
 Raf. J. of Comp. & Math’s. , Vol. 8, No. 1, 2011

117

A Survey of Two Optimization Methods to Solve a Modified Minimal Spanning

Tree Problem in Undirected Tree Graph

Received on: 19 / 7 / 2010 Accepted on: 16 / 3 / 2011

ABSTRACT
 The paper tackled a survey of two optimization methods to study spanning tree problem

by modifying the spanning tree problem to generate all of possible solutions in undirected tree

graph with simulated annealing algorithm and ant colony optimization algorithm. These

algorithms are two of the optimization methods to find optimal solution from many of solutions

in search space. A program is written in MATLAB 6.5 language to simulate these two

algorithms with spanning tree problem. The experimental results in this paper show the

effectiveness and easy implementation of each algorithm to find optimal solution, and to

perform significantly better than the manual method.
Keywords: simulated annealing, ant colony, spanning tree.

 غير الموجه الشجري في البيان الأصغر المطورة ل مسألة الربط الشجري ح استعراض طريقتين أمثليتين ل
 رقية زيدان شعبان اسراء نذير الكلاك

 جامعة الموصل كلية الطب، جامعة الموصلالتمريض، كلية
 16/03/2011 بحث:تاريخ قبول ال 19/07/2010تاريخ استلام البحث:

 الملخص
الأمثلية، لدراسة مسألة الربط الشجري من خلال إضفاء بعض من طرائق استهدف هذا البحث استعراض طريقتين

التطوير على مسألة الربط الشجري لتوليد جميع الحلول الممكنة في البيان الشجري غير الموجه، مع كلٍ من خوارزميتي
معادن، ومستعمرة النمل المثلى واللتان تعدان من مسائل الأمثلية، لانتقاء الحل الأمثل من بين محاكاة انصهار الصلب في ال

ليحاكي كلتا الخوارزميتين مع المسألة. أثبتت نتائج البحث 6.5العديد من الحلول. تم إعداد برنامج حاسوبي بلغة ماتلاب
مثل من بين العديد من الحلول في فضاء بحث المسألة عن سهولة مرنة وكفاءة عالية لكل خوارزمية في انتقاء الحل الأ

 استخدام الطرائق اليدوية في إيجاد حل المسألة.
 . انصهار الصلب، مستعمرة النمل، الربط الشجري الكلمات المفتاحية:

1. Introduction
 A network consists of a set of nodes linked by edges (or branches). The notation for

describing a network is (V, E), where V is the set of nodes, and E is the set of edges

between pairs of nodes. An edge is said to be directed or oriented if it allows positive flow

in one direction and zero flow in the opposite direction. Minimal spanning tree algorithm is

one of the best known problems in combinatorial optimization. Minimal spanning tree is a

connected and undirected graph with weighted edges; a minimal spanning tree of the graph

is a least-weight tree connecting all nodes [23]. For the minimal spanning tree problems,

each edge is assigned a length. The goal of the problem is to select a spanning tree so that

the total of the lengths of the selected edges is minimized. Given a connected undirected

graph G = (V,E) and a weight w (u, v) specifying weight of the edge (u, v) for each edge (u,

v). If (vi , vj) V, then the two nodes vi & vj are said to be adjacent in G, edge (vi , vj) is

then said to be incident to nodes vi and vj and vi is a neighbor of vj. A loop is an edge whose

endpoints are equal [13].

 A path in G is an order list of distinct nodes (v1,v2,…vq-1,vq) V, if v1= vq a

closed path containing at least one edge is called a cycle. G is a tree, if G is connected and

has no cycle. H = (v, e) is called subgraph of G, if v V and e E. A subgraph H = (v,

e) of G is called a spanning subgraph of G if H contains all the nodes v of G. A spanning

Ruqaya Z. Sha’ban

nnabeel2013@gmail.com

College of Medicine
University of Mosul, Iraq

Isra N. Alkallak

israalkallak19@gmail.com
College of Nursing

University of Mosul, Iraq

 Isra N. Alkallak and Ruqaya Z. Sha’ban

 118

tree is a connected network that may involve only a subset of all the nodes of the network

with no cycle allowed as illustration in Figure (1), [18]. Thus, a spanning tree is a subgraph

of a graph G, which contains all nodes from G with no cycle. The minimum spanning tree

of a weighted graph is a minimum weight spanning tree of that graph [8, 13, 18, 22, 23].

The network with E nodes, spanning tree is a group of E-1 edges that connects all nodes of

the network and contains no loops [22].

 The ground states of a complex physical system such as a solid can be reached

by heating the system up to some high temperature and then cooling it down slowly.

This process is called annealing. Annealing method is simulated to solve combinatorial

optimization problems [10,16].

 The ant colony optimization metaheuristic is also a technique for solving

combinatorial optimization problems. The origin of ant algorithms is to imitate the

behavior of ants searching for food. Ants are finding sources of food in the several ways

as they explore the area surrounding their nest in a random manner. While they are

moving, the ants left a pheromone (chemical trace) on the floor, in such a way that they

can find their way back to the nest. When they find a source of food, the ants bring food

back to the nest following the pheromone trace [19]. Therefore, a heuristic method is

designed toward promising regions of search space containing high quality solutions

[21].

 In simulated annealing, a single agent is deployed for a single beam session,

while ant colony optimization uses multiple agents, each of which has its individual

decision made based upon collective memory or knowledge [21].

 The aim of this paper is to find the set of edges connecting all nodes such that

the sum of the edge lengths from any node to the last one in the graph is minimized by

the proposed additional steps (modified spanning tree algorithm) i.e., visiting all

neighbor solutions in the search space. Two methods of heuristic namely; simulated

annealing and ant colony optimization are summarized and examined to solve the

combinatorial optimization problems as a minimal spanning tree problem.

 In this paper, besides this introductory section, section 2 presents the simulated

annealing algorithm. The ant colony optimization algorithm is described in section 3.

section 4 contains the modified procedures that are carried on the two prementioned

algorithms with the steps added for more accurate in passing local minima.

Experimental results of the modified spanning tree algorithm are examined in section 5.

This section also contains some valuable discussions. Finally, section 6 concludes this

paper.

