Some Algebraic and Analytical Properties of Special Matrices

Laith K. Shaakir Akram S. Mohamed Nazar K. Hussein College of Computer Sciences and Mathematics

University of Tikrit

Received on: 02/02/2011

Accepted on: 04/04/2011

In this work we present a subset of $M_{n \times n}$ ($M_{n \times n}$ is the set of all $n \times n$ matrices) which we called the set of special matrices and denoted it by $S_{n \times n}$. We give some important properties of $S_{n \times n}$.

ABSTRACT

Keywords: Algebraic Properties, Analytical Properties, Special Matrices.

بعض الخصائص الجبرية والتحليلية للمصفوفات الخاصة ليث شاكر أكرم محمد نزار حسين كلية علوم الحاسوب والرياضيات، جامعة تكريت

تاريخ قبول البحث: 2011/04/04

تاريخ استلام البحث: 2011/02/02

الملخص

1. Introduction

Let $M_{n \times n}$ be the set of all $n \times n$ matrices that is $M_{n \times n} = \{[a_{ij}]: a_{ij} \in \emptyset, i, j = 1, 2, \dots, n\}$. It is known that $M_{n \times n}$ is a vector space over \emptyset with respect to the vector addition and scalar multiplication defined by $[a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$ and $c[a_{ij}] = [ca_{ij}]$ for every $[a_{ij}] + [b_{ij}] \in M_{n \times n}$ and $c \in \emptyset$. The matrix $A = [a_{ij}] \in M_{n \times n}$ is called special matrix if it can be written as

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ a_n & a_1 & \cdots & a_{n-1} \\ a_{n-1} & a_n & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \vdots \\ a_2 & a_3 & \cdots & a_1 \end{bmatrix}$$

We denote $S_{n \times n}$ to the set of all $n \times n$ special matrices i.e $S_{n \times n} = \{A = [a_{ij}]: A \text{ is special matrix}\}$. It is clear that $A + B \in S_{n \times n}$ and $\alpha A \in S_{n \times n}$, for every $A, B \in S_{n \times n}$ and α is scalar, Then $S_{n \times n}$ is a subspace of $M_{n \times n}$.

In this paper we study the special matrices, and we give some properties of $S_{n \times n}$.

2. Some Properties of Special Matrices

In this section we study some properties of special matrices. One can prove easily the following remark.

Remark (2.1):

 $\left\{ \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 0 & 0 \end{bmatrix}, \cdots, \begin{bmatrix} 0 & 0 & \cdots & 1 \\ 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 1 & 0 \end{bmatrix} \right\};$

and the dimension of $S_{n \times n}$ is *n*.

2- The usual product of two matrices $A, B \in S_{n \times n}$ is also in $S_{n \times n}$, i.e. $AB \in S_{n \times n}$ for every $A, B \in S_{n \times n}$.

Recall that the complex number λ is an eigenvalue of the matrix A, if there exists a non-zero vector X such that $AX = \lambda X$, then the vector X is called eigenvector for the matrix A with respect to the eigenvalue λ .

Definition (2.2) [1]:

Let λ be an eigenvalue of the matrix A, the multiplicity of λ is the number of linearly independent eigenvectors corresponding to the eigenvalue λ .

Remark (2.3) [1]:

Let A be an $n \times n$ matrix then

- 1- The matrix A has exactly n eigenvalues.
- 2- If the eigenvalues of A are distinct ,then the eigenvectors corresponding to these eigenvalues are linearly independent.

Lemma (2.4) [3]:

The equation $Z^n = 1$ has n distinct non-zero roots in the field of complex numbers.

In the following theorem we find the eigenvalues and the eigenvectors for any special matrix.

