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ABSTRACT 

In this work we present a subset of  nnM  ( nnM   is the set of all nn  matrices ) 

which we called the set of special matrices and denoted it by nnS   . We give some 

important properties of nnS   . 
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 جامعة تكريت، كلية علوم الحاسوب والرياضيات
 04/04/2011تاريخ قبول البحث:                                   02/02/2011تاريخ استلام البحث: 

 صخالمل
 nxnS والتيييذ نماليييا لريييا  يييالرما nxnMفيييذ  يييحا المحيييج ويييجمئا ممنوعييية جاليييية مييي  ممنوعييية الن ييي وفات

 وأسنيئا ا ممنوعة الن  وفات الخاصة. ودنسئا  عض م  خواصرا.
  .خاصةلن  وفات ال، االتحليلية، الخ الص الخ الص المبريةالكلمات المفتاحية: 

1.  Introduction 

 Let nnM   be the set of all nn  matrices that is 

 = ijijnn aaM :][ ¢ nji ,,2,1,, = . It is known that nnM   is a vector space over ¢ 

with respect to the vector addition and scalar multiplication defined by 

     ijijijij baba +=+  and    ijij caac =  for every     nnijij Mba ,  and c ¢. The matrix 

  nnij MaA =  is called special matrix if it can be written as  
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We denote nnS   to the set of all nn  special matrices i.e 

  matrixspecialisAaAS ijnn :== . It is clear that nnSBA +  and 

nnSA  , for every nnSBA ,  and   is scalar, Then nnS   is a subspace of nnM  . 

In this paper we study the special matrices, and we give some properties of nnS  . 

2.  Some Properties of Special Matrices 

In this section we study some properties of special matrices. One can prove 

easily the following remark. 
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Remark (2.1): 

1- The basis of nnS   is  
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; 

and the dimension of  nnS   is n . 
 

2-  The usual product of two matrices nnSBA ,  is also in nnS  , i.e  nnSAB   for 

every nnSBA , . 
      

 Recall that the complex number   is an eigenvalue of the matrix A , if there 

exists a non-zero vector X such that XAX =  ,then the vector X  is called eigenvector 

for the matrix A  with respect to the eigenvalue  . 

Definition (2.2) [1]:  

 Let   be an eigenvalue of the matrix A , the multiplicity of   is the number of 

linearly independent eigenvectors corresponding to the eigenvalue  . 

Remark (2.3) [1]: 

Let A  be an nn  matrix then  

1- The matrix A  has exactly n eigenvalues. 

2- If the eigenvalues of A  are distinct ,then the eigenvectors corresponding to 

these eigenvalues are linearly independent. 

Lemma (2.4) [3]: 

 The equation 1=nZ  has n distinct non-zero roots in the field of complex 

numbers. 
 

In the following theorem we find the eigenvalues and the eigenvectors for any 

special matrix. 

Theorem (2.5): 

 Let A  be a special matrix, i.e., 
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Then, the eigenvalues of A  are 
=

−=
n

i

i

rir pa
1

1 , nr ,,2,1 =  where nppp ,,, 21   are 

the roots of the equation 1=nZ  also 
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is the eigenvector corresponding to the eigenvalue r , nr ,,2,1 =   

Proof:  

 The eigenvalue   and the eigen vector 
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for the matrix A  satisfy the system YAY = . This system can be written as follows  
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k py  , nk ,,,2,1 =  where p  is a root of the equation 1=nZ . 
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Since p is root of the equation 1=nZ , then 1
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and since the equation 1=nZ  have n  roots say nppp ,,, 21   then we have 

eigenvalues: 
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, nr ,,2,1 =  

Corollary (2.6) :  

 Let BA,  be special matrices. If n ,,, 21   are eigenvalues of A  with respect 

to the eigenvectors  12 ,,,,1 −= n

jjjj pppX   , nj ,,2,1 = , respectively and  

n ,,, 21   are eigenvalues of B with respect to the eigenvectors 
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 12 ,,,,1 −= n

jjjj pppX  , nj ,,2,1 =  respectively then the eigenvalues of the matrix 

AB  are  nn ,,, 2211  . 

Proof:  

 We have jjj XAX =  and  jjj XBX =  where nj ,,2,1 = . Therefore  

( ) jjjjjjjj XAXXAXAB  ===  , nj ,,2,1 = . 