2. Simulated Annealing Algorithm

 In 1953, Metropolis et al. developed a simulation procedure based on the Monte

Carlo method. In 1983, Kirkpatrik et al. developed that algorithm after the process of

cooling glass from a high temperature to a low one, known as annealing. The advanced

1

4

2

3

2

5

1

3

Figure (1). A weighted tree graph

 A Survey of Two Optimization Methods to …

 119

simulated annealing algorithm is therefore an algorithm which simulates the annealing

process with Metropolis Monte Carlo simulation as a probabilistic acceptance rule.

Metropolis step allows the system to move consistently toward lower energy states; yet

still jumps out of local minima probabilistically, when the temperature decreases

logarithmically [23].

 Simulation annealing algorithm is a non-traditional method possessing both

greedy (deterministic) and random (stochastic) characteristics [15]. The deterministic

aspect attempts to improve upon the current state using a predefined cost function.

However, the stochastic aspect occasionally accepts a state that is not an improvement

[6]. Simulated annealing is a global heuristic technique which tries to avoid falling into

local optima by accepting bad solutions when specific function conditions are satisfied

[12]. It has been considered as a good tool for complex nonlinear optimization

problems. The technique has been widely applied to a variety of problems. One of the

major drawback of the technique is its very slow convergence. Often the solution space

of an optimization problem has many local minima. However, in such optimization

algorithm, a simple local search algorithm proceeds by choosing random initial solution

and generating a neighbor from that solution. The neighboring solution is accepted if it

is a cost decreasing transition. The simulated annealing algorithm, though by itself it is a

local search algorithm, avoids getting trapped in a local minimum by accepting other

cost increasing neighbors with some probability. In simulated annealing, first an initial

solution is randomly generated, and a neighbor is found [5].

 The simulated annealing procedure simulate the process of slow cooling of

molten metal to achieve the minimum function value in a minimization problem. It is a

point –by-point method. The algorithm begins with an initial point and a high

temperature T. A second point is taken at random in the vicinity of the initial point and

the difference in the function values (∆E) at these two points is calculated. The second

point is chosen according to the Metropolis algorithm which states that if the second

point has a smaller function value, the point is accepted; otherwise the point is accepted

with a probability exp (-(∆E / T). This completes one iteration of the simulated

annealing procedure.

 In the next generation, another point is created at random in the neighborhood of

the current point and the Metropolis algorithm is used to accept or reject such point. In

order to simulate the thermal equilibrium at every temperature, a number of points is

usually tested at a particular temperature before reducing the temperature. The

temperature is then reduced according to a temperature schedule called simulated

annealing schedule (or annealing schedule in short). The term annealing comes from the

technique of hardening a metal (i.e. finding a state of its crystalline lattice that is highly

packed) by hammering it, while being initially very hot and then at a succession of

decreasing temperatures [7]. The algorithm is terminated when a sufficiently small

temperature is obtained or a small enough change in the function values is found

[8,10,11,15,16,20].

2.1 Cooling Schedules

 It is important that the cooling function allows sufficient time to explore many

possible solutions in one level before moving into lower temperature and ultimately

freezing point. It is also important not to spend too much time on high temperatures,

where most neighbourhood moves are accepted as this can lead to a wastage of running

time. A good schedule is expected to spend more time on lower temperatures so as to

allow for convergence. It is not advisable to spend too much time on low temperatures

 Isra N. Alkallak and Ruqaya Z. Sha’ban

 120

where most neighbourhood moves are rejected [3]. Starting at a high value of the initial

control parameter and then decreasing it at a specified rate after completion of solution

by the rule [12].

 Tk = αT k-1

where (0 < α < 1) α is a scaling factor and T k-1 & Tk are previous and forward

temperatures, respectively. The decreased rate is depended on the problem solving.

 2.2 A Generic Description of the Simulated Annealing Algorithm [10]

1. Get an initial state with energy x (solution).

2. Make this initial state be the current state.

3. Select an initial “high temperature” T.

4. While the system is “not yet frozen” do

 Begin

 While the system is “not yet in thermal equilibrium” do

 Begin:

 Pick a random “nearby” state with energy xp .

 Let ∆x = xp - x.

 If ∆x <= 0

 The newly proposed state becomes the current state,

 Else

 The newly proposed state becomes the current state

 With probability = e -∆x / T

 Else no change in state (i.e., reject state).

 End

 “Reduce the temperature T by ∆T”.

 End

5. Output the current state.

3. Ant Colony Optimization Algorithm

 Ant colony optimization algorithms are population based optimization

approaches that have been applied to solve different combinatorial optimization

problems. The inspiring source of ant colony optimization is the foraging behavior of

real ants. When searching for food, ants initially explore the area surrounding their nest

in a random manner. As soon as an ant finds a food source, it evaluates the quantity and

the quality of the food and carries some of it back to the nest. During the return trip, the

ant deposits a chemical pheromone trail on the ground. The quantity of pheromone

deposited, which may depend on the quantity and quality of the food, will guide other

ants to the food source. Indirect communication between the ants via pheromone trails

enables them to find shortest paths between their nest and food source. This

characteristic of real ant colonies is exploited in artificial ant colonies in order to solve

combinatorial optimization problems. Ant colony optimization algorithms update the

pheromone values using previously generated solutions. The update aims to concentrate

the search in regions of the search space containing high quality solutions [1, 17, 19,21].

 Ant colony optimization is metaheuristic method. Artificial ants are

characterized as agents that imitate the behavior of real ants. However, it should be

noted that an artificial ant colony system has some differences in comparison with a real

Ant colony system, as follows

 A Survey of Two Optimization Methods to …

 121

• Artificial ants have memory.

• They are not completely blind.

• They live in an environment where time is discrete.

On the other hand, an artificial Ant colony system has several characteristics

adopted from real ant colony system:

• Artificial ants have a probabilistic preference for paths with a large amount of

pheromone.

• Shorter paths tend to have larger rates of growth in their amount of pheromone.

• The ants use an indirect communication system based on the amount of the

pheromone deposited in each path [2, 21].

 The key idea is that, when a given ant has to choose between two or more paths.

The path that was more frequently chosen by other ants in the past will have a

greater probability of being chosen by the ant. Therefore, trails with greater amount

of pheromone are synonyms of shorter paths. Ant colony system performs a loop

containing two basic procedures, namely:

• A procedure specifying how the ants modify solutions of the problem being

solved in a probabilistic way. The probability of adding a new item to the current

partial solution is given by a function that depends on problem and on the amount of

pheromone deposited by ants on this trail in the past.

• A procedure to update the pheromone trails are implemented as a function that

depends on the rate of pheromone evaporation and on the quality of the produced

solution [21].