Theorem (2.5):

Let A be a special matrix, i.e., $\begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix}$

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ a_n & a_1 & \cdots & a_{n-1} \\ a_{n-1} & a_n & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \vdots \\ a_2 & a_3 & \cdots & a_1 \end{bmatrix}.$$

Then, the eigenvalues of A are $\lambda_r = \sum_{i=1}^n a_i p_r^{i-1}$, $r = 1, 2, \dots, n$ where p_1, p_2, \dots, p_n are the roots of the equation $Z^n = 1$ also

$$Y_r = \begin{bmatrix} 1 \\ p_r \\ p_r^2 \\ \vdots \\ p_r^{n-1} \end{bmatrix}$$

is the eigenvector corresponding to the eigenvalue λ_r , $r = 1, 2, \dots, n$

Proof:

The eigenvalue λ and the eigen vector

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

for the matrix A satisfy the system $AY = \lambda Y$. This system can be written as follows

$$\sum_{k=1}^{n-m} a_k y_{k+m} + \sum_{k=n-m+1}^{n} a_k y_{k-(n-m)} = \lambda y_{m+1}, \quad m = 0, 1, 2, \dots, n-1 .$$
Put $y_k = p^{k-1}$, $k = 1, 2, \dots, n$ where p is a root of the equation $Z^n = 1$.

$$\sum_{k=1}^{n-m} a_k p^{k+m-1} + \sum_{k=n-m+1}^{n} a_k p^{k-(n-m)-1} = \lambda p^{m+1-1}, \quad m = 0, 1, 2, \dots, n-1$$

$$\sum_{k=1}^{n-m} a_k p^m p^{k-1} + \sum_{k=n-m+1}^{n} a_k p^m p^{-n} p^{k-1} = \lambda p^m, \quad m = 0, 1, 2, \dots, n-1$$

$$\sum_{k=1}^{n-m} a_k p^{k-1} + p^{-n} \sum_{k=n-m+1}^{n} a_k p^{k-1} = \lambda, \quad m = 0, 1, 2, \dots, n-1$$

Since *p* is root of the equation $Z^n = 1$, then $p^{-n} = \frac{1}{p^n} = 1$ and hence $\lambda = \sum_{k=1}^n a_k P^{k-1}$ and since the equation $Z^n = 1$ have *n* roots say p_1, p_2, \dots, p_n then we have eigenvalues: $\lambda_r = \sum_{i=1}^n a_i p_r^{i-1}$ $r = 1, 2, \dots, n$, and the eigenvector for λ_r is $\begin{bmatrix} 1 \end{bmatrix}$

$$Y_r = \begin{bmatrix} p_r \\ p_r^2 \\ \vdots \\ p_r^{n-1} \end{bmatrix}, r = 1, 2, \cdots, n$$

Corollary (2.6) :

Let *A*, *B* be special matrices. If $\lambda_1, \lambda_2, \dots, \lambda_n$ are eigenvalues of *A* with respect to the eigenvectors $X_j = [1, p_j, p_j^2, \dots, p_j^{n-1}]$, $j = 1, 2, \dots, n$, respectively and $\beta_1, \beta_2, \dots, \beta_n$ are eigenvalues of B with respect to the eigenvectors

 $X_{j} = [1, p_{j}, p_{j}^{2}, \dots, p_{j}^{n-1}], \quad j = 1, 2, \dots, n \text{ respectively then the eigenvalues of the matrix}$ AB are $\beta_{1}\lambda_{1}, \beta_{2}\lambda_{2}, \dots, \beta_{n}\lambda_{n}.$

Proof:

We have $AX_{i} = \lambda_{i}X_{j}$ and $BX_{i} = \beta_{i}X_{j}$ where $j = 1, 2, \dots, n$. Therefore

 $(AB)X_{j} = A\beta_{j}X_{j} = \beta_{j}AX_{j} = \beta_{j}\lambda_{j}X_{j}$, $j = 1, 2, \dots, n$. Then, $\{\beta_{j}\lambda_{j}\}, j = 1, 2, \dots, n$ are eigenvalues of the matrix AB.

