma}$ -D(B).

Proof. Obvious.

Some properties of ξ_{γ} -derived sets are stated in the following proposition.

Proposition 4.6 Let A and B be any two subsets of a space X, and γ be an operation on $\xi O(X)$. Then, we have the following properties:

1)
$$\xi_{\gamma}$$
-D(ϕ) = ϕ .

2) If $x \in \xi_{\gamma}$ -D(A), then $x \in \xi_{\gamma}$ -D(A\{x}).

- 3) ξ_{γ} -D(A) $\cup \xi_{\gamma}$ -D(B) $\subseteq \xi_{\gamma}$ -D(A \cup B).
- 4) ξ_{γ} -D(A \cap B) $\subseteq \xi_{\gamma}$ -D(A) $\cap \xi_{\gamma}$ -D(B).
- 5) ξ_{γ} -D(ξ_{γ} -D(A)) \ A $\subseteq \xi_{\gamma}$ -D(A).
- 6) ξ_{γ} -D(A $\cup \xi_{\gamma}$ -D(A) \subseteq A $\cup \xi_{\gamma}$ -D(A).

Proof. Straightforward.

In general, the equalities of (3), (4) and (6) of the above proposition do not hold, as is shown in the following examples.

Example 4.7 Consider $X = \{a, b, c\}$ with discrete topology on X. Define an operation γ on $\xi O(X)$ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{b\} \text{ or } \{a, b\} \text{ or } \{a, c\} \\ \\ X & \text{otherwise} \end{cases}$$

Now, if A = {a, b} and B = {a, c}, then ξ_{γ} -D(A) = {c}, ξ_{γ} -D(B) = {c} and ξ_{γ} -D(A \cup B) = {a, c}, where A \cup B= X, this implies that ξ_{γ} -D(A) $\cup \xi_{\gamma}$ -D(B) $\neq \xi_{\gamma}$ -D(A \cup B).

Example 4.8 Consider X = {a, b, c, d} with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Define an operation γ on $\xi O(X)$ by.

$$\gamma(A) = \begin{cases} A & \text{if } b \in A \\ X & \text{if } b \notin A \end{cases}$$

Now, if we let $A = \{a, b\}$ and $B = \{c, d\}$, then ξ_{γ} -D(A) = $\{a, c, d\}$, ξ_{γ} -D(B) = $\{d\}$, hence ξ_{γ} -D(A) $\cap \xi_{\gamma}$ -D(B)= $\{d\}$, but ξ_{γ} -D(A $\cap B$) = ϕ , where A $\cap B = \phi$, this implies that ξ_{γ} -D(A $\cap B$) $\neq \xi_{\gamma}$ -D(A) $\cap \xi_{\gamma}$ -D(B). Also ξ D(A) = $\{d\}$, therefore ξ_{γ} -D(A) $\subset \xi$ D(A).

Definition 4.9 Let A be a subset of a topological space (X, τ) and γ be an operation on $\xi O(X)$. The intersection of all ξ_{γ} -closed sets containing A is called the ξ_{γ} -closure of A and denoted by ξ_{γ} -Cl(A).

Here, we introduce some properties of ξ_{γ} -closure of the sets.

Proposition 4.10 Let (X, τ) be a topological space and γ be an operation on $\xi O(X)$. For any subsets A and B of X, we have the following:

- 1) $A \subseteq \xi_{\gamma}$ -Cl(A).
- 2) ξ_{γ} -Cl(A) is an ξ_{γ} -closed set in X.
- 3) A is an ξ_{γ} -closed set if and only if A= ξ_{γ} -Cl(A).
- 4) ξ_{γ} -Cl(ϕ) = ϕ and ξ_{γ} -Cl(X) = X.
- 5) ξ_{γ} -Cl(A) $\cup \xi_{\gamma}$ -Cl(B) $\subseteq \xi_{\gamma}$ -Cl(A \cup B).
- 6) ξ_{γ} -Cl(A \cap B) $\subseteq \xi_{\gamma}$ -Cl(A) $\cap \xi_{\gamma}$ -Cl(B).

Proof. They are obvious.

In general, the equalities of (5) and (6) of the above proposition does not hold, as is shown in the following examples:

Example 4.11 Consider $X = \{a, b, c\}$ with discrete topology on X. Define an operation γ on $\xi O(X)$ by

$$\gamma(A) = \begin{cases} A & if \quad A = \{a, b\} \quad or \quad \{a, c\} \\ \\ X & otherwise \end{cases}$$

Then, $\xi_{\gamma}O(X) = \{\phi, X, \{a, b\}, \{a, c\}\}$. Now, if we let $A = \{b\}$ and $B = \{c\}$, then ξ_{γ} -CL(A) = A, ξ_{γ} -D(B) = B and ξ_{γ} -Cl(A \cup B) =X, where A \cup B= $\{b, c\}$, this implies that ξ_{γ} -Cl(A) $\cup \xi_{\gamma}$ -Cl(B) $\neq \xi_{\gamma}$ -Cl(A \cup B).

