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ABSTRACT

This paper develops a special conjugate gradient algorithm for solving
unconstrained minimized problems. This development can be regarded as some kind of
convex combination of the MPR and MLS methods. Experimental results indicate that
the new algorithm is more efficient than the Polak and Ribiere - algorithm.
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ABSTRACT

This paper develops a special conjugate gradient algorithm for solving
unconstrained minimized problems. This development can be regarded as some kind of
convex combination of the MPR and MLS methods. Experimental results indicate that
the new algorithm is more efficient than the Polak and Ribiere - algorithm .

1. Introduction
Let us consider the unconstrained optimization problem
min{f (x) | xeR" } .......... @
where f :R" — R is a continuously differentiable function, bounded from below. For
solving this problem, starting from an initial guess X, € R", a nonlinear conjugate
gradient method, generates a sequence {xk} as:
Xeg =X +o d, (2)
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where ¢, > 0 is obtained by line search, and the direction d, is generated
as d,,,=-0,,+44d, dg=—-9, L. (3)
where f, is known as the conjugate gradient parameter, v, =x,,—X, and
g, = Vf(x,). Consider | .|| the Euclidean norm and vy, =g,,, — 9, [1]. The step size
a, 1s chosen in such a way that «, >0 and satisfies the strong Wolfe (SW ) conditions
f(x +ad)<f(x)+sadig. (4)
la(x +ad)'d| <=odfg. L (5)
with 0< ¢, <0, <1, where f, =f(x,) , 9, =0(x,), 9, are the gradient of f

evaluated at the current iterate x,[7]. Where d, is a descent direction. Different

conjugate gradient algorithms correspond to different choices for the scalar parameter
L, . Some of these methods as Fletcher and Reeves (FR) [4], Dai and Yuan (DY) [2]

and Conjugate Descent (CD) [3] :

kFR _ g[+1gk+l kDY . g:+1gk+1 kCD B gg+1gk+1 6)
Oy s Yid, |97 d,

They have strong convergence properties, but they may have modest practical

performance due to jamming. On the other hand, the methods of Polak and Ribiere (PR)

[8], Hestenes and Stiefel (HS) [5], or Liu and Storey, (LS) [6] :

e _ Ok prs _ GV pis _ el )
k - 1 k - ’ k - Y e
0 9 yid, |9%d,]
in general, may not be convergent, but they often have better computational
performances.

In [9] modified methods Polak and Ribiere (MPR), Liu and Storey (MLS) are
given by the rule

dk+l =_(pkgk+l+ﬂkdka do ==0e (8)
where the values 8™, B> are determined by (7) and

T T
R _ Yidy s Yidy
O =1 P STroraT 9)
Coog T |ordy
If the minimized function is quadratic, then its gradients are mutually orthogonal, and so
YeOr = 9ca0e1 =% Gea =B - e (10)
Another conjugate gradient method can combine the Polak-Ribiere and Liu-
Story which is defined by
SG g;+1yk (11)
T (L-u)ge g, —udi g,
Where ue[0,1] is a constant. Obviously, B¢ =" for u=0, and
¢ = B for u =1, (for more details see [9]).

The structure of the paper is as follows. In section 2, we present the new
special conjugate gradient . Section 3 new Algorithm and Convergence. Section 4
numerical results are presented and Section 5 we also give brief conclusions and
discussions.
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2. A Special of Conjugate Gradient Method
The modified Polak-Ribiere and modified Liu-Story conjugate gradient methods
are special cases of the new class of conjugate gradient methods which is defined by
(DKNEW — y-krdk ’
(1-u)gy g, +ud{ g,|
Where u [0 , 1] is a constant. Obviously, ¢ =@ for u=0, and = = for

u=1. The search direction generated by the method at each iteration satisfies the
sufficient descent condition. Special attention must be paid to how to keep the descent
property of conjugate gradient methods. Let us consider the method (8) with the step

length o, satisfying the strong Wolfe conditions (4)—(5). Assume that the search
direction d, is downhill, namely,

gld, <0. (13)
It follows from (8) that

Oealis = _(0k||gk+1”2 +B89..d. 14)
Then, the descent property of d, requires

(Dk||gk+1”2 >B0 .4 a5)

Our motivation to get a good algorithm for solving (1) is to choose the parameter uin
(12) in such a way so that for every k >1the direction d, ., given by (8) is the Newton
direction. This is motivated by the fact that when the initial point x, is near the solution
of (1) and the Hessian is a nonsingular matrix then the Newton direction is the best line
search direction. Therefore, from the equation

