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ABSTRACT 
     The paper tackled a survey of two optimization methods to study spanning tree problem 

by modifying the   spanning tree problem to generate all of possible solutions in undirected tree 

graph with simulated annealing algorithm and ant colony optimization algorithm. These 

algorithms are two of the optimization methods to find optimal solution from many of solutions 

in search space. A program is written in MATLAB 6.5 language to simulate these two 

algorithms with spanning tree problem. The experimental results in this paper show the 

effectiveness and easy implementation of each algorithm to find optimal solution, and to 

perform significantly better than the manual method. 
Keywords: simulated annealing, ant colony, spanning tree. 

 غير الموجه الشجري في البيان الأصغر المطورة ل مسألة الربط الشجري ح استعراض طريقتين أمثليتين ل
 رقية زيدان شعبان  اسراء نذير الكلاك 

 جامعة الموصل كلية الطب،  جامعة الموصلالتمريض،  كلية
 16/03/2011 بحث:تاريخ قبول ال                                  19/07/2010تاريخ استلام البحث: 

 الملخص 
الأمثلية، لدراسة مسألة الربط الشجري من خلال إضفاء بعض  من طرائق استهدف هذا البحث استعراض طريقتين    

التطوير على مسألة الربط الشجري لتوليد جميع الحلول الممكنة في البيان الشجري غير الموجه، مع كلٍ من  خوارزميتي 
معادن، ومستعمرة النمل المثلى  واللتان تعدان من مسائل الأمثلية، لانتقاء الحل الأمثل من بين محاكاة انصهار الصلب في ال

ليحاكي كلتا الخوارزميتين مع المسألة. أثبتت نتائج البحث  6.5العديد من الحلول. تم إعداد برنامج حاسوبي بلغة ماتلاب 
مثل من بين العديد من الحلول في فضاء بحث المسألة عن سهولة مرنة وكفاءة عالية لكل خوارزمية في انتقاء الحل الأ

   استخدام الطرائق اليدوية في إيجاد حل المسألة. 
 . انصهار الصلب، مستعمرة النمل، الربط الشجري الكلمات المفتاحية: 

1. Introduction 
    A network consists of a set of nodes linked by edges (or branches). The notation for 

describing a network is (V, E), where V is the set of nodes, and E is the set of edges 

between pairs of nodes. An edge is said to be directed or oriented if it allows positive flow 

in one direction and zero flow in the opposite direction. Minimal spanning tree algorithm is 

one of the best known problems in combinatorial optimization. Minimal spanning tree is a 

connected and undirected graph with weighted edges; a minimal spanning tree of the graph 

is a least-weight tree connecting all nodes [23]. For the minimal spanning tree problems, 

each edge is assigned a length. The goal of the problem is to select a spanning tree so that 

the total of the lengths of the selected edges is minimized. Given a connected undirected 

graph G = (V,E) and a weight w (u, v) specifying weight of the edge (u, v) for each edge (u, 

v). If (vi , vj)    V, then the two nodes vi & vj are said to be adjacent in G, edge (vi , vj) is 

then said to be incident to nodes vi and vj and vi is a neighbor of vj. A loop is an edge whose 

endpoints are equal [13].  

 A path in G is an order list of distinct nodes (v1,v2,…vq-1,vq)  V, if   v1= vq  a 

closed path containing at least one edge is called a cycle. G is a tree, if G is connected and 

has no cycle. H = (v, e) is called subgraph of G, if v  V and e  E. A subgraph     H = (v, 

e) of G is called a spanning subgraph of G if H contains all the nodes v of G. A spanning 
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tree is a connected network that may involve only a subset of all the nodes of the network 

with no cycle allowed as illustration in Figure (1), [18]. Thus, a spanning tree is a subgraph 

of a graph G, which contains all nodes from G with no cycle. The minimum spanning tree 

of a weighted graph is a minimum weight spanning tree of that graph [8, 13, 18, 22, 23]. 

The network with E nodes, spanning tree is a group of  E-1 edges that connects all nodes of 

the network and contains no loops [22]. 

 

         

 

 

     

 The ground states of a complex physical system such as a solid can be reached 

by heating the system up to some high temperature and then cooling it down slowly. 

This process is called annealing. Annealing method is simulated to solve combinatorial 

optimization problems [10,16]. 

 The ant colony optimization metaheuristic is also a technique for solving 

combinatorial optimization problems. The origin of ant algorithms is to imitate the 

behavior of ants searching for food. Ants are finding sources of food in the several ways 

as they explore the area surrounding their nest in a random manner. While they are 

moving, the ants left a pheromone (chemical trace) on the floor, in such a way that they 

can find their way back to the nest. When they find a source of food, the ants bring food 

back to the nest following the pheromone trace [19]. Therefore, a heuristic method is 

designed toward promising regions of search space containing high quality solutions 

[21].  

 In simulated annealing, a single agent is deployed for a single beam session, 

while ant colony optimization uses multiple agents, each of which has its individual 

decision made based upon collective memory or knowledge [21].   

