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ABSTRACT 

This paper develops a special conjugate gradient algorithm for solving  

unconstrained minimized problems. This development can be regarded as some kind of 

convex combination of the MPR and MLS methods.  Experimental results indicate that 

the new algorithm is more efficient than the Polak and Ribiere - algorithm. 
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غير المقيدة صغيريةلتادرج المترافق الطيفي لحل المسائل استحداث خوارزمية للت  
 باسم عباس حسن 

 كلية علوم الحاسبات والرياضيات
 جامعة الموصل 

٢٠/4/٢٠١١تاريخ استلام البحث:   ٢/١١/٢٠١١تاريخ قبول البحث:                  

 الملخص
لدصييريرية اخوارزمييية مييا خوارزميييات الدييثرف المدرافييح الليسييه لحييل الم ييا ل  اسييدحثا  فييه اييلا البحيي   يي 

النديا   العثييية  MLS.و MPR. الا الاسدحثا  يمكا إن يعدبر نوعاً ميا الماياميا المحث ية للريقديه ةثغير المقي
 .Ribiereو Polak خوارزمية مقارنة   اثيثةال خوارزميةأثبدت كساءة ال

 ، الندا   العثيية.الدثرف المدرافح الليفية، الدثرف المدرافح طرا ح  : المفتاحية الكلمات

ABSTRACT 

This paper develops a special conjugate gradient algorithm for solving  

unconstrained minimized problems. This development can be regarded as some kind of 

convex combination of the MPR and MLS methods.  Experimental results indicate that 

the new algorithm is more efficient than the Polak and Ribiere - algorithm .  

1. Introduction 

Let us consider the unconstrained optimization problem 

 nRxxf )(min  )1(..........  

where RRf n →:  is a continuously differentiable function, bounded from below. For 

solving this problem, starting from an initial guess ,0

nRx   a nonlinear conjugate 

gradient method, generates a sequence  kx  as : 

kkkk dxx +=+1  )2(..........  
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where 0k  is obtained by line search, and the direction kd   is generated  

as  ,11 kkkk dgd +−= ++ 00 gd −=  )3(..........  

where k  is known as the conjugate gradient parameter, kkk xxv −= +1  and 

)( kk xfg = . Consider .  the Euclidean norm and  kkk ggy −= +1 [1]. The  step size 

k  is chosen in such a way that 0k  and satisfies the strong Wolfe (SW ) conditions 

k

T

kkkkkk gdxfdxf  1)()( ++  )4(..........  

k

T

kk

T

kkk gdddxg 2)(  −+  )5(..........  

with 10 21   , where )( kk xff =  , )( kk xgg = , kg  are the gradient of f  

evaluated at the current iterate kx [7]. Where kd  is a descent direction. Different 

conjugate gradient algorithms correspond to different choices for the scalar parameter 

k . Some of these methods as Fletcher and Reeves (FR) [4], Dai and Yuan (DY) [2] 

and Conjugate Descent (CD) [3] : 
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gg ++++++ ===   )6(..........  

They have strong convergence properties, but they may have modest practical 

performance due to jamming. On the other hand, the methods of Polak and Ribiere (PR) 

[8], Hestenes and Stiefel (HS) [5], or Liu and Storey, (LS) [6] : 
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yg +++ ===   )7(..........  

in general, may not be convergent, but they often have better computational 

performances. 

 In [9] modified methods Polak and Ribiere (MPR), Liu and Storey (MLS) are 

given by the rule  

,11 kkkkk dgd  +−= ++ 00 gd −=  )8(..........  

where the values LS

k

PR

k  ,  are determined by )7(  and  

,,
k

T

k

k

T

kLS

k

k

T

k

k

T

kPR

k
dg

dy

gg

dy
==   )9(..........  

If the minimized function is quadratic, then its gradients are mutually orthogonal, and so   

.111111 ++++++ =−= k

T

kk

T

kk

T

kk

T

k gggggggy  )10(..........  

Another conjugate gradient method can combine the Polak-Ribiere  and Liu-

Story which is defined by  

,
)1(

1
1

k

T

kk

T

k

k

T

kSG

k
gudggu

yg

−−
= +

+  )11(..........  

Where  1,0u  is a constant. Obviously, PRP

k

SG

k  =  for 0=u , and 

LS

k

SG

k  =  for 1=u , (for more details see [9]). 

The structure of the paper is as follows. In section  2,  we present the new 

special conjugate gradient . Section 3 new Algorithm and Convergence. Section 4 

numerical results are presented and Section 5 we also give brief conclusions and 

discussions. 
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2. A Special of Conjugate Gradient Method  

The modified Polak-Ribiere and modified Liu-Story conjugate gradient methods 

are special cases of the new class of conjugate gradient methods which is defined by   

,
)1( k

T

kk

T

k

k

T

kNEW

k
gduggu

dy

+−
=   )12(..........  