Then,  jj , nj ,,2,1 =  are eigenvalues of the matrix AB . 

Corollary (2.7):  

 The eigen vectors  12 ,,,,1 −= n

jjjj pppX  , nj ,,2,1 =   in Theorem(2.5) are 

linearly independent . 

Proof:  

Since the roots  jp , nj ,,2,1 =  of the equation 1=nZ  are distinct then the 

determinant of the matrix  
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is non-zero [1] ( this determinant is called Vandermonde determinant), therefore the 

vector ,jX  nj ,,2,1 =  are linearly independent. 
 

     Recall that if A  and B  are two nn  matrices then A  is similar to B  if there exists 

an invertible matrix  P  such that BPPA 1−= . 

Definition (2.8) [1]: 

 The matrix A  is diagonalizable if A  is similar to a diagonal matrix. 

Theorem (2.9) [ 1 ]:  

 The nn  matrix A  is diagonalizable if and only if A  has n  linearly 

independent eigenvectors , in this case A  is similar to a diagonal matrix D  with the 

elements of main diagonal are the eigenvalues of A  and DAPP =−1  where the 

columns of P  are the n  linearly independent eigenvectors of A . 
 

 The following results follows from Corollary(2.7) and Theorem(2.9).  

Theorem (2.10): 

 If  A  is a special matrix then A  is similar to the diagonal matrix D  with the 

elements of main diagonal are the eigenvalues of  A . 

Corollary (2.11): 

 If A  and B  are special matrices, then BAAB = . 

Proof: 
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 Since A  and B  are special matrices, then  1

1

−= PPDA  and 1

2

−= PPDB  where 

the columns of the matrix P  are the eigenvectors  12 ,,,,1 −= n

jjjj pppX  , 

nj ,,2,1 = . Therefore, 

BAPPDPPDPDPDPDPDPPDPPDAB ===== −−−−−− 1

1

1

2

1
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1

21

1

2

1

1 . 

Corollary (2.12): 

 Let A  be a special matrix, then a matrix A  is invertible if and only if the zero 

number is not eigenvalue of A . 

Proof: 

 From Theorem (2.10) , A  is diagonalizable, i.e 1−= PDPA  where 
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,  i  are eigenvalues of A , 

Now if 0i  for each i then D  is invertible where 
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Therefore, 111 −−− = PPDA  . 

Conversely, since 1−= PDPA then APPD 1−= , where 
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,  i  are eigenvalues of A . Since A is invertible then D is also 

invertible, where PAPD 111 −−− =  and hence 0i  for each i.  
 

 Recall that the rank of the matrix A  is the number of the linearly independent 

rows in A . 

Theorem (2.13) [1]:  

 Let A  be nn  matrix . Then A  is invertible if and only if the rank of A  is 

equal to n . 
 

 The following results follows from Corollary(2.12) and Theorem(2.13) 

Remark(2.14): 

 Let A  be an nn  special matrix then the rank of A  is equal to n  if and only if 

zero is not eigenvalue of A . 

Lemma (2.15): If 
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is a special matrix, then A  has at least one non-zero eigenvalue.  

Proof:  

 The eigenvalues of A  are  12

321

−++++= n

jnjjj papapaa  , nj ,,2,1 =  

where ,jp  nj ,,2,1 =  are the roots of the equation 1=nZ , by Theorem(2.6). If  the 

eigenvalues are all zero then the polynomial 12

321)( −++++= n

n xaxaxaaxp   has 

n distinct roots nppp ,,, 21   this contradicts the fact that every polynomial of degree 

1−n  has exactly ( 1−n ) roots. Thus, A  has at least one non zero eigenvalue. 

 Recall that a matrix A  is nilpotent if there exists apositive integer n  such that  

.0=nA  
 

 The following theorem shows that the set of all special matrices nnS   does not 

contain a nilpotent element except the zero matrix. 

Theorem (2.16): 

 If A  is a non-zero special matrix, then A is not nilpotent. 

Proof: 

 Suppose that A is nilpotent, then there exists a positive integer number n  such 

that 0=nA . Since A  is diagonalizable, then ,1−= PDPA  where 
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,  

i  is an eigenvalue of A  for each i , therefore ( ) 01 =− n
PDP  that is 

0111 =−−− PDPPDPPDP   this implies that 01 =−PPD n
, that is the eigenvalues  of A  

are zero's, this is contradiction to Lemma (2.15). 

