On Simple GP - Injective Modules

Mohammed Th. Youns
College of Engineering
University of Mosul

Najlaa T. Jassim
College of Basic Education
University of Mosul
Received on: 07/03/2012
Accepted on: 19/04/2012

Abstract

In this paper, we study rings whose simple right R-module are GP-injective. We prove that ring whose simple right R-module is GP-injective it will be right $s \pi$-weakly regular ring. Also, proved that if R is N duo ring or R is NCI ring whose simple right R module is GP-injective is S -weakly regular ring.

Keywords: Modules, weak regular rings, N duo ring , NCI ring.

الملخص في هذا البحث درست الحلقات التي كل مقاس بسيط أيمن عليها يكون غامر من النمط -GP، لتد تم برهان تكون الحقة منظمة ضعيفة من النمط sת- اليمنى إذا كان كل مقاس بسيط أيمن عليها هو غامر من النمط

الكلمات المفتاحية : المقاسات ، حلقات منتظمة ضعيفة، حلقة N duo أو حقة NCI.

1- Introduction

Throughout in this paper, R is associative ring with identity and all modules are unitary. For a subset X of R , the left(right) annihilator of X in R is denoted by $\mathrm{l}(\mathrm{X})(\mathrm{r}(\mathrm{X}))$. If $\mathrm{X}=\{\mathrm{a}\}$, we usually abbreviate it to $\mathrm{l}(\mathrm{a})(\mathrm{r}(\mathrm{a}))$. We write $\mathrm{J}(\mathrm{R}), \mathrm{N}(\mathrm{R})$, $N^{*}(R), P(R)$ for the Jacobson radical, the set of nilpotent elements, the nil radical (that means the sum of all nil ideals), prime radical (that means the intersection of all prime ideals)respectively. $\quad N_{2}(R)=\left\{a \in R / a^{2}=0\right\} . \quad$ A ring R is called NI if $N^{*}(R)=N(R)$ [9]. A ring R is 2-primal if $N(R)=P(R)$ [2]. A ring R is said to be semiprimitive if $\mathrm{J}(\mathrm{R})=0$ [1]. An element a in the ring R said to be right (left) weakly regular if $a \in \operatorname{aRaR}(a \in R a R a)$ [12].

A right R-module M is called Generalized Principally injective (briefly, GPinjective) if for any $a \in R$, there exists a positive integer n such that $a^{n} \neq 0$ and any right R-homomorphism of $a^{n} R$ into M extends to one of R into M [8]. Right GPinjective modules are called right YJ-injective modules by several authors [16].

2. Some Properties of Rings whose Simple Right R-module are GP-injective.

We give a different prove that proved by Kim, et. al. in [8].

Theorem 2.1

Let R be a ring whose every simple right R-module is GP-injective. Then R is semiprime.

Proof:

We shall show that is no nilpotent ideal in R , if not, suppose there exists $0 \neq a \in R$ with $(a R)^{2}=0, a R a R=0$, that means $R a R \subseteq r(a)$, there exists a maximal right ideal M of R containing $r(a), R / M$ is GP-injective. Hence, there exists an appositive integer $\mathrm{n}=1$ such that $a \neq 0$ and any R-homomorphism of $a \mathrm{R}$ into R / M extends to one of R into R / M, we define $f: a R \rightarrow R / M$ such that $f(a r)=r+M$ where $r \in R$. We have to show that f is well defined R -homomorphism, let $\mathrm{ax}=\mathrm{ay}$ where $x, y \in R, \mathrm{a}(\mathrm{x}-\mathrm{y})=0,(x-y) \in r(a) \subseteq M, \quad \mathrm{x}+\mathrm{M}=\mathrm{y}+\mathrm{M}, \mathrm{f}(\mathrm{ax})=\mathrm{x}+\mathrm{M}=\mathrm{y}+\mathrm{M}=\mathrm{f}(\mathrm{ay})$, $\mathrm{f}(\mathrm{ax})=\mathrm{f}($ ay $)$,so f is well defined right R-homomorphism, since R/M is GP-injective, there exists $\quad b+M \in R / M$ such that $1+\mathrm{M}=\mathrm{f}(\mathrm{a})=(\mathrm{b}+\mathrm{M})(\mathrm{a}+\mathrm{M})=\mathrm{ba}+\mathrm{M}, \quad 1+\mathrm{M}=\mathrm{ba}+\mathrm{M}$, $1-b a \in M$, since $b a \in R a R \subseteq M$, we get that $1 \in M$, which is a contradiction. Therefore, $\mathrm{a}=0$. This shows that R issemiprime.