-Gy =% +Bde. (16)
Multiplying (16) by y, , we have
Oy
~G Ve Oi1 =~V Giar + ”;rl”zk vde @7
k
Since Gy, =V, then we have
T _ T ngyk T
ik Ok = Yk G + ”g ”2 YeOo 18)
k

from (18) we get :
_ VITgku + yId;
Yi O ||gk||

y:dk _ Vggk+l n y:dk

k

@-welg +uldie| wWoeu Joff 00 9)
yrd 9l Vi G + Vi Vi
(L-u)gy g, +udg, Vi Oea(al)
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Vi (00 = (o Vig + oeayid)  (@-u)alg, +uld o)
i i )0) = o To Viges Hod vigeyide o Jod o, 0 e (20)

‘UHng ykgk+1ykd +U ‘d P ‘Hng ngk+l+u ‘dkgk ykgk+1ykd

R e 20
o e A A AL AT e A T R
o vig)lo ) -lollo S o -loflol o= 22
(= | 0 Vi 0esn =104 Vi Gy +[0T 0l Vi s + |0 0] yi 05 1vid)
and from (22) we get :
~[o. o vig. (23)

Y o 0+ 10T 00 W G~ (0 9 Ved + [ Vi 01avi

3. New Algorithm and Convergence

First, we will give the following assumptions on objective function f (x), which

have been used often in the literature to analyze the global convergence of conjugate
gradient methods with inexact line searches.

Assumptions
i- The level set L= {x e R"| f (x) < f (x,)} is bounded.

ii- In some neighborhood U of L, f(x)is continuously differentiable and its
gradient is Lipschitz continuous, namely, there exists a constant x > 0 such that

|904) =90 < X =%l VR X €U (24)
3.1. The Algorithm has the Following Steps :
Step 0 : Given parameters £ =1*10° , &, €(0,1) , 6, € (0,1/2)
choose initial point x, e R" .
Step 1: Computing g, ; if |g,]| <& then stop ; else continue .
_ Vi A
(L-u)gi g, +uldig,|
Step 3: Set x,,, = X, +,d, , (Use strong Wolfe line search technique to
compute the parameter «, )

Step2: Set B =B, " , U is defined by (23).

NEW

Step4: Compute dy,; =—¢ " gyq + B,
Step 5: Go to step (1) with new values of x,,, and g,.;.
Theorem (3.1)

Suppose that ¢, in (2) satisfies the strong Wolfe conditions  (4) —(5), then the
direction d,,, given by (8) is a sufficient descent direction
provided that g, Yy, >0.
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Proof.
Since d, = —-g,, we have g,d, < —||g0||2 < 0. Assume by induction that
g,d, s—c||gk||2 <0 where 0<c<1 (25)

which is a sufficient descent direction. To complete the proof, we have to show that the
theorem is true for all k +1. first we have to prove that ¢, >0
_ Vi di

(1—u)gggk+u ‘dkTgk‘ .......... (26)

D

From (25), we have
Y dy > Ye dy

(> = po>—2 (27)
(L-u)gy g, +ucfo,]’ (L-u-+uc)g,|’
multiplying (27) by «, we get
ay,d YoV yiv
P > e — == . (28)

o (-u +uc)||gk||2 - a,(1-u +UC)||gk||2 B a, (_:||gk||2

Since a, >0 and c < c<1 are positive and y,v, is always positive, now (28), this

yields :
=0 (29)
Multiplying (8) by g,.,, we have
ngd ke = P ”g k+l||2 + By gzudk
T T (30)
= IQ g [+ Deidegr g,
1-u)g, g, +u ‘dk gk‘ ||gk||
By using (5) and (25), we have
Ye d, 2 eV o7
9T+ d + <- g + + g +
T @-wel g, +udfg, s o " ™
Yed, 2 OraYi T
== il +7 52 (9,0, )
amurueyjg g
Td T
oWy e Sk o5 1g, )
¢y o
T
d
- _yk kz ||gk+1||2 +53g;—+lyk
¢ ol
Y, |lid
< - | k|2| lowal + ol (31)
cfal
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Oralis | _[dd I
load” | clo.ff ||9k+1|| (32)
< | lad I
o ||9k+ ||

where &, =cd,. Since ¢ and o, are small positive values, then &, is very small and

c=1-u+uc and u e [01], we get ¢ < ¢ <1 which is also very small because % is very
c
large. Now the first part of (32) is larger than the second part, hence we have

Qi . . (33)
lowl

Theorem (3.2)