 Suppose that A  is a special matrix , we define the center of A  as follows: 

 XAAXMXAZ nn ==  :)( . It is clear that if IA =  where I  is the identity matrix 

and   is a scalar, then ( ) nnMAZ = .  
 

The following remark follows from Corollary (2.11). 

Remark (2.17) : 

 The set of all special matrices nnS   is a subset of )(AZ , if A  is a special matrix. 

Lemma (2.18) [1,4] : 
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 If A  is an invertible nn  matrix, then the system bAX =  has a unique 

solution. 
 

 We prove the following theorem. 

Theorem (2.19): 

 Let A be a special matrix, if the eigenvalues of A  are distinct, then ( ) nnSAZ = . 

Proof: 

 From Remark (2.17), we obtain )(AZS nn  . Now ,we prove that ( ) nnSAZ  . 

Let )(AZX  , where 
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satisfy XAAX =  therefore )()( ii xXAxAX =  for every eigenvector ix , ni ,,2,1 = , that 

is )()()( iiii xXxXxAX  == , this show that either 0)( =ixX  or )( ixX  is 

eigenvector for the eigenvalue i . Since i are distinct, then  iii xxX =)( , 

ni ,,2,1 = , where i  is constant, thus we have n system  
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Step1: Take the first equations of system )1(  we have  
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We can write this system as 
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Step(2): Take the second equations of system (1) we have 
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Multiply the first equation of this system by )( 1

1

−np and the second equation by 

)( 1

2

−np  and so on and use the fact 1=n

ip , ni ,,2,1 =  we have, 



Laith K. Shaakir - Akram S. Mohamed & Nazar K. Hussein 
 

 

 68 

n

n

n

n

nnnn

nn

n

nn

n

pxpxpxpxx

pxpxpxpxx

pxpxpxpxx







=+++++

=+++++

=+++++

−−

−−

−−

1

21

2

2

2

242322

2

1

221

2

22

2

22422322

1

1

121

2

12

2

12412322









 

That is  



















=







































−

−

−

n
n

nnn

n

n

x

x

x

ppp

ppp

ppp

















2

1

21

23

22

12

1

2

2

22

1

1

2

11

1

1

1

         …(3)                                                    

We continue these process until we have the system  
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is an invertible matrix, then by Lemma(2.18) , the systems 1,,.2 +n have 

unique solution that is  
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that is the matrix nnSX   so that nnSAZ )(  and hence nnSAZ =)( . 
 

 The following  example shows that if the eigenvalues of the matrix nnSA   are 

not distinct, then nnSAZ )( . 

Example (2.20): 

 Let 
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XA   and hence XAXA = , this implies that )(AZX  , but nnSX  , so 

that nnSAZ )( . 
 

 Let nnD   be the set of all diagonal matrix and define nnnn DST  →:  as follows 

APPAT 1)( −=  where the columns of P  is  the eigenvectors of A . Then we give the 

following result. 

Theorem (2.21):  

 The mapping T  is linear transformation which is one-to-one, onto and 

)()()( BTATABT = , nnSBA  , . 

Proof : 

 )()()()()()( 212

1

1

1

21

1

21 ATATPAPPAPPAAPAAT +=+=+=+ −−−  

nnSAATAPPPAPAT 

−− === ,)()()( 11   and   is constant. Thus, T  is 

linear transformation  

 Now, let )()( 21 ATAT = , that is PAPPAP 2

1

1

1 −− =  so that 21 AA =  this implies 

that T  is one-to-one  

 Now, we prove that T  is onto 

Let ID = , where   is scalar then take DA = and DAT =)( , suppose ID  , 
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If nppp ,,, 21   are the root of the equation 1=nZ ,then the system 
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has only one solution say ),,,,( 1210 −ncccc  . Take, 
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it is clear from Theorem(2.6) that the eigenvalues of A are n ,,, 21   therefore 

nnDDAPPAT 

− == 1)( . Thus T  is onto.  

 It is remained now to prove that nxnSBABTATABT = ,),()()(  

)()()( 111 BTATBPAPPPABPPABT === −−−  for every nnSBA , . 