 In this paper, each ant in the colony chooses an arbitrary edge depended on the

proposed additional steps with the problem constraints. The procedure continues for

each ant in the colony has chosen an edge. Finally a set amount of pheromone is added

to that chosen edge, and the ant in the colony chooses another edge. The amount of

pheromone added to an edge is obtained by optimal solution

3.1 Pheromone Update

 Real ants deposit a substance called pheromone while moving from one point to

another point. Artificial ants perform this action by adding a value called trace on the

trail levels of moves chosen by them. The updating of trail levels can be performed

either after each move or after completion of solution. In 1996, Dorigo et al. have

experimentally shown that the performance of second way is much better than the first

[17].

 In this paper, each edge in the graph is given an initial pheromone value ph

equal to 1. There are n nodes in the graph, (assuming that the size of the colony of ant

is n). Each ant will start its tour from a different node. When all ants finish their tour,

they will track back and update the pheromone along their path by putting additional

pheromone Δph. For each edge, the new pheromone value is as follows:

ph = ph + Δph

with Δph = L / S

where L is the summation of all edge’s weight in the graph. S is the length of the path

built by the ant.

 The pheromone evaporation (p)is defined is that factor which enables greater

exploration of the search space and minimizes the chance of premature convergence to

suboptimal solution by all ants in the colony. Colony optimization algorithm uses an

 Isra N. Alkallak and Ruqaya Z. Sha’ban

 122

evaporation rate in order to forget previous bad choices at the cost of loosing useful

information. Pheromone evaporation can help the ants escape from local minimum.

Where 0 < p <1 [4].

The pheromone will evaporate is as follows:

ph = (1- p) * ph

In this paper, it is assumed that p is equal to 0.2.

 The heuristic information indicates the desirability of assigning the object i to

the location j. There are several methods to estimate the desirability depending on the

problem. In this paper, the artificial ants can move from one node in the tree to another

without including heuristic information. That because the ants move in some

deterministic way and they visit all edges in the search space depending on the

constraints of problem. In 1997, Taillard and Gambardella proposed a fast ant colony

algorithm namely FANT for quadratic assignment problem. In FANT algorithm, each

iteration uses only one ant and assignments are made without heuristic information [17].

Also in this paper, one of attributes of FANT algorithm is used without heuristic

information.

 3.2 Termination Condition

 Ant colony optimization algorithm is similar to other metaheuristic such as

simulated annealing. The ant algorithm can be terminated in several manners, e.g.

repeating the algorithm for a maximum number of iterations or running for a stipulated

time. Some researchers run the algorithm and the best objective function value obtained

in each iteration is recorded and compared with that obtained in earlier iterations. The

algorithm stops if the objective function value has not been improved within the last

certain number of iterations [17].

 In this paper, termination manner belongs to the way that run the algorithm and the

best objective function value obtained in each iteration is recorded and compared with

that obtained in earlier iterations. The algorithm stops by the number of iterations.

4. The Modified Procedure

4.1 Preliminaries

 The minimal spanning tree problem was originally stated by Boruvka in 1926.

In many references, several algorithms are noticed to solve the minimal spanning tree

problem, such as Prim’s algorithm which repeatedly adds edge (u,v) of minimum

weight such that u Vnew (Vnew is selected vertex) and v V - Vnew, and add v to Vnew

until V= Vnew [14]. Another algorithm as Kruskal’s algorithm sorts edges and then adds

edge of minimal weight first such that no cycles are created [9]. These algorithms are

examples of the minimal spanning tree algorithms which are often referred to as Greedy

algorithms. Such algorithms do not yield globally optimal solutions [22].

 Additional steps are proposed here to the spanning tree algorithm to create many

neighbor states (neighbor solutions) in graph. These states will have different weights

(different solutions). The uncontinuing Greedy algorithm yields globally optimal

solutions. Just like Prim’s and Kruskal’s algorithms, these additional steps are based on

the minimal spanning tree algorithm. Another reason; a graph often contains

redundancy in that there can be multiple paths between some or among all nodes.

Therefore, the proposed additional steps (modified spanning tree algorithm) visit all

neighbor solutions in the search space. These steps may force us later to follow a “bad

 A Survey of Two Optimization Methods to …

 123

edge” to explorer all probabilities solutions in graph tree (neighbors in search space). A

survey of two algorithms (simulated annealing algorithm, ant colony optimization) is

given here and can reach optimal solution.

4.2 The Proposed Steps

 Figure (2-a) tree graph illustrates the following proposed steps:

Step 1

 Input the connected network with n of nodes

 Let C = 0, solution = 0, C' = n

Step 2

 Choose a short weight of edge between any nodes in connected network

 that represent as edge (i,j).

Step 3

 Assigned the two nodes i, j from connected set in C as C = {i, j}.

 The remaining nodes in the network (unconnected set of nodes) are assigned in C'

 as C' = {q,m}.

Step 4

 For each node in C do following:

 { if we select the node i then the node j is the closest node to the node i, the two

 nodes i and j in C as C = {i, j}, and edge (i,j) will be in the minimum spanning

 tree}.

Step 5

 Select arbitrarily, one of the node’s successors in set C

 { the successors of nodes i, j is m, q}.

 { the edges are edge (i, m), edge (i, q), edge (j, m)}.

Step 6

 Compute the solution as solution = solution + edge’s weight

 {for example solution = solution + edge’s weight (i,m)}

Step 7

 Update the C and C' by adding the new node m to C and deleting from it

 C' as C = {i , j, m}.

 Step 8

 If C' = ø goto step 9 {Test the set C'}

 Else

 Repeat step 5

Step 9

 Print the solution and the path of nodes in graph

Step 10

 End

Figure (2-b) illustrates the proposed steps graphically. Figure (3) illustrates the

flowchart of simulated annealing algorithm to solve spanning tree problem. Figure (4)

j

i

q

m

Figure (2-a). Tree graph

 Isra N. Alkallak and Ruqaya Z. Sha’ban

 124

illustrates the flowchart of ant colony optimization algorithm to solve minimal spanning

tree problem.