Where  1,0u  is a constant. Obviously, PRP

k

NEW

k  =  for 0=u , and LS

k

NEW

k  =  for 

1=u . The search direction generated by the method at each iteration satisfies the 

sufficient descent condition. Special attention must be paid to how to keep the descent 

property of conjugate gradient methods. Let us consider the method )8(  with the step 

length k  satisfying the strong Wolfe conditions )5()4( − . Assume that the search 

direction kd  is downhill, namely,  

0k

T

k dg  .  )13(..........  

It follows from )8(  that  

k

T

kkkkk

T

k dggdg 1

2

111 ++++ +−=  .  )14(..........  

Then,  the descent property of kd  requires  

k

T

kkkk dgg 1

2

1 ++   .  )15(..........  

Our motivation to get a good algorithm for solving )1(  is to choose the parameter u in 

)12(  in such a way so that for every 1k the direction 1+kd  given by )8(  is the Newton 

direction. This is motivated by the fact that when the initial point 0x  is near the solution 

of )1(  and the Hessian is a nonsingular matrix then the Newton direction is the best line 

search  direction. Therefore, from the equation  

k

PR

kkkk dggG  +−=− ++

−

11

1 .  )16(..........  

Multiplying )16(  by T

ky , we have  
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Since kk vGy = then we have  
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from )18(  we get : 
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and from )22(  we get : 
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3. New Algorithm and Convergence  

First, we will give the following assumptions on objective function )(xf , which 

have been used often in the literature to analyze the global convergence of conjugate 

gradient methods with inexact line searches.  

Assumptions  

      i- The level set  )()( 0xfxfRxL n =  is bounded. 

      ii- In some neighborhood U  of )(, xfL is continuously differentiable and its 

gradient is Lipschitz continuous, namely, there exists a constant 0  such that 

.,,)()( 111 Uxxxxxgxg kkkkkk −− +++     )24(..........  

 3.1. The  Algorithm has the Following Steps : 

Step 0 :  Given parameters )2/1,0(,)1,0(,10*1 21

5 = −   

              choose initial point nRx 0  .    

Step 1 :  Computing kg  ; if  kg  then stop ; else continue . 

Step 2 :  Set PR

kk  = , ,
)1( k

T

kk

T

k

k

T

kNEW

k
gduggu

dy

+−
= , u is defined by )23( . 

Step 3 :  Set kkkk dxx +=+1 , (Use strong Wolfe line search technique to  

               compute the parameter k ) 

Step 4 :   Compute ,11 kkk

NEW

kk dgd  +−= ++  

Step 5 :  Go to step (1) with new values of 1+kx   and  1+kg . 

Theorem  (3.1) 

Suppose that k  in )2(  satisfies the strong Wolfe conditions    )5()4( − , then the 

direction 1+kd  given by )8(  is a sufficient descent direction 

provided that 01 + k

T

k yg .   
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Proof.  

        Since 00 gd −= , we have  0
2

000 − gdgT . Assume by induction that  

0
2
− kk

T

k gcdg  where  10  c   )25(..........  

which is a sufficient descent direction. To complete the proof, we have to show that the 

theorem is true for all .1+k  first we have to prove that 0k  
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From )25( , we have    

22
)1()1( k

k

T

k

k

kk

T

k

k

T

k

k

gucu

dy

gcuggu

dy

+−


+−
     )27(..........  

multiplying )27( by k  we get  
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 Since  0k  and 1
−

cc  are positive and k

T

k vy  is always positive, now )28( , this 

yields :     

0k    )29(..........  

Multiplying )8(  by T

kg 1+ , we have  
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By using )5(  and )25( , we have 
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 where 23  c= . Since c  and 2  are small positive values, then 3  is very small and 

ucuc +−=
−

1  and ]1,0[u , we get 1
−

cc  which is also very small because 
−

c

1
 is very 

large. Now the first part of )32(  is larger than  the second part, hence we have   

c
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11  .   )33(..........  

Theorem (3.2)  

Suppose that assumption  holds. Let  kg  and  kd be generated by Algorithm, 

then we have  


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2
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dg
 .   )34(..........  