Remark (2.22): 
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 We can prove easily that, the inverse mapping nnnn SDT 

− →:1  which is 

defined by 11 )( −− = PDPDT , for every nnDD  is linear transformation . 
 

 We end this section by the following theorem 

Theorem (2.23): 

 Let )(xp  be a polynomial of degree n and nnSA  . The eigenvalues of A  are 

roots of )(xp  if and only if the matrix A  is a roots of the polynomial matrix )(Xp . 

Proof:  

 Suppose that the eigenvalues n ,,, 21   of the matrix A  are the roots of the 

polynomial n

n xcxcxccxp ++++= 2

210)( ,  i.e. 0)( =ip  , ni ,,2,1 =  so that 
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hence 02

210 =++++ n

n DcDcDcIc   where I   is the identity matrix and 
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n , where the column of p  are the 

eigenvalues of the n ,,, 21  . This implies 

 0112
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1

1

0 =++++ −−−− PPDcPPDcPDPcPPc n

n , that  is 

 02

210 =++++ n

n AcAcAcIc   thus A is a root of the polynomial matrix 

n

n XcXcXcIcXp ++++= 2

210)(  

 Conversely, if A  is a root of the polynomial 
n

n XcXcXcIcXp ++++= 2

210)(   

Then  0)( 2

210 =++++= n

n AcAcAcIcAp  .  

Therefore  0112
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n . 

Hence,  0)( 12
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Thus  02

210 =++++ n

n DcDcDcIc  . 
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Thus, 
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this implies 0)( 2

210 =++++= n

iniii ccccp   , ni ,,2,1 =  that is n ,,, 21   

are roots of the polynomial n

n xcxcxccxp ++++= 2

210)( . 

3. Analytical Properties of Special Matrices 

 Recall that the vector space H  is called Hilbert space if it is complete inner 

product space, The spaces nR and nC  are Hilbert spaces ;Since )(RM nn  equivalent 
2nR  and )(CM nn  equivalent 

2nC , then )(RM nn  and )(CM nn  are Hilbert spaces.In 

section two we see that nnS   is a subspace of nnM   also in this section we prove that 

nnS    is Hilbert space. Finally, we show that nnS   is Banach algebra.  

Proposition (3.1): 

 The space nnM   is inner product space where     =
ji

ijijijij baba
,

,  for all 

nnijij Mba ][],[ , where ijb  is the complex conjugate of ijb . 
 

 For the completeness we give the proof of the following theorem . 

Theorem (3.2): 

 The space nnM   is Hilbert space. 

Proof:  

 We see in Proposition(3-1) that nnM  is inner product space. It is remained to 

prove that nnM   is complete, let  nA  be acauchy sequence in nnM   that is for all 

0 , there exist positive integer k  such that − mn AA  for all kmn , , therefore 
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for all kmn ,  and hence  n
jia  is Cauchy sequence in the complex numbers ¢ for all 

ji, , since the space of complex numbers is complete then  n
jia  is converge sequence 

say to ija  .We claim that the sequence    ][ m

ij

m aA =  is converge to ][ ijaA =  as 

→m , let 0 , since  m

ija  is converge to ija  as →m  then there exist a positive 

integer number ijk  such that 
n

aa ij

m

ij
−  for all ijkm  , let 

 njnikk ij ,,2,1,,,2,1,max  === .  
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Now, 2
22

−=− 
i j

ij

m

ij

m aaAA  for all km  , hence − AAm  for all 

km  , thus  mA  is converge sequence, this implies that nnM   is complete inner 

product space and hence nnM   is Hilbert space . 

Corollary (3.3): 

 The space nnS   is Hilbert space . 

Proof: 

  If     n
j

n
iaA =  is a cauchy sequence in nnS  then  nA  is a cauchy sequence in 

nnM  , since nnM   is complete then there exist nnij MaA = ][  such that   AAn →  

(Theorem(3.2)), that is   ij
n
ij aa →  for all ji, . Since   nn

n
ij

n SaA =  for all n  then 

  nnij SaA =  and hence nnS   is complete, this implies that nnS   is Hilbert space. 

Theorem (3. 4): 

 The space nnS   is a Banach algebra. 

Proof:  

 We must prove that BAC  , for every nnSBA , , where ABC =   
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By Schwarz inequality we have  
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Thus BAC  , so that nnS   is a Banach algebra 
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