Figure (2-b). Proposed steps graphically

2

1

3

4

1

3

5
3

1

5

3

1

2

3

4

5

3
1

3

4

5 3
1

1

5

3

1

2

3

4

3

1 4

3

4
3

1 2
1

Error, because violation of

problem constraints (cycle)

Error, because violation of

problem constraints (cycle)

C={1,2,3}

C'={4}

Solution =6

C={1,2}

C'={3,4}

Solution =1

Here, Choose randomly randomly
1

5

3

1
2

3

4

3

4 3

5

3

3

1

4

1 2 1

Here, Choose randomly

C={1,2,3,4}

 C'={empty}

Solution =9 is the final result

Short length=1

2 1 1

 A Survey of Two Optimization Methods to …

 125

IF Df < = 0

Initialize the value of

t = temperature, i = 1

loop = numbers of loop

path = 0, solution = 0, r is an integer

random number between [0,1]

 by calling the function *)Create a neighbor solution (sol

(proposed steps)

 *)Calculate the difference between the (sol

and (sol) called Df

Ye

s

No

Call the function (proposed steps) to create initial solution

Best solution = Initial solution

IF t > 0

IF i < loop

)*Best solution = (sol

u = generate random integer between [0,1]

e = exp (-Df / t)

IF e>u)*Best solution = (sol

i =i+1

Yes

No

t *r -t = t

Yes

No
Print the best

solution

No

Yes

Figure (3). Flowchart of simulated annealing

algorithm to solve spanning tree problem

En

d

end

 Isra N. Alkallak and Ruqaya Z. Sha’ban

 126

No

Figure (4). Flowchart of ant colony algorithm

to solve minimal spanning tree problem

n = number of ants & number

 of nodes; p = 0.2

ph =1 for all edges; it =3; L=length of all edges in graph; i =0; S =

the length of the path was built by the ant

i = i+1

ant built the path by call the proposed steps in section (4-2)

ph+ Δ ph= ph; S/ L= phΔ

IF
it = 0

Print the path & length of

solution (optimal solution)

it = it -1

ph) * p -= (1 ph

n = n - 1

No Yes

IF

n = 0

Yes

End

 A Survey of Two Optimization Methods to …

 127

4.3 Search Space (Configuration) of Problem

 The Search space is the space of all possible solutions that can be considered

(visited) during the search. In this paper, the nodes, edges and edge’s weights of search

space in are shown in Table (1)

Table (1). Edges of tree graph

4.4 Initial Solution (Configuration)

 The initial configuration is specified at the beginning of the search in the search

space. In this paper, the above steps in section (4-2) are used to generate the initial

solution.

4.5 Neighborhood Structure

 An immediate neighbor of the current trial solution is the one that is reached by

adding a single link and then deleting one of the other links in the cycle that is formed

by the addition of this link [20]. The neighborhoods contain all the feasible route

configurations that can be obtained from the current solution. The neighborhood

generally consists of solutions obtained by making small changes in the previous

solution.

 In this paper, a neighborhood configuration is constructed by making a single

swap of current values of two arbitrary successors. The simulated annealing algorithm

checks the objective function between the current solution and neighbor solution. The

ant colony optimization algorithm is used also for the same purpose after evaluating the

whole set of neighboring solutions and selecting the best of the objective functions.

4.6 Move Set for Spanning Tree

In Figure (5), number of states to generate neighbor solution are illustrated.

4.7 ETIME Function

 When implementing the simulated annealing algorithm, the algorithm is still

able to converge with duration of time, depending on the ETIME Elapsed time function

in MATLAB 6.5 language. ETIME (T1, T0) returns the time in seconds that has elapsed

between vectors T1 and T0. The two vectors must be of six elements long, in the

format returned by CLOCK given by:
 T = [Year Month Day Hour Minute Second]

Tree Graph Node number Edge Edge’s Weight

1 (1,2),(1,3),(1,4) 1,5,2

2 (2,1) 1

3 (3,1),(3,4) 5,3

4 (4,1),(4,3) 2,3

1

4

2

3

2
5

1

3

1

4

2

3

1

4

2

3

1

4

2

3

Figure (5). states of neighbor solution

 Isra N. Alkallak and Ruqaya Z. Sha’ban

 128

 Time differences over many orders of magnitude are computed accurately. The

result can be thousands of seconds if T1 and T0 differ in their first five components or

small fractions of seconds if the first five components are equal.
 T0 = clock;
 Operation
 T1=clock

 ETIME (T1, T0)
The time in seconds needed to perform a simulated annealing algorithm with minimal

spanning tree is illustrated in Table (2).

4.8 Objective Function

 An optimization problem, of course, comes with an objective function to be

minimized. In this paper, the energy function for minimal spanning tree include that

there should be:

1. A subgraph of graph G, (spanning tree) which contains all nodes from G.

2. Spanning tree contains no cycle.

3. The weight of edges in spanning tree that is minimized.

 Many attempts are faced to find a better solution. In implementation the

simulated annealing algorithm has different temperature mapping causing too much

vibration between current and next state to reach the solution. Since, differences

between the next and current solution are small, probability of switching over becomes

close to one, while temperature is either not growing or growing too slowly in the

algorithm to reach the solution. The algorithm runs efficiently several times.

5. Experimental Results and Discussion

5-1. Results of Simulated Annealing Algorithm

 A program is written in MATLAB 6.5 language. The core of the code

programming to implement the simulated annealing algorithm consists of many

functions, and the program makes use of other functions to perform the changes in the

solution space. The input parameters of the program are the number of iterations, the

search space, the matrix contains the number of the nodes, distances between these

nodes (weights of the edges), control parameter or temperature decrease rate, and the

stopping rule. The final output of the program is a table contains the value of

temperature, value of loop, the best solution, time, path, current solution, old solution,

difference between them, probability value and random value as illustrated in Table (2)

and Appendix. The search is terminated after reaching the optimal solution, or after

some number of iterations without an improvement in the objective function value.

Table (2). Some results of simulated annealing algorithm

Value of

temperature
Value of loop The best solution Time path

5 5 8 248.27770 [1 2,1 3,1 4]

5 7 8 92.7780 [1 2,1 4,1 3]

5 10 6 256.9790 [1 2,1 4,4 3]

10 5 8 157.7290 [1 2,1 3,1 4]

10 10 6 336.3050 [1 2,1 4,4 3]

10 50 6 718.2780 [1 2,1 4,4 3]

100 5 8 162.4170 [1 2,1 3,1 4]

 A Survey of Two Optimization Methods to …

 129

100 50 9 1.0522e+003 [1 2,1 3,3 4]

Below some solutions in Table (2) as resulting solution is 8 and the path from beginning

to the end of the solution is [1 2 ,1 3, 1 4] as illustrated graphically in Figure (6)

Another the resulting solution is 9 and the path from beginning to the end of the solution

is [1 2 ,1 3, 3 4] as illustrated graphically in Figure (7)

The resulting best solution is 6 and the path from beginning to the end of the best

solution is [1 2 ,1 4, 4 3] as illustrated graphically in Figure (8)

For example, the results in appendix illustrate the algorithm begins a high temperature t

is 5. The number of iterations is 10. Call the proposed steps to create initial solution.