Proof :  

From Theorem (3.1), we have 0k

T

k dg  for all 1k . We also have from )5(  

and assumption (ii) that  
2

12 )()1( kkk
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Which combines )4( , we get  
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Further, from assumption (i) we have  )( kxf  which is a decreasing sequence and has a 

bound below in L , and shows +
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)(lim 1k
k

xf , this together with ( )37 shows  
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We can conclude that )34(  holds.[10] 

Property (*) 

 Consider a method of the from )2(  and )8( , and suppose that  
−

+   10 kg     )39(..........  

for all .1k  Under this assumption, we say that the method has the  property (*) if  

there exists constants 0b  and 0  such that for all k : 
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,bk      )40(..........  

and  

b
v kk

2

1
      )41(..........  

It is easy to see that under assumptions (i) and (ii)  the PR method has the property (*). 

For the PR method, using the constants   and 
−

  in )39( , we can choose 2/2 
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−

=  . Then, we have from PR

k  and )39( , 

,
2)(

22

11
b

g

ggg

k

kkk

k =
+



−

++




     )42(..........  

and when kv , we have from )24( ,  
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Lemma (3.1) 

Suppose that assumptions hold. Let  1+kd  be generated by the algorithm(3.1). If 

there exists a constant 0 , such that +1kg  for all 1+k , we have  




+ −
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1 .
k
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Proof :  
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Form )8( , we have for 1k  : 

.111 kkkk r  +++ +=    )47(..........  

Using the identity kk  =+1  and )47( , we have  
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(the last equality can be verified by squaring both sides). Using the condition 0k , 
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Now, by 11111 /,cos +++++ −= kkkkk dgdg and )33( , we have 
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Using +1kg , we obtain  

.
2

1

1 


+

k

kr    )52(..........  

Which together with )49(  completes the proof. 

Lemma (3.2) 

 Suppose those assumptions and )33(  hold. Let  1+kv  and  1+kd  be generated 

by the algorithm(3.1). We have PR

k  has property (*), if there exists a constant 0 , 

such that +1kg  for all 1+k , then, for any  0 , there exist + Z   and + Zk1
, 

for all 1kk  , such that  

,
2

,




K    )46(..........  

where     

+

 ++= ,, ,,1: KkK vkikZi  denotes the number of the  ,K . 

If )39( hold and the methods have Property (*),then, the small step length should not be 

too many. The above lemma shows this     property.  

Lemma (3.3) 

 Suppose that assumptions and )39( hold. Let  1+kx  be  generated by the )1(  and 

)2( , 1−k  satisfies SWP, and 0PR

k  has property (*). Then  

.0inflim =
→

k
k

g  

The proofs of  Lemma (3.2) and Lemma (3.3) had been given in [3,10]. 

 

4. Numerical Results 

In this section, we reported some numerical results obtained with the 

implementation of the new algorithm on a set of unconstrained optimization test 

problems. We have selected (8) large scale unconstrained optimization problems in 

extended or generalized form, for each test function, we have considered numerical 

experiment with the number of variable n=100-1000. Using the standard Wolfe line 

search conditions )4(  and )5(  with 0001.01 =  and 1.02 =  In the all these cases, the 

stopping criteria is the 510−kg . The programs were written in Fortran 90. The test 

functions were commonly used  for unconstrained test problems with standard starting 

points and a summary of the results of these test functions was given in Tables (3.1) and 

(3.2)  . We tabulate for  comparison of  these  algorithms, the number of function 

evaluations (NOF) and  the number of iterations (NOI) .    
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Table (4.1) 

 

No. 

 

n 

NOF 

(NOI) 

NOF 

(NOI) 

NOF 

(NOI) 

u=0.9 u=0.5 u=0.1 

1 

100 
219 

(106) 

216 

(105) 

217 

(105) 

1000 
227 

(110) 

226 

(110) 

227 

(110) 

2 

100 
256 

(97) 

298 

(136) 

246 

(112) 

1000 
446 

(176) 

226 

(110) 

227 

(110) 

3 

100 
23 

(9) 

23 

(9) 

22 

(9) 

1000 
23 

(9) 

23 

(9) 

22 

(9) 

4 

100 
103 

(19) 

144 

(20) 

154 

(20) 

1000 
133 

(21) 

144 

(20) 

169 

(21) 

5 

100 
59 

(19) 

55 

(19) 

56 

(19) 

1000 
59 

(19) 

55 

(19) 

56 

(19) 

6 

100 
44 

(17) 

52 

(19) 

49 

(19) 

1000 
46 

(18) 

52 

(19) 

49 

(19) 

7 

100 
57 

(19) 

60 

(22) 

58 

(21) 

1000 
59 

(20) 

60 

(22) 

61 

(23) 

8 

100 
99 

(49) 

99 

(49) 

99 

(49) 

1000 
141 

(70) 

141 

(70) 

141 

(70) 

 Total 
1994 

(688) 

1874 

(758) 

1853 

(735) 

 

Table (4.2) 

 

 

No. 