Corollary (2.7):

The eigen vectors $X_j = [1, p_j, p_j^2, \dots, p_j^{n-1}], j = 1, 2, \dots, n$ in Theorem(2.5) are linearly independent.

Proof:

Since the roots $\{p_j\}$, $j = 1, 2, \dots, n$ of the equation $Z^n = 1$ are distinct then the determinant of the matrix

1	1	•••	1
p_1	p_2	•••	p_n
p_{1}^{2}	p_{2}^{2}	•••	p_n^2
÷	÷	:	:
p_1^{n-1}	p_{2}^{n-1}	•••	p_n^{n-1}

is non-zero [1] (this determinant is called Vandermonde determinant), therefore the vector X_i , $j = 1, 2, \dots, n$ are linearly independent.

Recall that if A and B are two $n \times n$ matrices then A is similar to B if there exists an invertible matrix P such that $A = P^{-1}BP$.

Definition (2.8) [1]:

The matrix A is diagonalizable if A is similar to a diagonal matrix.

Theorem (2.9) [1]:

The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors, in this case A is similar to a diagonal matrix D with the elements of main diagonal are the eigenvalues of A and $P^{-1}AP = D$ where the columns of P are the n linearly independent eigenvectors of A.

The following results follows from Corollary(2.7) and Theorem(2.9).

Theorem (2.10):

If A is a special matrix then A is similar to the diagonal matrix D with the elements of main diagonal are the eigenvalues of A.

Corollary (2.11):

If A and B are special matrices, then AB = BA.

Proof:

Since *A* and *B* are special matrices, then $A = PD_1P^{-1}$ and $B = PD_2P^{-1}$ where the columns of the matrix *P* are the eigenvectors $X_j = [1, p_j, p_j^2, \dots, p_j^{n-1}], j = 1, 2, \dots, n$. Therefore,

 $AB = PD_1P^{-1}PD_2P^{-1} = PD_1D_2P^{-1} = PD_2D_1P^{-1} = PD_2P^{-1}PD_1P^{-1} = BA.$

Corollary (2.12):

Let A be a special matrix, then a matrix A is invertible if and only if the zero number is not eigenvalue of A.

Proof:

From Theorem (2.10), A is diagonalizable, i.e $A = PDP^{-1}$ where $D = \begin{bmatrix} \lambda_1 & 0 \\ \lambda_2 & \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}, \{\lambda_i\} \text{ are eigenvalues of } A,$

Now if $\lambda_i \neq 0$ for each i then *D* is invertible where

$$D^{-1} = \begin{bmatrix} \frac{1}{\lambda_1} & & & 0 \\ & \frac{1}{\lambda_2} & & \\ & & \ddots & \\ 0 & & & \frac{1}{\lambda_n} \end{bmatrix}$$

Therefore, $A^{-1} = PD^{-1}P^{-1}$. Conversely, since $A = PDP^{-1}$ then $D = P^{-1}AP$, where

 $D = \begin{bmatrix} \lambda_1 & & 0 \\ & \lambda_2 & \\ & & \ddots & \\ 0 & & & \lambda_n \end{bmatrix}, \ \{\lambda_i\} \text{ are eigenvalues of } A \text{ . Since A is invertible then D is also}$

invertible, where $D^{-1} = P^{-1}A^{-1}P$ and hence $\lambda_i \neq 0$ for each *i*.

Recall that the rank of the matrix A is the number of the linearly independent rows in A.

Theorem (2.13) [1]:

Let A be $n \times n$ matrix. Then A is invertible if and only if the rank of A is equal to n.

The following results follows from Corollary(2.12) and Theorem(2.13)

Remark(2.14):

Let A be an $n \times n$ special matrix then the rank of A is equal to n if and only if zero is not eigenvalue of A.