Suppose the initial solution is best solution. Exam temperature is greater than zero and

number of iterations is not equal zero to continue the algorithm. Call the proposed steps

to create neighbor solution. Calculate the difference (Df) between neighbor solution and

old solution. If difference less than or equal zero then neighbor solution is best solution

otherwise generate random integer between [0,1] as u. Calculate exp (-(Df / t) by e. If e

greater than u then neighbor solution is best solution otherwise increment iteration by 1.

These complete one iteration of the simulated annealing procedure and continue for

loop. Choose r is an integer random number between [0,1]. The temperature is then

reduced according to the roll t = t - r * t. Temperature initially is very hot and then at a

succession of decreasing temperatures. The algorithm is terminated when a sufficiently

small temperature is obtained or a small enough change in the function values is found.

Finally, the results in appendix illustrate the temperature near by zero and the best

solution is 6.

 5-2. Results of Ant Colony Optimization Algorithm

 The code programming to implement the ant colony optimization algorithm that

simulates this research consists also of many functions. The ant starts the graph traversal

Figure (8). best solution of spanning tree

1

4

2

3

2 1 1

4

2

1

4

2

3

1

4

2

3

1
2

1

2

3

1 2

1

2

3

Figure (6). Solution of spanning tree

Figure (7). Solution of spanning tree

 Isra N. Alkallak and Ruqaya Z. Sha’ban

 130

from an arbitrary selected node. It traverses edges until all edges are finished. Initial

parameters are loaded as iteration, initial pheromone value, number of ants (equal

number of nodes in the graph). Each of the edges is set with an initial pheromone value

of 1. Ants are individually placed on arbitrary nodes.

 After a number of ants have traversed the graph known as one iteration of ant

colony optimization, the amount of pheromone is also evaporated from all edges,

pheromone evaporation occurs in nature and in ant colony optimization. It can help the

ants escape from local minimal. When examining the ant colony optimization

algorithm, it can be seen that ants will initially tend to freely explorer the whole

solution space, leading to many different solutions, however, overtime, pheromone will

accumulate only on edges that are part of the those traversals. The pheromones are set to

random initial values. They pheromones are necessary for later iterations of the

algorithm, when they reinforce the traversal of the graph edges that lead to a good

solution.

 When traversing from a node i to a node j, the probability of an ant k choosing

the edge that connects the node i with node j is given by the additional steps in section

(4-2), and put the pheromone for every traversed edge.

 In this paper, after terminating of iterations and an artificial ant has finished

constructing solutions, the pheromone is updated. The updating of pheromone depends

on the solution; is it feasible or not? The values of pheromones are sorted by

descending. The maximum value of pheromone is selected with the solution. This

solution is the best. The rest pheromones are ignored. After all ants have constructed

solutions, the solutions are compared to those obtained by other ants. The minimum

value of solution is the optimal one. Since no ant using the edges, had minimum values

of pheromone, there is no additional pheromone given. Pheromone evaporation reduces

the intensity of pheromone values on these edges. This will make such edges less

attractive for future ants. The algorithm will proceed until a stopping criteria is met.

 Explanation of how ants construct the solution about tree graph of Figure (1), is

as follows: There are 4 nodes, (assuming that the number of ant is 4 also), each ant will

start tour from different nodes; for example, the first ant starts from node 1, the second

ant starts from node 2, and so on.

Iteration 1

 The first ant starts from node 1; there are three neighboring nodes to be visited.

Any other ant also has three neighboring nodes to be visited. The probability of

choosing any edges is calculated using the proposed steps in section (4-2) with the

problem constraints. Table (3) illustrates the track of each ant in the colony in iteration

1.Table (4) illustrates repeated edges, ant’s number visiting the edges, numbers of

repeated edges and the pheromone update after performing pheromone evaporation

procedure in iteration 1.

Table (3). First track Table (4). Calculation pheromone for first track

new pheromone

ph = (1- p) * ph

number

s of

repeate

d edges

ant’s

number

visiting

the edges

repeated

edges ∆ph = L / S
length

of path

(S)
paths of each

ant in graph ants

5.9333 4 1,2,3,4 1 2 1.8333 6 [1 2,1 4,4 3] ant1
5.9333 4 1,2,3,4 1 4 1.3750 8 [2 1,1 4,1 3] ant2
3.7333 2 1,4 4 3 1.3750 8 [3 1,1 4,1 2] ant3

3 2 2,3 1 3 1.8333 6 [4 1, 4 3,1 2] ant4

 A Survey of Two Optimization Methods to …

 131

The resulting best solution is 6 and the path from beginning to the end of the best

solution is [1 4 ,1 2, 3 4] as illustrated graphically in Figure (9)

Iteration 2

 Also in iteration 2, the same process is performed and repeated as in the first

iteration. The initial pheromone values on all edges are changed. Table (5) illustrates the

track of each ant in the colony, Table (6) illustrates repeated edges, ant’s number

visiting the edges, numbers of repeated edges and the pheromone update after

pheromone evaporation procedure is performed in iteration 2.

Table (5). Second track Table (6). Calculation pheromone for second track

In Iteration 2, the best solution is 6 and the path from beginning to the end of the best

solution is [1 2, 1 4, 3 4] as illustrated graphically in Figure (10).

Iteration 3

 The same process performed in the first iteration is repeated here. The initial

pheromone values on all edges are modified. Table (7) illustrates the track of each ant in

the colony, Table (8) illustrates the repeated edges, ant’s number visiting the edges,

numbers of repeated edges and the pheromone update after pheromone evaporation

procedure is performed in iteration 3.