We give a different prove that is proved by Xue in [16].

Proposition 2.2

Let R be a ring whose simple right R-module is GP-injective. Then, R is semiprimitive.

Proof:
We shall show that $I(R)=0$,if not, there exists $0 \neq a \in J(R)$,then either $R a^{n} R+r\left(a^{n}\right)=R$, or not, if not, there exists a maximal right ideal M of R containing $R a^{n} R+r\left(a^{n}\right), \mathrm{R} / \mathrm{M}$ is GP-injective, there exists a positive integer n and $a^{n} \neq 0$ such that any R-homomorphism of $a^{n} \mathrm{R}$ into R / M extends to one of R into R/M,Let $f: a^{n} R \rightarrow R / M$ such that $f\left(a^{n} r\right)=r+M$, where $r \in R$, we have to show that f is well defined, let $a^{n} x=a^{n} y$ where $x, y \in R, a^{n}(x-y)=0,(x-y) \in r\left(a^{n}\right) \in M$, then $(\mathrm{x}-\mathrm{y})+\mathrm{M}=\mathrm{M}, \mathrm{x}+\mathrm{M}=\mathrm{y}+\mathrm{M}, \mathrm{f}\left(a^{n} \mathrm{x}\right)=\mathrm{x}+\mathrm{M}=\mathrm{y}+\mathrm{M}=\mathrm{f}\left(a^{n} \mathrm{y}\right), \mathrm{f}\left(a^{n} \mathrm{x}\right)=\mathrm{f}\left(a^{n} \mathrm{y}\right)$,so f is well defined right R-homomorphism, since R/M is GP-injective, there exists $b+M \in R / M$ such that $\quad 1+\mathrm{M}=\mathrm{f}\left(a^{n}\right)=(\mathrm{b}+\mathrm{M})\left(a^{n}+\mathrm{M}\right)=\mathrm{b} a^{n}+\mathrm{M}, \quad 1+\mathrm{M}=\mathrm{b} a^{n}+\mathrm{M}, 1-b a^{n} \in M$, since $b a^{n} \in R a^{n} R \subseteq M$,we get that $1 \in M$, which is a contradiction. That means $R a^{n} R+r\left(a^{n}\right)=R$, in particular there exists $y, z \in R$ and $v \in r\left(a^{n}\right)$ such that $y a^{n} z+v=1, a^{n} y a^{n} z+a^{n} v=a^{n}, a^{n} y a^{n} z=a^{n}, a^{n}\left(1-y a^{n} z\right)=0$, since $a \in J(R)$,so $y a^{n} z \in J(R), \quad 1-y a^{n} z$ is invertible, there exists $u \in R_{p}$ such that $\left(1-y a^{n} z\right) u=1, a^{n}=a^{n}\left(1-y a^{n} z\right) u=0 u=0$,must $\quad a^{n}=0 \quad$ which is a contradiction with $a^{n} \neq 0$. Therefore, $a=0$, so, $\mathrm{J}(\mathrm{R})=0$. This shows that R is semiprimitive.

Corollary 2.3

Let R be a ring whose simple right R-module is $G P$-injective. Then, $N^{*}(R)=0$.