Lemma (2.15): If

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ a_n & a_1 & \cdots & a_{n-1} \\ a_{n-1} & a_n & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \vdots \\ a_2 & a_3 & \cdots & a_1 \end{bmatrix}$$

is a special matrix, then A has at least one non-zero eigenvalue.

Proof:

The eigenvalues of A are $\lambda_j = a_1 + a_2 p_j + a_3 p_j^2 + \dots + a_n p_j^{n-1}$, $j = 1, 2, \dots, n$ where p_j , $j = 1, 2, \dots, n$ are the roots of the equation $Z^n = 1$, by Theorem(2.6). If the eigenvalues are all zero then the polynomial $p(x) = a_1 + a_2 x + a_3 x^2 + \dots + a_n x^{n-1}$ has *n* distinct roots p_1, p_2, \dots, p_n this contradicts the fact that every polynomial of degree n-1 has exactly (n-1) roots. Thus, A has at least one non zero eigenvalue.

Recall that a matrix A is nilpotent if there exists apositive integer n such that $A^n = 0$.

The following theorem shows that the set of all special matrices $S_{n \times n}$ does not contain a nilpotent element except the zero matrix.

Theorem (2.16):

If A is a non-zero special matrix, then A is not nilpotent.

Proof:

Suppose that A is nilpotent, then there exists a positive integer number n such that $A^n = 0$. Since A is diagonalizable, then $A = PDP^{-1}$, where

$$D = \begin{bmatrix} \lambda_1 & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{bmatrix},$$

 λ_i is an eigenvalue of A for each i, therefore $(PDP^{-1})^n = 0$ that is $PDP^{-1}PDP^{-1}\cdots PDP^{-1} = 0$ this implies that $PD^nP^{-1} = 0$, that is the eigenvalues of A are zero's, this is contradiction to Lemma (2.15).

Suppose that A is a special matrix, we define the center of A as follows: $Z(A) = \{X \in M_{n \times n} : AX = XA\}$. It is clear that if $A = \alpha I$ where I is the identity matrix and α is a scalar, then $Z(A) = M_{n \times n}$.

The following remark follows from Corollary (2.11).

Remark (2.17) :

The set of all special matrices $S_{n \times n}$ is a subset of Z(A), if A is a special matrix. Lemma (2.18) [1,4] : If A is an invertible $n \times n$ matrix, then the system AX = b has a unique solution.

We prove the following theorem.

Theorem (2.19):

Let A be a special matrix, if the eigenvalues of A are distinct, then $Z(A) = S_{n \times n}$.

Proof:

From Remark (2.17), we obtain $S_{n \times n} \subseteq Z(A)$. Now ,we prove that $Z(A) \subseteq S_{n \times n}$. Let $X \in Z(A)$, where

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix}$$

satisfy AX = XA therefore $AX(x_i) = XA(x_i)$ for every eigenvector x_i , $i = 1, 2, \dots, n$, that is $AX(x_i) = X(\lambda x_i) = \lambda_i X(x_i)$, this show that either $X(x_i) = 0$ or $X(x_i)$ is eigenvector for the eigenvalue λ_i . Since λ_i are distinct, then $X(x_i) = \alpha_i x_i$, $i = 1, 2, \dots, n$, where α_i is constant, thus we have *n* system

$$\begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix} \begin{bmatrix} 1 \\ p_i \\ \vdots \\ p_i^{n-1} \end{bmatrix} = \alpha_i \begin{bmatrix} 1 \\ p_i \\ \vdots \\ p_i^{n-1} \end{bmatrix}, \ i = 1, 2, \cdots, n \qquad \dots (1)$$