Example 4.12 Consider X = {a, b, c, d} with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Define an operation γ on $\xi O(X)$ by.

$$\gamma(A) = \begin{cases} A & \text{if } b \in A \\ X & \text{if } b \notin A \end{cases}$$

It is clear that ξ_{γ} -O(X) = { ϕ , X, {b}, {a, b}, {b, c}, {a, b, c}}. Now, if we let A = {c} and B = {d}, then ξ_{γ} -Cl(A) = {c, d} and ξ_{γ} -Cl(B) = {d},

hence ξ_{γ} -Cl(A) $\cap \xi_{\gamma}$ -Cl(B)= {d}, but ξ_{γ} -Cl(A \cap B) = ϕ , where A \cap B = ϕ , this implies that ξ_{γ} -CL(A \cap B) $\neq \xi_{\gamma}$ -Cl(A) $\cap \xi_{\gamma}$ -Cl(B).

Now, if we let A= {b}, we see that $\xi Cl(A) = \{b, d\}$, but ξ_{γ} -Cl(A) = X. Hence, ξ_{γ} -Cl(A) $\not\subset \xi Cl(A)$.

Proposition 4.13 A subset A of a topological space X is an ξ_{γ} -closed set if and only if it contains the set of its ξ_{γ} -limit points.

Proof. Assume that A is an ξ_{γ} -closed set and if possible that x is an ξ_{γ} -limit point of A which belongs to X \ A, then X \A is an ξ_{γ} -open set containing the ξ_{γ} -limit point of A, therefore, A \cap (X\A) $\neq \phi$, which is contradiction.

Conversely, assume that A is containing the set of its ξ_{γ} -limit points. For each $x \in X \setminus A$, there exists an ξ_{γ} -open set U containing x such that $A \cap U = \phi$, implies that $x \in U \subseteq X \setminus A$, so by Proposition 3.10, X A is an ξ_{γ} -open set hence, A is an ξ_{γ} -closed set.

Proposition 4.14 Let A be a subset of a topological space (X, τ) and γ be an ξ -operation. Then, $x \in \xi_{\gamma}Cl(A)$ if and only if for every ξ_{γ} -open set V of X containing x, A $\cap V \neq \phi$.

Proof. Let $x \in \xi_{\gamma}Cl(A)$ and suppose that $A \cap V = \phi$, for some ξ_{γ} -open set V of X containing x. Then, $(X \setminus V)$ is ξ_{γ} -closed and $A \subseteq (X \setminus V)$, thus $\xi_{\gamma}Cl(A) \subseteq (X \setminus V)$. But, this implies that $x \in (X \setminus V)$ which is contradiction. Therefore, $A \cap V \neq \phi$.

Conversely, Let $A \subseteq X$ and $x \in X$ such that for each ξ_{γ} -open set V of X containing x, A $\cap V \neq \phi$. If $x \notin \xi_{\gamma}CL(A)$, there exists an ξ_{γ} -closed set F such that $A \subseteq F$. Then, $(X \setminus F)$ is an ξ_{γ} -open set with $x \in (X \setminus F)$, and thus $(X \setminus F) \cap A \neq \phi$, which is a contradiction. The proof of the following two results is obvious.

Proposition 4.15 Let A be a subset of a topological space (X, τ) and γ be an ξ -operation on $\xi O(X)$. Then, $\xi_{\gamma} Cl(A) = A \cup \xi_{\gamma} D(A)$.

Proposition 4.16 If A and B are subsets of a space X with $A \subseteq B$. Then, $\xi_{\gamma}Cl(A) \subseteq \xi_{\gamma}Cl(B)$.

Definition 4.17 Let A be a subset of a topological space (X, τ) and γ be an operation on $\xi O(X)$. The union of all ξ_{γ} -open sets contained in A is called the ξ_{γ} -Interior of A and denoted by ξ_{γ} -Int(A).

Here, we introduce some properties of ξ_{γ} -Interior of the sets.

Proposition 4.18 Let (X, τ) be a topological space and γ be an operation on $\xi O(X)$. For any subsets A and B of X, we have the following:

- 1) ξ_{γ} -Int(A) is an ξ_{γ} -open set in X.
- 2) A is ξ_{γ} -open if and only if A= ξ_{γ} -Int(A).
- 3) ξ_{γ} -Int(ξ_{γ} -IntA)) = ξ_{γ} -Int(A).