Proof:

We shall show that $N^{*}(R)=0$, $\operatorname{since} N^{*}(R)$ is the large nil ideal of R, It is clearly that $\mathrm{J}(\mathrm{R})$ containing every nil ideal, so $N^{*}(R) \subseteq J(R)$, but $J(R)=0$ by Proposition 2.3. Thisshows that $N^{*}(R)=0$.

Theorem 2.4

Let R be a ring whose simple right R-module is GP-injective. Then, the set $N_{2}(R)$ is right weakly regular.

Proof:

We shall show that $R b R+r(b)=R$, for all $b \in N_{2}(R)$, if not,suppose there exists $0 \neq a \in N_{2}(R)$, such that $R a R+r(a) \neq R$, then there exists a maximal right ideal M of R containing $\operatorname{RaR}+r(a), \mathrm{R} / \mathrm{M}$ is GP-injective, there exists appositive integer $\mathrm{n}=1$ such that $a \neq 0$ and any R-homomorphism of $a \mathrm{R}$ into R / M extends to one of R into R / M. Now, let $f: a R \rightarrow R / M$ such that $f(a r)=r+M$ where $r \in R$. Note that f is well defined right R-homomorphism, since R / M is GP-injective there exists $b+M \in R / M$ such that $1+\mathrm{M}=\mathrm{f}(\mathrm{a})=(\mathrm{b}+\mathrm{M})(\mathrm{a}+\mathrm{M})=\mathrm{ba}+\mathrm{M}, 1+\mathrm{M}=\mathrm{ba}+\mathrm{M}, \quad 1-\mathrm{b} a \in M$, since $b a \in R a R \subseteq M$, we get that $1 \in M$, which is a contradiction.. Therefore, $R a R+r(a)=R$. In particular, there exists $y, z \in R$ and $v \in r(a)$ such that $y a z+v=1, a y a z+a v=a, a y a z=a$, that is for all $a \in N_{2}(R)$. This shows that the set $N_{2}(R)$ is right weakly regular.

Theorem 2.5

Let R be a ring without zero divisors whose simple right R-module is GPinjective. Then, R is a simple ring.

Proof:

We shall show that there is no two sided ideal of R, if not there exists a two sides ideal of $R, R a R$ is a two sided ideal for some $0 \neq a \in R$ since $0 \neq a, R a R \neq 0$, if $R a R \neq R$,there exists a maximal right ideal M of R containing $R a R, \mathrm{R} / \mathrm{M}$ is GPinjective, there exists a positive integer n and $a^{n} \neq 0$ such that any R -homomorphism of $a^{n} \mathrm{R}$ into R / M extends to one of R into R / M, we define $f: a^{n} R \rightarrow R / M$ such that $f\left(a^{n} r\right)=r+M_{r} \quad$ where $\quad r \in R$, let $\quad \mathrm{r}_{1}, \mathrm{r}_{2} \in R \quad$ such that $a^{n} \mathrm{r}_{1}=a^{n} \mathrm{r}_{2}, a^{n}\left(r_{1}-r_{2}\right)=0, r_{1}-r_{2} \in r\left(a^{n}\right)=0$, since a is a non-zero divisor, so must $r_{1}=r_{2}, \quad f\left(a^{n} r_{1}\right)=r_{1}+M=r_{2}+M=f\left(a^{n} r_{2}\right)$, so $\mathrm{f} \quad$ is well defined $\mathrm{R}-$ homomorphism, since R / M is GP-injective, there exists $b+M \in R / M$ such that $1+\mathrm{M}=\mathrm{f}\left(a^{n}\right)=(\mathrm{b}+\mathrm{M})\left(a^{n}+\mathrm{M}\right) \quad=\mathrm{b} a^{n}+\mathrm{M}, \quad 1+\mathrm{M}=\mathrm{b} a^{n}+\mathrm{M}, \quad$ but $\mathrm{b} a^{n} \in R a R \subseteq \mathrm{M}, 1-b a^{n} \in M, 1 \in M$, which is a contradiction. Therefore, $R a R=R$, for all $a \in R$, that means R not containing any two sided ideal of R . This shows that R a simple ring.