Step1: Take the first equations of system (1) we have

$$x_{11} + x_{12} p_1 + x_{13} p_1^2 + \dots + x_{1n} p_1^{n-1} = \alpha_1$$

$$x_{11} + x_{12} p_2 + x_{13} p_2^2 + \dots + x_{1n} p_2^{n-1} = \alpha_2$$

$$\vdots$$

$$x_{11} + x_{12} p_n + x_{13} p_n^2 + \dots + x_{1n} p_n^{n-1} = \alpha_n$$
We can write this system as
$$\begin{bmatrix} 1 & p_1 & p_1^2 & \cdots & p_1^{n-1} \\ 1 & p_2 & p_2^2 & \cdots & p_2^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & p_n & p_n^2 & \cdots & p_n^{n-1} \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \\ \vdots \\ x_{1n} \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$
...(2)

Step(2): Take the second equations of system (1) we have

$$x_{21} + x_{22}p_1 + x_{23}p_1^2 + \dots + x_{2n}p_1^{n-1} = \alpha_1 p_1$$

$$x_{21} + x_{22}p_2 + x_{23}p_2^2 + \dots + x_{2n}p_2^{n-1} = \alpha_2 p_2$$

$$\vdots$$

$$x_{21} + x_{22}p_n + x_{23}p_n^2 + \dots + x_{2n}p_n^{n-1} = \alpha_n p_n$$

Multiply the first equation of this system by (p_1^{n-1})

Multiply the first equation of this system by (p_1^{n-1}) and the second equation by (p_2^{n-1}) and so on and use the fact $p_i^n = 1, i = 1, 2, \dots, n$ we have,

is an invertible matrix, then by Lemma(2.18), the systems $2, \dots, n+1$ have unique solution that is

$$\begin{bmatrix} x_{11} \\ x_{12} \\ \vdots \\ x_{1n} \end{bmatrix} = \begin{bmatrix} x_{22} \\ x_{23} \\ \vdots \\ x_{21} \end{bmatrix} = \dots = \begin{bmatrix} x_{nn} \\ x_{n1} \\ \vdots \\ x_{nn-1} \end{bmatrix}, \text{ thus } \begin{array}{c} x_{11} = x_{22} = \dots = x_{nn} \\ x_{12} = x_{23} = \dots = x_{n1} \\ \vdots \\ x_{1n} = x_{21} = \dots = x_{nn-1} \end{array}$$

that is the matrix $X \in S_{n \times n}$ so that $Z(A) \subseteq S_{n \times n}$ and hence $Z(A) = S_{n \times n}$.

The following example shows that if the eigenvalues of the matrix $A \in S_{n \times n}$ are not distinct, then $Z(A) \neq S_{n \times n}$.

Example (2.20):

Let

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ and take } X = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}. \text{ It is clear that } AX = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ and}$$

 $|1 \ 1 \ 1$ $XA = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ and hence XA = XA, this implies that $X \in Z(A)$, but $X \notin S_{n \times n}$, so 1 1 1 that $Z(A) \neq S_{n \times n}$.

Let $D_{n \times n}$ be the set of all diagonal matrix and define $T: S_{n \times n} \to D_{n \times n}$ as follows $T(A) = P^{-1}AP$ where the columns of P is the eigenvectors of A. Then we give the following result.

Theorem (2.21):

The mapping T is linear transformation which is one-to-one, onto and $T(AB) = T(A)T(B), \forall A, B \in S_{n \times n}.$

Proof:

 $T(A_1 + A_2) = P^{-1}(A_1 + A_2)P = P^{-1}(A_1)P + P^{-1}(A_2)P = T(A_1) + T(A_2)$

 $T(\alpha A) = P^{-1}(\alpha A)P = \alpha P^{-1}AP = \alpha T(A), \quad \forall A \in S_{n \times n} \text{ and } \alpha \text{ is constant. Thus, } T \text{ is}$ linear transformation

Now, let $T(A_1) = T(A_2)$, that is $P^{-1}A_1P = P^{-1}A_2P$ so that $A_1 = A_2$ this implies that T is one-to-one

Now, we prove that T is onto

Let $D = \alpha I$, where α is scalar then take A = D and T(A) = D, suppose $D \neq \alpha I$, Γ*λ* 0]