Table (7). Third track Table (8). Calculation pheromone for third track

new pheromone

ph = (1- p) * ph

numbers

of

repeated

edges

ant’s

number

visiting

the edges

repeate

d edges ∆ph = L / S
length

of path

(S)
paths of each

ant in graph ants

9.2689 4 1,2,3,4 1 2 1.3750 8 [1 2,1 3,1 4] ant1
7.3133 2 1,4 1 4 1.2222 9 [2 1,1 3,3 4] ant2
6.4089 3 2,3,4 3 4 1.2222 9 [3 1,3 4,1 2] ant3
5.4556 3 1,2,3 1 3 1.8333 6 [4 1,4 3,1 2] ant4

new pheromone

ph = (1- p) * ph

numbers

of

repeated

edges

ant’s

number

visiting

the

edges

repeated

edges ∆ph = L / S
length

of path

(S)
paths of each

ant in graph ants

12.1818 4 1,2,3,4 1 2 1.3750 8 [1 2,1 3,1 4] ant1
10.6173 3 1,2,3 1 4 1.8333 6 [2 1,1 4,4 3] ant2
7.6644 3 1,3,4 1 3 1.3750 8 [3 1,1 2,1 4] ant3

Figure (9). Solution of iteration 1

1

4

2

3

4

1
1

4

2

1

4

2

3

1

4

2
1 2

Figure (10). Solution of iteration 2

 Isra N. Alkallak and Ruqaya Z. Sha’ban

 132

Here, the best solution is 8 and the path from beginning to the end of the best solution is

[1 2,1 4,1 3] as illustrated graphically in Figure (11).

 The search is terminated after reaching the optimal solution or after repeating

some number of iterations without an improvement in the objective function value. In

our example, the optimal solution (minimum value of length of path) is 6.

6. Conclusions

 Simulated annealing algorithm and ant colony optimization are well suited for

solving combinatorial optimization problems. Simulated annealing has proven an

effective technique for problems where there are many solutions and no efficient way to

derive which one is the best. A local solution is a state that is not the best solution but

where any change from the current state update the cost. Ant colony optimization

algorithm is easy to implement and is more efficient than the simulated annealing

algorithm in computation time. The proposed steps perform significantly better than

manual method. Simulated annealing and ant colony optimization perform better than

any local optimization method and yield a solution close to global optimum. Despite the

classical method (manual method) can give the exact solution, it takes a large space and

needs more computations. Therefore, the proposed solution facilitates the difficultly in

solving those problems that are proportional to the size, as the problem space and the

number of nodes increased. The proposed solution will be close to be the global

optimum. Moreover, our results show the advantages of this new approach over more

traditional (manual approach).

REFERENCES

[1] Dorigo, M. and Blum, CH., 2005, Ant Colony Optimization Theory: A computer

 science, Elsevier, 344.pp. 243-278. www.elsevier.com/locate/tcs

[2] Dorigo, M., Maniezzo, V. and Colorni A., 1996, The Ant System: Optimization

 by a Colony of Cooperating Agents, IEEE, Vol.26, No.1, pp.1-13.

[3] Eglese R., W., 1990, Simulated Annealing: A Tool for Operational Research,

 European Journal of Operational Research, Vol. 46, pp.271- 281.

[4] Jalali, M.R., Afshar, A. and Marino, M.A., 2006, Improved Ant Colony

 Optimization Algorithm for Reservoir Operation, Scientia Iranica, vol.13, No.3,

 pp. 295-302.

[5] Janaki Ram, D., Sreenivas, T. H. and Subramaniam, G. K., 1996, Parallel

 Simulated Annealing Algorithms, Journal of Parallel and Distributed

 Computing, Vol.37,No.0121, pp.207-212.

[6] Jansen, M. B. J., Pooch, U., 1997, An Information Retrieval Application for

 simulated annealing, The 2nd ACM Conference on Digital Libraries.

 Philadelphia, PA., 259-260.

6.5938 1 2 4 3 1.3750 8 [4 1,1 3,1 2] ant4

1

4

2

3

1

4

2
1 2

Figure (11). Solution of iteration 3

http://www.elsevier.com/locate/tcs

 A Survey of Two Optimization Methods to …

 133

[7] Kirkpatrick, S. C. D., Gelatt, Jr and Vecchi M. P. 1983, Optimization By

 Simulated Annealing, Science, Vol. 220, No. 4598, pp. 671-680.

[8] Knowles, J. and Corne, D., 2000, A New Evolutionary Approach to the Degree-

 Constrained Minimum Spanning Tree Problem, IEEE Transactions on

 Evolutionary Computation, Vol. 4, No. 2.

[9] Kruskal, J. B., 1956, On the Shortest Spanning Subtree of a Graph and the

 Traveling Salesman Problem. Proc, Am. Math. Soc. 7(1), p 48-50.

[10] kwok-ching Lam, J., 1989, An Efficient Simulated Annealing Schedule, Ph.D.,

 Computer Science, Yale University.

[11] Misevicius, A, Blazauskas, T., Blonskis, J., smolinskas, J., 2004, A Overview of

 Some Heuristic Algorithms for Combinatorial Optimization Problems,

 Informacines Technologijos. Ir Valdymas, No.1 (3).

[12] Mushi, A. R., 2007, Simulared Annealing Algorithm for the Examinations

 Timetabling Problem, African Journal of Science and Technology (AJST), Vol.

 8, No. 2, pp. 24-32.

[13] Patwary, M. A., 2006, Hardness of Finding Minimum Face-Spanning

 Subgraphs of Plane Graphs, M.Sc., Computer Sciences and Engineering,

 Bangladesh University.

[14] Prim, R. C., 1957, Shortest Connection Networks and Some Generalizations.

 Bell Systems Technical JRnl. p1389-1410

[15] Sahu, A., Tapadar, R., 2007, Solving the Assignment Problem Using Genetic

 Algorithm and Simulated Annealing, IAENG International Journal of Applied

 Mathematics, 36:1, IJAM_36_1_7.

[16] Sharma, S. K. and Lees, B. G., 2004, A Comparison of Simulated Annealing and

 Gis Based Mola for Solving the Problem of Multi-objective Land Use

 Assessment and Allocation, MCDM, whistler, B.C. Canada. August 6-11.

[17] Solimanpur, M., Vrat, P. and Shankar, R., 2004, Ant Colony Optimization

 Algorithm to the Inter-Cell Layout Problem in Cellular Manufacturing,

 European Journal of Operational Research 157, pp.592-606.

 www.elsevier.com/locate/dsw

[18] Taha, H. A., 2003, Operation Research: An introduction, seventh, edition,

 Prentice Hall, pearson Education, International, Inc.

[19] Taillard, E.D., Gambardella, L. M., 1997, Adaptive memories for the quadratic

 assignment problem, Technical Report IDSIA-87-97, IDSIA, Lugano,

 Switzerland.