 

 

n 

New with u is 

defined by )23(  
New with 

u=1.0 
PR-CG 

NOF 

(NOI) 

NOF 

(NOI) 

NOF 

(NOI) 

1 

100 
217 

(105) 

219 

(106) 

217 

(105) 

1000 
225 

(109) 

225 

(109) 

227 

(110) 

2 100 
343 

(160) 

304 

(125) 

2783 

(1389) 
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1000 
591 

(284) 

492 

(198) 

4035 

(2015) 

3 

100 
23 

(9) 

23 

(9) 

23 

(9) 

1000 
- - 

(- -) 

23 

(9) 

23 

(9) 

4 

100 
136 

(19) 

107 

(20) 

115 

(19) 

1000 
151 

(20) 

200 

(27) 

173 

(23) 

5 

100 
52 

(17) 

58 

(20) 

61 

(22) 

1000 
- - 

(- -) 

58 

(20) 

61 

(22) 

6 

100 
45 

(14) 

37 

(15) 

40 

(15) 

1000 
45 

(14) 

37 

(15) 

40 

(15) 

7 

100 
60 

(22) 

57 

(20) 

62 

(22) 

1000 
59 

(22) 

57 

(20) 

- - 

(- -) 

8 

100 
99 

(49) 

99 

(49) 

99 

(49) 

1000 
141 

(70) 

141 

(70) 

145 

(72) 

 Total 
2197 

(914) 

2137 

(850) 

8104 

(3877) 

5. Conclusions and Discussion 

In this paper, we have proposed a new CG-type method for solving 

unconstrained minimization problems. The computational experiments show that the 

new approaches given in this paper are successful.  

Table (4.1) from the preliminary numerical results, we have for problems 4 and 

7 the new method is efficient when u is little, and for problem 2,3,5,6 the new method is 

quite efficient when u is big the results are sensitive to the parameter u, which shows 

that the new methods are robust. 

Table (4.2) gives a comparison between the new-algorithm and the Polak and 

Ribiere (PR)-algorithm for convex optimization , this table indicates that the new 

algorithm saves )%7775( −  NOI and )%7974( −  NOF, overall against the standard 

Polak and Ribiere (PR)-algorithm, especially for our selected test problems. 

Relative Efficiency of the Different Methods Discussed in the Paper. 

  

Tools NOI NOF 

PR-CG 100   % 100  % 

New with u defined in (23) 23.19  % 26.65  % 

New with u=1.0 25.66  % 21.35  % 
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Appendix 

T

n

i iiii

iiiiii

poStarting

xxxx

xxxxxx
xf

functionwooddGeneralize

....)..........,.........1,3,1,3(:int

))1()1((8.19)1()1((1.10

)1()(90)1()(4
)(

:.1

4/

1 424

2

4

2

24

2

14

22

144

2

34

22

3424

−−−−

−+−+−+−

+−+−+−+−
=

= −−

−−−−−

 

T

iii

n

i

iiiiiiii

poStarting

xxxxxxxxxxxxf

functionpowelldGeneralize

....)..........,.........1,0,1,3(:int

))2()(10)2()(5)10()(

:.2

2

41424

4/

1

4

494

2

414

2

414

2

2434 −−+−+−+−+−= −−

=

−−−−−  

TpoStarting

xxxxxxxf

functionBeale

...)....................,0,0(:int

)1(652.2()1(25.2())1(5.1()(

:.3

23

21

22

21

2

21 −−+−−+−−=

T

iiiiii

n

i

i

poStarting

xxxxxxxxf

function

.......),.........2,2,2,1(:int

)]([tan)(100])[exp()(

:Cantrell.4

8

34

4

414

16

1424

4

24

4/

1

34 −−

−

−−−

=

− +−+−+−=  

T

n

i

iii

poStarting

xxxxf

functionRosenbrock

,......)1,2.1,1,2.1(:int

))1()(100()(

:.5

2/

1

2

12

22

122

−−

−+−=
=

−−
 

       

T

n

i

iii

poStarting

xxxxf

functionCubic

,......)1,2.1,1,2.1(:int

))1()(100()(

:.6

2/

1

2

12

23

122

−−

−+−=
=

−−

T

n

i

iii

poStarting

xxxxf

functiondiagonalNon

....)..........,.........1(:int

))1()(100()(

:.7

2/

1

223

−

−+−=

−


=

 

T

n

i

nnniiiii

poStarting

xxxxxxxxxxxxf

functionWelfe

...)....................,1(:int

)12/3(()12)2/3(3(()12)2/3(()(

:.8

1

1

2

1

2

11

2

211

−

−−+−+−−−+−+−−= 
−

=

++−  
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