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{bmatrix}$$

are the root of the equation $Z^n = 1$, then the system $\begin{bmatrix} 1 & p_1 & p_1^2 & \cdots & p_1^{n-1} \\ 1 & p_2 & p_2^2 & \cdots & p_2^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & p_n & p_n^2 & \cdots & p_n^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}$

has only one solution say $(c_0, c_1, c_2, \cdots, c_{n-1})$. Take,

$$A = \begin{bmatrix} c_0 & c_1 & c_2 & \cdots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & \cdots & c_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ c_1 & & \cdots & c_0 \end{bmatrix} \in S_{n \times n}$$

it is clear from Theorem (2.6) that the eigenvalues of A are $\lambda_1, \lambda_2, \dots, \lambda_n$ therefore $T(A) = P^{-1}AP = D \in D_{n \times n}$. Thus T is onto.

It is remained now to prove that $T(AB) = T(A)T(B), \forall A, B \in S_{nn}$ $T(AB) = P^{-1}ABP = P^{-1}APP^{-1}BP = T(A)T(B) \text{ for every } A, B \in S_{n \times n}.$

Remark (2.22):

We can prove easily that, the inverse mapping $T^{-1}: D_{n \times n} \to S_{n \times n}$ which is defined by $T^{-1}(D) = PDP^{-1}$, for every $D \in D_{n \times n}$ is linear transformation.

We end this section by the following theorem

Theorem (2.23):

Let p(x) be a polynomial of degree n and $A \in S_{n \times n}$. The eigenvalues of A are roots of p(x) if and only if the matrix A is a roots of the polynomial matrix p(X).

Proof:

Suppose that the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ of the matrix A are the roots of the polynomial $p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$, i.e. $p(\lambda_i) = 0$, $i = 1, 2, \dots, n$ so that

$$\begin{bmatrix} p(\lambda_1) & & 0 \\ & p(\lambda_2) & \\ & \ddots & \\ 0 & & p(\lambda_n) \end{bmatrix} = 0.$$

Then,

$$\begin{bmatrix} c_{0} + c_{1}\lambda_{1} + c_{2}\lambda_{1}^{2} + \dots + c_{n}\lambda_{1}^{n} & 0 \\ & c_{0} + c_{1}\lambda_{2} + c_{2}\lambda_{2}^{2} + \dots + c_{n}\lambda_{2}^{n} \\ & & \ddots \\ 0 & & c_{0} + c_{1}\lambda_{n} + c_{2}\lambda_{n}^{2} + \dots + c_{n}\lambda_{n}^{n} \end{bmatrix} = 0$$

hence $c_0I + c_1D + c_2D^2 + \dots + c_nD^n = 0$ where *I* is the identity matrix and

$$D = egin{bmatrix} \lambda_1 & & 0 \ & \lambda_2 & & \ & \ddots & & \ 0 & & & \lambda_n \end{bmatrix},$$

therefore $P(c_0I + c_1D + c_2D^2 + \dots + c_nD^n)P^{-1} = 0$, where the column of p are the eigenvalues of the $\lambda_1, \lambda_2, \dots, \lambda_n$. This implies

$$c_0 PP^{-1} + c_1 PDP^{-1} + c_2 PD^2 P^{-1} + \dots + c_n PD^n P^{-1} = 0$$
, that is
 $c_0 I + c_1 A + c_2 A^2 + \dots + c_n A^n = 0$ thus *A* is a root of the polynomial matrix
 $p(X) = c_0 I + c_1 X + c_2 X^2 + \dots + c_n X^n$

Conversely, if A is a root of the polynomial $p(X) = c_0 I + c_1 X + c_2 X^2 + \dots + c_n X^n$ Then $p(A) = c_0 I + c_1 A + c_2 A^2 + \dots + c_n A^n = 0$. Therefore $c_0 PP^{-1} + c_1 PDP^{-1} + c_2 PD^2 P^{-1} + \dots + c_n PD^n P^{-1} = 0$. Hence, $P(c_0 I + c_1 D + c_2 D^2 + \dots + c_n D^n)P^{-1} = 0$ Thus $c_0 I + c_1 D + c_2 D^2 + \dots + c_n D^n = 0$.