[20] Thamilselvan, R. and Balasubramanie, P., 2010, Integration of Metaheuristic

 Algorithms for Minimum Spanning Tree, (IJCNS)International Journal of

 Computer and Network Security,Vol.2, No. 2

[21] Thangavel, K, Karnan, M., Jeganathan, P., Petha Lakshmi, A., Sivakumar, R.

 and Geetharamani, G., 2006, Ant Colony Algorithms in Diverse Combinational

 Optimization Problems – A Survey, ACSE Journal, Vol. 6, No. 1.

[22] Winston, W. L., 1994, Operation Research Applications and Algorithms, Third

 Edition, printed in the United States of America wadsworth, Inc.

[23] Zhang, J., and Zhou, J., 2006, Models and Hybrid Algorithms for Inverse

 Minimum Spanning Tree Problem with Stochastic Edge Weights, World Journal

 of Modeling and Simulation, England, UK, Vol. 2, No. 5, pp. 297-311.

http://www.elsevier.com/locate/dsw

 Isra N. Alkallak and Ruqaya Z. Sha’ban

 134

Appendix

The results of simulated annealing algorithm about example in figure (1):
 Tempe. Loop current sol old_sol deferens prop rand best_sol

 5.0000 1.0000 9.0000 9.0000 0 0 0 9.0000
 5.0000 2.0000 9.0000 9.0000 0 0 0 9.0000
 5.0000 3.0000 6.0000 9.0000 -3.0000 0 0 6.0000
 5.0000 4.0000 8.0000 6.0000 2.0000 0.6703 0.6813 6.0000
 5.0000 5.0000 6.0000 8.0000 -2.0000 0.6703 0.6813 6.0000
 5.0000 6.0000 9.0000 6.0000 3.0000 0.5488 0.7857 6.0000
 5.0000 7.0000 8.0000 9.0000 -1.0000 0.5488 0.7857 8.0000
 5.0000 8.0000 8.0000 8.0000 0 0.5488 0.7857 8.0000
 5.0000 9.0000 8.0000 8.0000 0 0.5488 0.7857 8.0000
 5.0000 10.0000 8.0000 8.0000 0 0.5488 0.7857 8.0000
 4.1823 1.0000 8.0000 8.0000 0 0.5488 0.7857 8.0000
 4.1823 2.0000 8.0000 8.0000 0 0.5488 0.7857 8.0000
 4.1823 3.0000 9.0000 8.0000 1.0000 0.7873 0.7590 9.0000
 4.1823 4.0000 6.0000 9.0000 -3.0000 0.7873 0.7590 6.0000
 4.1823 5.0000 6.0000 6.0000 0 0.7873 0.7590 6.0000
 4.1823 6.0000 6.0000 6.0000 0 0.7873 0.7590 6.0000
 4.1823 7.0000 8.0000 6.0000 2.0000 0.6199 0.8609 6.0000
 4.1823 8.0000 8.0000 8.0000 0 0.6199 0.8609 8.0000
 4.1823 9.0000 6.0000 8.0000 -2.0000 0.6199 0.8609 6.0000
 4.1823 10.0000 9.0000 6.0000 3.0000 0.4881 0.0678 9.0000
 2.9490 1.0000 9.0000 9.0000 0 0.4881 0.0678 9.0000
 2.9490 2.0000 8.0000 9.0000 -1.0000 0.4881 0.0678 8.0000
 2.9490 3.0000 6.0000 8.0000 -2.0000 0.4881 0.0678 6.0000
 2.9490 4.0000 8.0000 6.0000 2.0000 0.5075 0.3490 8.0000
 2.9490 5.0000 8.0000 8.0000 0 0.5075 0.3490 8.0000
 2.9490 6.0000 6.0000 8.0000 -2.0000 0.5075 0.3490 6.0000
 2.9490 7.0000 6.0000 6.0000 0 0.5075 0.3490 6.0000
 2.9490 8.0000 6.0000 6.0000 0 0.5075 0.3490 6.0000
 2.9490 9.0000 8.0000 6.0000 2.0000 0.5075 0.4106 8.0000
 2.9490 10.0000 9.0000 8.0000 1.0000 0.7124 0.9525 8.0000
 0.1516 1.0000 9.0000 9.0000 0 0.7124 0.9525 9.0000
 0.1516 2.0000 8.0000 9.0000 -1.0000 0.7124 0.9525 8.0000
 0.1516 3.0000 6.0000 8.0000 -2.0000 0.7124 0.9525 6.0000
 0.1516 4.0000 6.0000 6.0000 0 0.7124 0.9525 6.0000
 0.1516 5.0000 6.0000 6.0000 0 0.7124 0.9525 6.0000
 0.1516 6.0000 8.0000 6.0000 2.0000 0.0000 0.4231 6.0000
 0.1516 7.0000 8.0000 8.0000 0 0.0000 0.4231 8.0000
 0.1516 8.0000 8.0000 8.0000 0 0.0000 0.4231 8.0000
 0.1516 9.0000 8.0000 8.0000 0 0.0000 0.4231 8.0000
 0.1516 10.0000 8.0000 8.0000 0 0.0000 0.4231 8.0000
 0.0357 1.0000 9.0000 8.0000 1.0000 0.0000 0.5081 8.0000
 0.0357 2.0000 9.0000 9.0000 0 0.0000 0.5081 9.0000
 0.0357 3.0000 8.0000 9.0000 -1.0000 0.0000 0.5081 8.0000
 0.0357 4.0000 9.0000 8.0000 1.0000 0.0000 0.4281 8.0000
 0.0357 5.0000 9.0000 9.0000 0 0.0000 0.4281 9.0000
 0.0357 6.0000 8.0000 9.0000 -1.0000 0.0000 0.4281 8.0000
 0.0357 7.0000 6.0000 8.0000 -2.0000 0.0000 0.4281 6.0000
 0.0357 8.0000 8.0000 6.0000 2.0000 0.0000 0.8947 6.0000
 0.0357 9.0000 6.0000 8.0000 -2.0000 0.0000 0.8947 6.0000
 0.0357 10.0000 9.0000 6.0000 3.0000 0.0000 0.7763 6.0000
 0.0271 1.0000 8.0000 9.0000 -1.0000 0.0000 0.7763 8.0000
 0.0271 2.0000 9.0000 8.0000 1.0000 0.0000 0.6897 8.0000
 0.0271 3.0000 8.0000 9.0000 -1.0000 0.0000 0.6897 8.0000
 0.0271 4.0000 8.0000 8.0000 0 0.0000 0.6897 8.0000
 0.0271 5.0000 6.0000 8.0000 -2.0000 0.0000 0.6897 6.0000
 0.0271 6.0000 8.0000 6.0000 2.0000 0.0000 0.5262 6.0000
 0.0271 7.0000 8.0000 8.0000 0 0.0000 0.5262 8.0000
 0.0271 10.0000 9.0000 6.0000 3.0000 0.0000 0.6434 6.0000