3. Rings Whose Simple Right R-module are GP-injective and it relation with other Rings.

In this section, we give different conditions to the ring whose simple right Rmodule is GP-injective to get the reduced, S-weakly regular, regular, strongly regular ring.

A ring R is said to be N duo if $\mathrm{aR}=\mathrm{Ra}$, for all $a \in N(R)[15]$.

Theorem 3.1

Let R be N duo ring whose every simple right R-module is $G P$-injective. Then, R is a reduced ring.

Proof:

We shall show that $\mathrm{N}(\mathrm{R})=0$, if not, there exists $0 \neq a \in N(R)$ with $a^{2}=0$, if $\mathrm{aR}+\mathrm{r}(\mathrm{a}) \neq R$, there exists a maximal right ideal M of R containing $a R+r(a), \mathrm{R} / \mathrm{Mis}$ GP-injective, there exists an appositive integer $\mathrm{n}=1$ such that $a \neq 0$ and any Rhomomorphism of $a \mathrm{R}$ into R / M that extends to one of R into R / M. Let $f: a R \rightarrow R / M$ such that $f(a r)=r+M$ where, $r \in R$. Note that f is well defined right R homomorphism, since R / M is GP-injective there exists $b+M \in R / M$ such that $1+\mathrm{M}=\mathrm{f}(\mathrm{a})=(\mathrm{b}+\mathrm{M})(\mathrm{a}+\mathrm{M})=\mathrm{ba}+\mathrm{M}, 1+\mathrm{M}=\mathrm{b}+\mathrm{M}, 1-b a \in M$, since R is N duo ring and $a \in N(R)$, we get $\mathrm{aR}=\mathrm{Ra}, b a \in R a=a R \subseteq M$, so $1 \in M$, which is a contradiction. Therefore, $a R+r(a)=R$. In particular, there exists $z \in R$ and $v \in r(a)$ such that $a z+v=1, a^{2} z+a v=0=a$, for all $a \in N(R)$, This shows that R is a reduced ring.

Call a ring R NCI if $N(R)$ is containing a non-zero ideal of R whenever $N(R) \neq 0$. Clearly, NI ring is NCI [5].

Theorem 3.2

Let R be an NCI ring whose simple right R-module is GP-injective. then R is a reduced ring.

Proof:

We shall show that $\mathrm{N}(\mathrm{R})=0$, if not, $0 \neq N(R)$, since R is an NCI ring, so $\mathrm{N}(\mathrm{R})$ is containing a non-zero ideal I, but I is nil ideal, It is clearly that $J(R)$ containing every nil ideal, so $I \subseteq J(R)=0$, form proposition $2.4, \mathrm{I}=0$, that is mean $\mathrm{N}(\mathrm{R})$ mustbe an ideal, similarly $N(R) \subseteq J(R)=0, \mathrm{~N}(\mathrm{R})=0$. This is shows that R is reduced ring.

Theorem 3.3

Let R be aring whose simple right R-module is GP-injective. Then, the following conditions are equivalent:
$1-R$ is reduced ring.
2- R is N duo ring.
3- R is 2-priaml ring.
4- R is NI ring.
5- R is NCI ring.

Proof:

$1 \rightarrow 2$, is clear and $2 \rightarrow 1$, by Theorem 3.2
$1 \rightarrow 3 \rightarrow 4 \rightarrow 5$, is clearand $5 \rightarrow 1$, by Theorem 3.1
Call a ring R S-weakly regular ring if $a \in a R a^{2} R$, for all $a \in R$ [14].