Suppose that assumption holds. Let {g, } and {d, }be generated by Algorithm,
then we have
(9:d)° _
el e @
Proof :
From Theorem (3.1), we have g;d, <0 for all k >1. We also have from (5)
and assumption (ii) that

~(1-68,)d7 9 < (G~ 9) A S Jd - e (35)
Thus,
1-5, g,d,
o >-—2—c (36)
o faf

Which combines (4), we get

f(x)—f(x,) = 5akgk

Further, from assumption (i) we have {f (x,)} which is a decreasing sequence and has a
bound below in L, and shows Iim f(xm) < oo, this together with (37) shows

0

o> )= fim (6 = 2[00 - (0] 2 6= =3 H H .......... (38)
We can conclude that (34) holds.[10]
Property (*)
Consider a method of the from (2) and (8), and suppose that
o<y<lo<r e (39)

for all k >1. Under this assumption, we say that the method has the property (*) if
there exists constants b > 0 and 4 > 0 such that for all k :
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gl<b, (40)
and
1
<4 = |B]< = e (41)

It is easy to see that under assumptions (i) and (ii) the PR method has the property (*).

For the PR method, using the constants y and ;; in (39), we can choose b = 2;;/;/2 and
A =?12(Lyb). Then, we have from B and (39),
(||gk+l||+||gk||)||gk+l|| < & D,

|,3 | <Al ARl <2l —p, (42)
k o 7’
and when |v, | <2 , we have from (24),
.| < (||yk||+||gkﬂ)||gk+l|| < sz :l. .......... (43)
ol roob
Lemma (3.1)

Suppose that assumptions hold. Let {dM} be generated by the algorithm(3.1). If
there exists a constant y > 0, such that |g,.,| > » forall k+1, we have

Z”ﬂk+1 — My ”2 <o, where u, =d,, /||dk+1||' .......... (45)
k>1
Proof :
First, note that d,,, # 0. Therefore, ., is well defined. Now, let us define
~ e Qi IBk”dk”
hy=—7p—-—and S, =——7 . (46)
T el el
Form (8), we have for k >1:
Mg =Vea YO0t (47)

Using the identity |z, | = | and (47), we have

||rk+1||: ||ﬂk+1 — Oyl ” = ||5k+1ﬂk+1 — Hy ” ---------- (48)
(the last equality can be verified by squaring both sides). Using the condition 6, >0,
the triangle inequality, and (48), we obtain

letin = 20| < @+ Sa) piia — A+ i) |
St = St +|Geattea—ad e (49)
= 2|
Now, by €0s6,,; =—(0,,1,di.1) /|9 ]|dia]@nd (33), we have

cosb,,, >2¢|ga |/} (50)
This relation, Zoutendijk's condition and (46) imply

4
G
|9l _ Z||rk+l||2||gk+l”2 <oo. (51

2
k>1 ||d k+1|| k>1
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Using | g, > 7. we obtain

Z”"m”2 <o (52)

k>1

Which together with (49) completes the proof.

Lemma (3.2)

Suppose those assumptions and (33) hold. Let {v,,} and {d,,} be generated
by the algorithm(3.1). We have A" has property (*), if there exists a constant y >0,
such that ||g,.,,| > y forall k+1, then, forany » >0, thereexist AeZ* and k, eZ",

for all k >k, such that
A
SRE S e (46)
where 7, ={ieZ* :k+1<i<k+Alv]> /I},‘KQVA‘ denotes the number of the ;. , .
If (39) hold and the methods have Property (*),then, the small step length should not be

too many. The above lemma shows this  property.
Lemma (3.3)
Suppose that assumptions and (39) hold. Let {x,.,} be generated by the (1) and
(2), «,_, satisfies SWP, and S7® >0 has property (*). Then
Iirkn inf |g,]|=0.

The proofs of Lemma (3.2) and Lemma (3.3) had been given in [3,10].

4. Numerical Results

In this section, we reported some numerical results obtained with the
implementation of the new algorithm on a set of unconstrained optimization test
problems. We have selected (8) large scale unconstrained optimization problems in
extended or generalized form, for each test function, we have considered numerical
experiment with the number of variable n=100-1000. Using the standard Wolfe line
search conditions (4) and (5) with &, = 0.0001 and ¢, = 0.1 In the all these cases, the

stopping criteria is the |g,| <10™. The programs were written in Fortran 90. The test