 Tempe. Loop current sol old_sol deferens prop rand best_sol

 0.0112 1.0000 9.0000 9.0000 0 0.0000 0.6434 9.0000
 0.0112 2.0000 8.0000 9.0000 -1.0000 0.0000 0.6434 8.0000
 0.0112 3.0000 9.0000 8.0000 1.0000 0.0000 0.4899 8.0000
 0.0112 4.0000 9.0000 9.0000 0 0.0000 0.4899 9.0000
 0.0112 5.0000 9.0000 9.0000 0 0.0000 0.4899 9.0000
 0.0112 6.0000 6.0000 9.0000 -3.0000 0.0000 0.4899 6.0000
 0.0112 7.0000 8.0000 6.0000 2.0000 0.0000 0.8155 6.0000
 0.0112 8.0000 6.0000 8.0000 -2.0000 0.0000 0.8155 6.0000
 0.0112 9.0000 9.0000 6.0000 3.0000 0.0000 0.7899 6.0000
 0.0112 10.0000 6.0000 9.0000 -3.0000 0.0000 0.7899 6.0000
 0.0093 1.0000 8.0000 6.0000 2.0000 0.0000 0.2660 6.0000
 0.0093 2.0000 9.0000 8.0000 1.0000 0.0000 0.6400 6.0000
 0.0093 3.0000 8.0000 9.0000 -1.0000 0.0000 0.6400 8.0000
 0.0093 4.0000 8.0000 8.0000 0 0.0000 0.6400 8.0000
 0.0093 5.0000 8.0000 8.0000 0 0.0000 0.6400 8.0000
 0.0093 6.0000 6.0000 8.0000 -2.0000 0.0000 0.6400 6.0000
 0.0093 7.0000 6.0000 6.0000 0 0.0000 0.6400 6.0000
 0.0093 8.0000 6.0000 6.0000 0 0.0000 0.6400 6.0000
 0.0093 9.0000 6.0000 6.0000 0 0.0000 0.6400 6.0000
 0.0093 10.0000 8.0000 6.0000 2.0000 0.0000 0.8896 6.0000
 0.0020 1.0000 9.0000 8.0000 1.0000 0.0000 0.4642 6.0000
 0.0020 2.0000 8.0000 9.0000 -1.0000 0.0000 0.4642 8.0000
 0.0020 3.0000 8.0000 8.0000 0 0.0000 0.4642 8.0000
 0.0020 4.0000 6.0000 8.0000 -2.0000 0.0000 0.4642 6.0000
 0.0020 5.0000 9.0000 6.0000 3.0000 0 0.2737 6.0000
 0.0020 6.0000 8.0000 9.0000 -1.0000 0 0.2737 8.0000
 0.0020 7.0000 9.0000 8.0000 1.0000 0.0000 0.7346 8.0000
 0.0020 8.0000 6.0000 9.0000 -3.0000 0.0000 0.7346 6.0000
 0.0020 9.0000 8.0000 6.0000 2.0000 0 0.7054 6.0000
 0.0020 10.0000 6.0000 8.0000 -2.0000 0 0.7054 6.0000
 0.0009 1.0000 9.0000 6.0000 3.0000 0 0.6825 6.0000
 0.0009 2.0000 8.0000 9.0000 -1.0000 0 0.6825 8.0000
 0.0009 3.0000 9.0000 8.0000 1.0000 0 0.7017 8.0000
 0.0009 4.0000 8.0000 9.0000 -1.0000 0 0.7017 8.0000
 0.0009 5.0000 8.0000 8.0000 0 0 0.7017 8.0000
 0.0009 6.0000 8.0000 8.0000 0 0 0.7017 8.0000
 0.0009 7.0000 8.0000 8.0000 0 0 0.7017 8.0000
 0.0009 8.0000 9.0000 8.0000 1.0000 0 0.3459 8.0000
 0.0009 9.0000 9.0000 9.0000 0 0 0.3459 9.0000
 0.0009 10.0000 8.0000 9.0000 -1.0000 0 0.3459 8.0000
 0.0004 1.0000 8.0000 8.0000 0 0 0.3459 8.0000
 0.0004 2.0000 8.0000 8.0000 0 0 0.3459 8.0000
 0.0004 3.0000 6.0000 8.0000 -2.0000 0 0.3459 6.0000
 0.0004 4.0000 8.0000 6.0000 2.0000 0 0.4826 6.0000
 0.0004 5.0000 8.0000 8.0000 0 0 0.4826 8.0000
 0.0004 6.0000 9.0000 8.0000 1.0000 0 0.6987 8.0000
 0.0004 7.0000 8.0000 9.0000 -1.0000 0 0.6987 8.0000
 0.0004 8.0000 8.0000 8.0000 0 0 0.6987 8.0000
 0.0004 9.0000 9.0000 8.0000 1.0000 0 0.7090 8.0000
 0.0004 10.0000 8.0000 9.0000 -1.0000 0 0.7090 8.0000
 0.0001 1.0000 8.0000 8.0000 0 0 0.7090 8.0000
 0.0001 2.0000 6.0000 8.0000 -2.0000 0 0.7090 6.0000
 0.0001 3.0000 8.0000 6.0000 2.0000 0 0.0799 6.0000
 0.0001 4.0000 9.0000 8.0000 1.0000 0 0.9067 6.0000
 0.0001 5.0000 9.0000 9.0000 0 0 0.9067 9.0000
 0.0001 6.0000 9.0000 9.0000 0 0 0.9067 9.0000
 0.0001 7.0000 8.0000 9.0000 -1.0000 0 0.9067 8.0000
 0.0001 8.0000 9.0000 8.0000 1.0000 0 0.5343 8.0000
 0.0001 9.0000 6.0000 9.0000 -3.0000 0 0.5343 6.0000
 0.0001 10.0000 8.0000 6.0000 2.0000 0 0.8672 6.0000