Theorem 3.4

Let R be aring whose simple right R-module is GP-injective. Then, R is S-weakly regular ring. If satisfies one of the following conditions.
$1-R$ is a reduced ring.
2- R is N duo ring.
3- R is 2-priaml ring.

4- R is NI ring.
5- R is NCI ring.

Proof:

We shall prove that R is S -weakly regular when R is reduced, and the proof of the other condition that is clearly form Theorem 3.3.

We shall show that $R d^{2} R+r(d)=R$, for all $d \in R$,if not, there exists $0 \neq a \in R_{p}$ such that $R a^{2} R+r(a) \neq R_{y}$ there exists a maximal right ideal M of R containing $R a^{2} R+r(a), \mathrm{R} / \mathrm{M}$ is GP-injective, there exists an appositive integer n such that $a^{n} \neq 0$ and any R-homomorphism of $a^{n} \mathrm{R}$ into R / M extends to one of R into R/M. Let $f: a^{n} R \rightarrow R / M$ such that $f\left(a^{n} r\right)=r+M$ where, $r \in R$. let $a^{n} x=a^{n} y$ where $x, y \in R, a^{n}(x-y)=0,(x-y) \in r\left(a^{n}\right)=r(a) \subseteq M$, since R is a reduced ring, then $(\mathrm{x}-\mathrm{y})+\mathrm{M}=\mathrm{M}, \mathrm{x}+\mathrm{M}=\mathrm{y}+\mathrm{M}, \mathrm{f}\left(a^{n} \mathrm{x}\right)=\mathrm{x}+\mathrm{M}=\mathrm{y}+\mathrm{M}=\mathrm{f}\left(a^{n} \mathrm{y}\right), \mathrm{f}\left(a^{n} \mathrm{x}\right)=\mathrm{f}\left(a^{n} \mathrm{y}\right)$, so f is well defined right R -homomorphism, since R / M is GP-injective there exists $b+M \in R / M$ such that $1+\mathrm{M}=\mathrm{f}\left(a^{n}\right)=(\mathrm{b}+\mathrm{M})\left(a^{n}+\mathrm{M}\right)=\mathrm{b} a^{n}+\mathrm{M}, \quad 1+\mathrm{M}=\mathrm{b}+\mathrm{M}$. Now $\mathrm{b} a^{n} \in R a^{2} R \subseteq \mathrm{M}$, it is true when $\quad n \geq 2, \quad 1-b a^{n} \in M, 1 \in M$, which is a contradiction. Therefore, $R a^{2} R+r\left(a^{n}\right)=R_{n}$ for $n \geq 2$. Now, when $\mathrm{n}=1, f: a R \rightarrow R / M, f(a r)=r+M_{\text {, }}$ $1+\mathrm{M}=\mathrm{f}(a)=(\mathrm{b}+\mathrm{M})(a+\mathrm{M})=\mathrm{b} a+\mathrm{M}, 1+\mathrm{M}=\mathrm{b} a+\mathrm{M}$, by multiply $\mathrm{a}+\mathrm{M}$ in the left side and $\mathrm{b}+\mathrm{M}$ in the right side, we have $\mathrm{ba}+\mathrm{M}=b^{2} a^{2}+\mathrm{M}$, since $b^{2} a^{2} \in R a^{2} R \subseteq \mathrm{M}$, then $b a-b^{2} a^{2} \in M$, we get that $b a \in M$, since $1+\mathrm{M}=\mathrm{b} a+\mathrm{M}, 1-\mathrm{ba} \in M, 1 \in M_{p}$ which is a contradiction. Therefore, $R a^{2} R+r(a)=R$, for all $\mathrm{a} \in R$. In particular, there exists $\mathrm{y}, z \in R$ and $v \in r(a)$ such that $\mathrm{y} a^{2} z+v=1, a y a^{2} z+a v=a y a^{2} z=a$. This shows that R is an S -weakly regular ring.