Thus,

$$\begin{bmatrix} c_0 + c_1\lambda_1 + c_2\lambda_1^2 + \dots + c_n\lambda_1^n & 0 \\ c_0 + c_1\lambda_2 + c_2\lambda_2^2 + \dots + c_n\lambda_2^n \\ 0 & \ddots \\ c_0 + c_1\lambda_n + c_2\lambda_n^2 + \dots + c_n\lambda_n^n \end{bmatrix} = 0$$

this implies $p(\lambda) = c_1 + c_1\lambda_1 + c_2\lambda_2^2 + \dots + c_n\lambda_n^n = 0$ $i = 1, 2, \dots, n$ that is $\lambda = \lambda_1 \dots = \lambda_n$

this implies $p(\lambda_i) = c_0 + c_1\lambda_i + c_2\lambda_i^2 + \dots + c_n\lambda_i^n = 0$, $i = 1, 2, \dots, n$ that is $\lambda_1, \lambda_2, \dots, \lambda_n$ are roots of the polynomial $p(x) = c_0 + c_1x + c_2x^2 + \dots + c_nx^n$.

3. Analytical Properties of Special Matrices

Recall that the vector space H is called Hilbert space if it is complete inner product space, The spaces R^n and C^n are Hilbert spaces ;Since $M_{n\times n}(R)$ equivalent R^{n^2} and $M_{n\times n}(C)$ equivalent C^{n^2} , then $M_{n\times n}(R)$ and $M_{n\times n}(C)$ are Hilbert spaces. In section two we see that $S_{n\times n}$ is a subspace of $M_{n\times n}$ also in this section we prove that $S_{n\times n}$ is Hilbert space. Finally, we show that $S_{n\times n}$ is Banach algebra.

Proposition (3.1):

The space $M_{n \times n}$ is inner product space where $\langle [a_{ij}] [b_{ij}] \rangle = \sum_{i,j} a_{ij} \overline{b}_{ij}$ for all $[a_{ij}], [b_{ij}] \in M_{n \times n}$, where \overline{b}_{ij} is the complex conjugate of b_{ij} .

For the completeness we give the proof of the following theorem .

Theorem (3.2):

The space $M_{n \times n}$ is Hilbert space.

Proof:

We see in Proposition(3-1) that $M_{n\times n}$ is inner product space. It is remained to prove that $M_{n\times n}$ is complete, let $\{A^n\}$ be acauchy sequence in $M_{n\times n}$ that is for all $\varepsilon > 0$, there exist positive integer k such that $||A^n - A^m|| < \varepsilon$ for all n, m > k, therefore $|a_{ij}^n - a_{ij}^m|^2 \le \sum_{i=1}^n \sum_{j=1}^n |a_{ij}^n - a_{ij}^m|^2 = ||A^n - A^m||^2 < \varepsilon^2$ for all n, m > k so that $|a_{ij}^n - a_{ij}^m| < \varepsilon$ for all n, m > k so that $|a_{ij}^n - a_{ij}^m| < \varepsilon$ for all n, m > k and hence $\{a_{ij}^n\}$ is Cauchy sequence in the complex numbers φ for all i, j, since the space of complex numbers is complete then $\{a_{ij}^n\}$ is converge sequence say to a_{ij} . We claim that the sequence $\{A^m\} = \{a_{ij}^m\}$ is converge to $A = [a_{ij}]$ as $m \to \infty$, let $\varepsilon > 0$, since $\{a_{ij}^m\}$ is converge to a_{ij} as $m \to \infty$ then there exist a positive integer number k_{ij} such that $|a_{ij}^m - a_{ij}| < \varepsilon/n$ for all $m > k_{ij}$, let $k = \max\{k_{ij}, i = 1, 2, \dots, n\}$.