- 4) ξ_{γ} -Int(ϕ) = ϕ and ξ_{γ} -Int(X) = X.
- 5) ξ_{γ} -Int(A) \subseteq A.
- 6) If $A \subseteq B$, then ξ_{γ} -Int(A) $\subseteq \xi_{\gamma}$ -Int(B).
- 7) ξ_{γ} -Int(A) $\cup \xi_{\gamma}$ -Int(B) $\subseteq \xi_{\gamma}$ -Int(A \cup B).
- 8) ξ_{γ} -Int $(A \cap B) \subseteq \xi_{\gamma}$ -Int $(A) \cap \xi_{\gamma}$ -Int(B).

Proof. Straightforward.

In general, the equalities of (7) and (8) of the above proposition do not hold, as is shown in the following examples:

Example 4.19 Consider X = {a, b, c, d} with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Define an ξ -operation γ by.

$$\gamma(A) = \begin{cases} A & \text{if } b \in A \\ X & \text{if } b \notin A \end{cases}$$

It is clear that $\xi\gamma$ -O(X) = { ϕ , X, {b}, {a, b}, {b, c}, {a, b, c}}. Now, if we let A = {a} and B ={b}, then $\xi\gamma$ -Int(A) = ϕ and $\xi\gamma$ -Int(B) = {b}, hence $\xi\gamma$ -Int(A) $\cup \xi\gamma$ -Int(B)= {b}, but $\xi\gamma$ -int(A \cup B) = {a, b}, where A \cup B = {a, b}, this implies that $\xi\gamma$ -Int(A \cup B) $\neq \xi\gamma$ -Int(A) Int(A) $\cup \xi\gamma$ -Int(B).

Example 4.20 Consider $X = \{a, b, c\}$ with discrete topology on X. Define an ξ -operation γ on $\xi O(X)$ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a,b\} \text{ or } \{a,c\} \\ X & \text{otherwise} \end{cases}$$

Then, $\xi_{\gamma}O(X) = \{\phi, X, \{a, b\}, \{a, c\}\}$. Now, if we let $A = \{a, b\}$ and $B = \{a, c\}$, then ξ_{γ} -Int(A) = $\{a, b\}$ and ξ_{γ} -Int(B) = $\{a, c\}$, therefore ξ_{γ} -Int(A) $\cap \xi_{\gamma}$ -Int(B) = $\{a\}$, but ξ_{γ} -Int($A \cap B$) = ϕ , where $A \cap B = \{a\}$, this implies that ξ_{γ} -Int(A) $\cap \xi_{\gamma}$ -Int(B) $\neq \xi_{\gamma}$ -Int($A \cap B$).

The following two results can be easily proved.

Proposition 4.21 For any subset A of a topological space X, ξ_{γ} -Int(A) $\subseteq \xi$ Int(A) \subseteq Int(A).

Proposition 4.22 Let A be any subset of a topological space X, and γ be an operation on $\xi O(X)$. Then, ξ_{γ} -Int(A) = A \ ξ_{γ} -D(X \ A).

<u>REFERENCES</u>

- [1] Basu, C. K., Afsan, B. M. U. and Ghosh, M. K., (2009), A class of functions and separation axioms with respect to an operation. Hacettepe *journal of Mathematics and Statistics*, 38 (2), 103-118.
- [2] Dugundji, J., (1966), **Topology**, Allyn and Bacon Inc., Boston, .
- [3] El-Deeb, S. N., Hasanein, I. A., Mashhour, A. S. and Noiri, T., (1983), On P-regular spaces, *Ball. Math. Sci. Math. R. S. Rounmanie*, 27 (4), 311-315.
- [4] Hasan M. Haji, (2010), On Some Types of Continuity, Separation Axioms and Dimension Functions, *ph.D. Thesis, Duhok Univ., Duhok*, .
- [5] Kasahara, S., (1979), Operation compact spaces, *Math. Japonica*, 24 (1), 97-105.
- [6] Krishnan, G. S. and Balachandran, K., (2006), On γ-semi-open sets in topological space, *Bull. Cal. Math. Soc.*, 98 (6), 517-530.
- [7] Liven, N., (1963), Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70 (1), 36-41.
- [8] Moiz K., (1997), Weak forms of continuity, compactness and connectedness, *ph.D. Thesis, Multan Univ., Pakistan,*.
- [9] Ogata, H., (1991), Operation on topological spaces and associated topology, *Math. Japonica*, 36 (1), 175-184.
- [10] Reilly, I. L. and Vamanmurthy, M.K., (1985), On α-contiuity in topological spaces, *Acta Math. Hungar.*, 45 (1-2), 27-32.
- [11] Sia sundra Krishnan, G., (2003), A new class of semi-open sets in a topological space, *Proc. NCMCM, Allied Publishers, new Delhi*, 305-311.