An element a of ring R is said to be a right regular element if the right annihilator ideal is zero $(r(a)=0)$ [6]. A ring R is said to be MERT if and only if every maximal essential right ideal of R is an ideal [14]. A ring R is called Kasch if every simple right R -module embeds in R , equivalently, for every maximal right ideal M of R is a right annihilator of R [3]. Call a ring R a right SF -ring if each simple right R module is flat [13]. A ring R is said to be regular if $a \in a R a$, for all $a \in R$ [11].

Lemma 3.5 [6]

Let R be a semiprime ring with maximum condition on left and right annihilators. Then, every essential right ideal contains a regular element.

Lemma 3.6 [13]

R / I is right flat R-module if and only if for each x in R there is some y in R such that $x=y x$.

Lemma 3.7 [7]

Let R be a MERT ring, then the following conditions are equivalent:
1- R is regular.
2- R is right $S F$.

Theorem 3.8

Let R be a MERT ring whose every simple right module is GP-injective and satisfies maximum condition on left and right annihilators. Then R is Kasch ring and right $S F$-ring, hence R is regular ring.

Proof :

We shall prove that every maximal right ideal is direct summand, if not, suppose that M a maximal right ideal of R which is not a direct summand of R , then M is a maximal essential right ideal of R , by Theorem 2.1 and Lemma 3.5, we have M containing a non-zero divisor a, R/M is GP-injective, there exists a positive integer n and $a^{n} \neq 0$ such that any R-homomorphism of $a^{n} \mathrm{R}$ into R / M extends to one of R into R/M, Let $f: a^{n} R \rightarrow R / M$ such that $f\left(a^{n} r\right)=r+M$, where $r \in R$, since a is a non-zero divisor f is well defined right R -homomorphism, since R / M is GP-injective, there exists $b+M \in R / M$ such that $1+\mathrm{M}=\mathrm{f}\left(a^{n}\right)=\mathrm{b} a^{n}+\mathrm{M}, 1-b a^{n} \in M$, since $a \in M, \mathrm{M}$ is essential right ideal and R is MERT ring, M is an ideal, so $b a^{n} \in M$, we get that $1 \in M$, which is a contradiction. Therefore, M a direct summand. This shows that every maximal right ideal of R is a direct summand.

There exists J right ideal for any maximal right ideal M such that $M \oplus J=R$, in particular there exists $m \in M$ and $j \in J$ such that $\mathrm{m}+\mathrm{j}=1$, so for all $d \in M$, $\mathrm{jd}=0$, then $M \subseteq r(j)$, but M is a maximal right ideal, we have $\mathrm{M}=\mathrm{r}(\mathrm{j})$, for every maximal right ideal, This shows that R is a right kasch ring.

Also, md=d for all $d \in M$, from Lemma 3.6, we get that R/M is flat right Rmodule and that is for all M maximal right ideal of R . This shows that R is a right $\mathrm{SF}-$ ring.

Since, R is MERT and right SF-ring, by using Lemma 3.7, we get that R is a regular ring.

Theorem 3.9

Let R be N duo ring and MERT whose simple right R-module is GP-injective. Then, R is a strongly regular ring.

Proof:

We shall show that $d R+r(d)=R$, for all $d \in R$. If not then there exists $a R+r(a) \neq R$, for some $a \in R$, there exists a maximal right ideal M of R containing $a R+r(a) . \mathrm{M}$ is either essential or direct summand, if M is not essential, then $\mathrm{M}=\mathrm{r}(\mathrm{e})$ for some $0 \neq e=e^{2} \in R$, by Theorem 3.1, R is a reduced ring, $a \in r(e)=l(e), a e=0, e \in r(a) \subseteq r(e), \mathrm{e} \in r(e), e^{2}=0$, but $e=e^{2}$, hence $\mathrm{e}=0$, and $\mathrm{M}==\mathrm{r}(\mathrm{e})=\mathrm{r}(0)=\mathrm{R}, \mathrm{M}=\mathrm{R}$, which is a contradiction. Therefore, M is an essential right ideal of R. Thus, R/M is GP-injective, there exists a positive integer n such that $a^{n} \neq 0$ and any R-homomorphism of $a^{n} \mathrm{R}$ into R / M extends to one of R into R / M, Let $f: a^{n} R \rightarrow R / M$ be defined by $f\left(a^{n} r\right)=r+M$, where $r \in R$. Note that f is well defined right R-homomorphism, because R is a reduced ring. since R / M is GP-injective, there exists $b+M \in R / M$ such that $1+\mathrm{M}=\mathrm{f}\left(a^{n}\right)=\mathrm{b} a^{n}+\mathrm{M}, 1-b a^{n} \in M$, since $a \in M$, M is an essential right ideal and R is MERT ring, M is an ideal, so $b a^{n} \in M$, we get that $1 \in M$, which is also contradiction. Therefore, $a R+r(a)=R$, for all $a \in R$. This shows that R is a strongly regular ring.

Finally, we give the following important result.
In [16] Xue proved, if every simple left R-module is GP-injective, then for any nonzero $a \in R$, there exists a positive integer $\mathrm{n}=\mathrm{n}(\mathrm{a})$ such that $a^{n} \neq 0$ and $R a R+l\left(a^{n}\right)=R[$ Proposition 2].

In the above proof, we have $R a R+l\left(a^{n}\right)=R$, and $R a^{n} R+l\left(a^{n}\right)=R$, it is clear that proof $R a^{n} R+l\left(a^{n}\right)=R$ leads us to $R a R+l\left(a^{n}\right)=R$ because $R a^{n} R \subseteq R a R$, we give a new proof that strengthens the above $R a^{2 n} R+r\left(a^{n}\right)=R$, hence $R a^{2 n} R \subseteq R a^{n} R \subseteq R a R$.

A ring R is said to be right (left) st-weakly regular ring if, for every $a \in R$, there exists a positive integer n , depending on a such that $a^{n} \in a^{n} R a^{2 n} R\left(a^{n} \in R a^{2 n} R a^{n}\right)[10]$.

Theorem 3.10

Let R be a ring whose simple right R-module is GP-injective. Then R is right $s \pi$-weakly regular ring.

Proof:

Let $a \in R$, and a is not a nilpotent element, if $R a^{2 n} R+r\left(a^{n}\right) \neq R$, then there exists a maximal right ideal M of R containing $R a^{2 n} R+r\left(a^{n}\right)$, by hypothesis R / M is $G P$ - injective, we define $f: a^{n} R \rightarrow R / M$ such that $f\left(a^{n} r\right)=r+M$, where $r \in R$, we show that f is well defined, let $a^{n} x=a^{n} y$ where $x, y \in R, a^{n}(x-y)=0$, $(x-y) \in r\left(a^{n}\right) \in M$, then $\quad(\mathrm{x}-\mathrm{y})+\mathrm{M}=\mathrm{M}, \quad \mathrm{x}+\mathrm{M}=\mathrm{y}+\mathrm{M}, \quad \mathrm{f}\left(a^{n} \mathrm{x}\right)=\mathrm{x}+\mathrm{M}=\mathrm{y}+\mathrm{M}=\mathrm{f}\left(a^{n} \mathrm{y}\right)$, $\mathrm{f}\left(a^{n} \mathrm{x}\right)=\mathrm{f}\left(a^{n} \mathrm{y}\right)$. So f is well defined right R-homomorphism, since R/M is GP-injective, there exists $b+M \in R / M$ and $a^{n} \neq 0$ such that $1+\mathrm{M}=\mathrm{f}\left(a^{n}\right)=(\mathrm{b}+\mathrm{M})\left(a^{n}+\mathrm{M}\right)=\mathrm{b} a^{n}+\mathrm{M}$, $1+\mathrm{M}=b a^{n}+\mathrm{M}, 1-b a^{n} \in M$, since $1+\mathrm{M}=\mathrm{b} a^{n}+\mathrm{M}$, multiply by $a^{n}+M$ from left and $\mathrm{b}+\mathrm{M}$ from right, we get $b a^{n}+\mathrm{M}=b^{2} a^{2 n}+\mathrm{M}, \quad b a^{n}-b^{2} a^{2 n} \in M$, but $b^{2} a^{2 n} \in R a^{2 n} R \subseteq M$, so $b a^{n} \in M$, but $1-b a^{n} \in M$, we get that $1 \in M$, which is a contradiction. Therefore, $R a^{2 n} R+r\left(a^{n}\right)=R$. In particular, there exists $y, z \in R$ and $v \in r(a)$ such that $y a^{2 n} z+v=1, a^{n} y a^{2 n} z+a^{n} v=a^{n}, a^{n} y a^{2 n} z=a^{n}$, and that is for all $a \in R$ which is not nilpotent elements. When a is nilpotent element, there exists a positive integer m such that $a^{m}=0$, so $a^{m}=a^{m} r a^{2 m} s$, for any $r, s \in R$. This shows that R is a right $s \pi$-weakly regular ring.