functions were commonly used for unconstrained test problems with standard starting
points and a summary of the results of these test functions was given in Tables (3.1) and
(3.2) . We tabulate for comparison of these algorithms, the number of function
evaluations (NOF) and the number of iterations (NOI) .
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Table (4.1)
NOF NOF NOF
(NOI) (NOI) (NOI)
No. n u=0.9 u=0.5 u=0.1
100 219 216 217
L (106) (105) (105)
1000 227 226 227
(110) (110) (110)
256 298 246
, 100 (97) (136) (112)
1000 446 226 227
(176) (110) (110)
23 23 22
100
2 (9) 9 ©)
23 23 22
1000
(9) 9) ©
103 144 154
100
A (19) (20) (20)
133 144 169
1000 (21) (20) (21)
59 55 56
100
; (19) (19) (19)
59 55 56
44 52 49
100
6 (17) (19) (19)
46 52 49
57 60 58
100
, (19) (22) (21)
59 60 61
99 99 99
100
g (49) (49) (49)
141 141 141
1000 (70) (70) (70)
Total 1994 1874 1853
(688) (758) (735)
Table (4.2)
New with u is New with
defined by (23) u=1.0 PR-CG
No. 0 NOF NOF NOF
(NOI) (NOI) (NOI)
217 219 217
1000 225 225 227
(109) (109) (110)
343 304 2783
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591 492 4035
1000 (284) (198) (2015)
23 23 23
D
1000 --) (©) (©)
136 107 115
. 100 (19) (20) (19)
1000 151 200 173
(20) (27) (23)
52 58 61
- 1 a7 2 2
1000 --) (20) (22)
45 37 40
5 100 (14) (15) (15)
45 37 40
1000 (14) (15) (15)
60 57 62
, 10 2 2 (22)
1000 (22) (20) (--)
99 99 99
; 100 (49) (49) (49)
1000 141 141 145
(70) (70) (72)
Total 2197 2137 8104
(914) (850) (3877)

5. Conclusions and Discussion

In this paper, we have proposed a new CG-type method for solving
unconstrained minimization problems. The computational experiments show that the
new approaches given in this paper are successful.

Table (4.1) from the preliminary numerical results, we have for problems 4 and
7 the new method is efficient when u is little, and for problem 2,3,5,6 the new method is
quite efficient when u is big the results are sensitive to the parameter u, which shows
that the new methods are robust.

Table (4.2) gives a comparison between the new-algorithm and the Polak and
Ribiere (PR)-algorithm for convex optimization , this table indicates that the new
algorithm saves (75—-77)% NOI and (74—79)% NOF, overall against the standard

Polak and Ribiere (PR)-algorithm, especially for our selected test problems.
Relative Efficiency of the Different Methods Discussed in the Paper.

Tools NOI NOF

PR-CG 100 % 100 %
New with u defined in (23) 23.19 % 26.65 %
New with u=1.0 25.66 % 21.35 %
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Appendix
1.Generalized wood function:

W44(Xy, — Xfifa)z +@1- X4i—3)2 +90(x,; — Xfi—l)z +(@- X4i—1)2 +

HOEDS

10.4((Xer_p ~1)° + (g ~1)% +19.8((X, ~1) + (X, 1)

Starting point: (=3,—1,—3,—1L,..ccccces cevverrnne oo )’
2.Generalized powell function:

n/a
f(x)= Z(X4i73 =104, 5)® +5(Xg 5 = X41)* + (Xais = 2%45)% +10(Xg 0 =X )* + (X = 2% 5 — X))
i1

Starting point: (3,1,0,L,....cc corvrrerns e )
3.Beale function:

f(X)=05-%1-X,))*+(2.25—x(1—x2)* +(2.652—x,(1—x3)?

Starting point: (0,0, .....cccc. cevueee. <. )’
4.Cantrell function:
n/4

f(x)= Z[eXp( Xui a) = Xai 51" +100(Xy 5 — X 1) +[tan ™ (X 4 — X)) + X5 5

i=1

Starting point: (1, 2, 2, 2,..ccccecv cuuee. )"
5.Rosenbrock function:
n/2

f(X) =D (A00(Xy — x5_1) + (@ — X5 4)?)
i=1
Starting point:(-1.21,-1.2/1,......) "

6.Cubic function:
n/2

f(x)= Z(lOO(XZi —X54) "+ (L= %54)%)

Starting point:(-1.2,1,-1.21,....) T
7.Non —diagonal function:
n/2

f(X) = > (100(x, —x7)? +(1—x)?)

Starting point:(=1,......cc. coovveenes ..o )’
8.Welfe function:

f(X) = (~%,(3—%,/2) +2x, —1)? +§(XH ~X(3=X%(B=x12)+2%, —1)* +(x

i=1

~X, (3%, /2-1)?

n+l

Starting point: (=1, .oooeeees i )’
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