Now, $||A^m - A||^2 = \sum_i \sum_j |a_{ij}^m - a_{ij}|^2 < \varepsilon^2$ for all m > k, hence $||A^m - A|| < \varepsilon$ for all m > k, thus $\{A^m\}$ is converge sequence, this implies that $M_{n \times n}$ is complete inner product space and hence $M_{n \times n}$ is Hilbert space.

Corollary (3.3):

The space $S_{n \times n}$ is Hilbert space.

Proof:

If $\{A^n\} = \{a_{ij}^n\}$ is a cauchy sequence in $S_{n \times n}$ then $\{A^n\}$ is a cauchy sequence in $M_{n \times n}$, since $M_{n \times n}$ is complete then there exist $A = [a_{ij}] \in M_{n \times n}$ such that $\{A^n\} \to A$ (Theorem(3.2)), that is $\{a_{ij}^n\} \to a_{ij}$ for all i, j. Since $A^n = [a_{ij}^n] \in S_{n \times n}$ for all n then $A = [a_{ij}] \in S_{n \times n}$ and hence $S_{n \times n}$ is complete, this implies that $S_{n \times n}$ is Hilbert space.

Theorem (3. 4):

The space $S_{n \times n}$ is a Banach algebra.

Proof:

We must prove that $||C|| \le ||A|| ||B||$, for every $A, B \in S_{n \times n}$, where C = ABSince

$$\|A\| = \sqrt{n(\sum_{j=1}^{n} |a_{1j}|^2)}, \ \|B\| = \sqrt{n(\sum_{j=1}^{n} |b_{1j}|^2)}$$

then $\|A\|^2 \|B\|^2 = n^2 (\sum_{j=1}^{n} |a_{1j}|^2) \left(\sum_{j=1}^{n} |b_{1j}|^2\right),$
 $\|C\|^2 = n \sum_{j=1}^{n} |c_{1j}|^2 = n \left[\left|\sum_{k=1}^{n} a_{1k} b_{k1}\right|^2 + \left|\sum_{k=1}^{n} a_{1k} b_{k2}\right|^2 + \dots + \left|\sum_{k=1}^{n} a_{1k} b_{kn}\right|^2 \right]$
By Schwarz inequality we have

By Schwarz inequality we have

$$\|C\|^{2} \leq n \left[\sum_{k=1}^{n} |a_{1k}|^{2} \sum_{k=1}^{n} |b_{k1}|^{2} + \sum_{k=1}^{n} |a_{1k}|^{2} \sum_{k=1}^{n} |b_{k2}|^{2} + \dots + \sum_{k=1}^{n} |a_{1k}|^{2} \sum_{k=1}^{n} |b_{kn}|^{2} \right]$$
$$= n \sum_{k=1}^{n} |a_{1k}|^{2} \left[\sum_{k=1}^{n} |b_{k1}|^{2} + \sum_{k=1}^{n} |b_{k2}|^{2} + \dots + \sum_{k=1}^{n} |b_{kn}|^{2} \right] = \|A\|^{2} \|B\|^{2}$$

Thus $||C|| \leq ||A|| ||B||$, so that $S_{n \times n}$ is a Banach algebra

REFERENCES

- [1] E.H. Connell, 2002, "Elements of Abstract and Linear Algebra", Florida U.S.A.
- [2] Erwin Kreyszig, 1978, "Introductory Functional Analysis with Applications", John Wiley & Sons.
- [3] Walter Rudin, ,1970, "Real and Complex Analysis", Mc GRAW-Hill.
- [4] Kaare Brandt Petersen, Micheal Syskind Pedersen, 2008, "The Matrix Cookbook", http://matrix cook book.com.