REFERENCES

[1] Anderson, F. W. and Fuller, K. R. (1992),"Ring and Categories of Modules", Graduate Texts in Math. No. 13, Springer-Verlag, New Yourk.
[2] Birkenmeier, G. F. Heatherly, H. E. and Lee, E. K. (1993), Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore, New Jersey -London-Hong Kong, pp. 102-129.
[3] Faith, C. (1982), Injective modules and injective quotient rings, Lecture Notes in Pure and Appl. Math.,Vol. 72.
[4] Gupta,V. (1984), A generalization of strongly regular rings,Acta. Math. Hung., Vol. 43, No. (1-2), pp. 57-61.
[5] Hwang, S.U. , Jeon, Y. C., and Park, K. S. (2007), On NCI rings, Bull. Korean Math. Soc., Vol. 44, No. 2, pp. 215-223.
[6] Johnson, R. E. and Levy, L. S. (1968), Regular element in semiprime rings, Proceedings of the American Mathematical Society, Vol. 19, No.4, pp. 961-963.
[7] Jule, Z. and Xianneng, D. (1993), Von Neumann regularity of SF-rings, Communications in Algebra, Vol. 21, No. 7, pp. 2445-2451.
[8] Kim, N. K. Nam, S. B. and Kim, J. Y. (1995) " On simple GP-injective modules" Comm. Algebra, Vol. 23, No. 14, pp. 5437-5444.
[9] Lee, Y. and Huh, C. (1998), A note on π-regular rings, KyunGpook Math. J., Vol. 38, pp. 157-161.
[10] Mahmood, R. D. and Abdul-Jabbar, A. M., (2008), $s \pi$ - weakly regular ring, Raf. J. of Comp. Sc. and Math's., Vol. 5, No. 2, p.p.39-46.
[11] Neumann, J. V. (1936), On regular rings, Princeton N. J., Vol. 22, pp. 707-713.
[12] Ramamurhi, V. S. (1973), Weakly regular ring,Canda. Math. Bull., Vol. 16, No. 3, pp.317-321.
[13] Ramamurthi, V. S. (1975),On the injectivity and flatness of certain cyclic modules, Proc. Amer. Math. Soc., Vol. 48, No.1, pp. 21-25.
[14] Yue Chi Ming, R. (1980),On V-rings and prime rings, J. of Algebra, Vol. 62, pp. 13-20.
[15] Wei, J. and Li, L. (2010), Nilpotent elements and reduced rings*, Turk. J. Math., Vol. 34, pp. 1-13.
[16] Xue, W. (1998),A note on YJ-injectivity, Riv. Mat. Univ. Parma, Vol. 6, No. 1, pp. 31-37.