 The aim of this paper is to find the set of edges connecting all nodes such that 

the sum of the edge lengths from any node to the last one in the graph is minimized by 

the proposed additional steps (modified spanning tree algorithm) i.e., visiting all 

neighbor solutions in the search space. Two methods of heuristic namely; simulated 

annealing and ant colony optimization are summarized and examined to solve the 

combinatorial optimization problems as a minimal spanning tree problem. 

 In this paper, besides this introductory section, section 2 presents the simulated 

annealing algorithm. The ant colony optimization algorithm is described in section 3. 

section 4 contains the modified procedures that are carried on the two prementioned 

algorithms with the steps added for more accurate in passing local minima. 

Experimental results of the modified spanning tree algorithm are examined in section 5. 

This section also contains some valuable discussions. Finally, section 6 concludes this 

paper.        

2.  Simulated Annealing Algorithm 

 In 1953, Metropolis et al. developed a simulation procedure based on the Monte 

Carlo method. In 1983,  Kirkpatrik et al. developed that algorithm after the process of 

cooling glass from a high temperature to a low one, known as annealing. The advanced 
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Figure (1). A weighted tree graph 
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simulated annealing algorithm is therefore an algorithm which simulates the annealing 

process with Metropolis Monte Carlo simulation as a probabilistic acceptance rule. 

Metropolis step allows the system to move consistently toward lower energy states; yet 

still jumps out of local minima probabilistically, when the temperature decreases 

logarithmically [23]. 

 Simulation annealing algorithm is a non-traditional method possessing both 

greedy (deterministic) and random (stochastic) characteristics [15]. The deterministic 

aspect attempts to improve upon the current state using a predefined cost function. 

However, the stochastic aspect occasionally accepts a state that is not an improvement 

[6]. Simulated annealing is a global heuristic technique which tries to avoid falling into 

local optima by accepting bad solutions when specific function conditions are satisfied 

[12]. It has been considered as a good tool for complex nonlinear optimization 

problems. The technique has been widely applied to a variety of problems. One of the 

major drawback of the technique is its very slow convergence. Often the solution space 

of an optimization problem has many local minima. However, in such optimization 

algorithm, a simple local search algorithm proceeds by choosing random initial solution 

and generating a neighbor from that solution. The neighboring solution is accepted if it 

is a cost decreasing transition. The simulated annealing algorithm, though by itself it is a 

local search algorithm, avoids getting trapped in a local minimum by accepting other 

cost increasing neighbors with some probability. In simulated annealing, first an initial 

solution is randomly generated, and a neighbor is found [5].  

 The simulated annealing procedure simulate the process of slow cooling of 

molten metal to achieve the minimum function value in a minimization problem. It is a 

point –by-point method. The algorithm begins with an initial point and a high 

temperature T. A second point is taken at random in the vicinity of the initial point and 

the difference in the function values (∆E) at these two points is calculated. The second 

point is chosen according to the Metropolis algorithm which states that if the second 

point has a smaller function value, the point is accepted; otherwise  the point is accepted 

with a probability exp (-(∆E / T). This completes one iteration of the simulated 

annealing   procedure. 

 In the next generation, another point is created at random in the neighborhood of 

the current point and the Metropolis algorithm is used to accept or reject such point. In 

order to simulate the thermal equilibrium at every temperature, a number of points is 

usually tested at a particular temperature before reducing the temperature. The 

temperature is then reduced according to a temperature schedule called simulated 

annealing schedule (or annealing schedule in short). The term annealing comes from the 

technique of hardening a metal (i.e. finding a state of its crystalline lattice that is highly 

packed) by hammering it, while being initially very hot and then at a succession of 

decreasing temperatures [7]. The algorithm is terminated when a sufficiently small 

temperature is obtained or a small enough change in the function values is found 

[8,10,11,15,16,20]. 

2.1 Cooling Schedules 

 It is important that the cooling function allows sufficient time to explore many 

possible solutions in one level before moving into lower temperature and ultimately 

freezing point. It is also important not to spend too much time on high temperatures, 

where most neighbourhood moves are accepted as this can lead to a wastage of running 

time. A good schedule is expected to spend more time on lower temperatures so as to 

allow for convergence. It is not advisable to spend too much time on low temperatures 
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where most neighbourhood moves are rejected [3]. Starting at a high value of the initial 

control parameter and then decreasing it at a specified rate after completion of solution 

by the rule [12]. 

       Tk  = αT k-1             

where (0 < α < 1) α is a scaling factor and T k-1 &  Tk   are  previous and forward  

temperatures, respectively. The decreased rate is depended on the problem solving.  

 2.2  A Generic Description of the Simulated Annealing Algorithm [10] 

1. Get an initial state with energy x (solution). 

2. Make this initial state be the current state. 

3. Select an initial “high temperature” T. 

4. While the system is “not yet frozen” do 

     Begin 

     While the system is “not yet in thermal equilibrium” do 

            Begin:      

             Pick a random “nearby” state with energy xp .  

             Let ∆x = xp - x. 

             If ∆x <= 0 

                 The newly proposed state becomes the current state, 

             Else 

                  The newly proposed state becomes the current state 

                      With probability = e -∆x / T       

                  Else no change in state (i.e., reject state). 

          End 

   “Reduce the temperature T by ∆T”. 

     End 

5. Output the current state. 

3. Ant Colony Optimization Algorithm 

     Ant colony optimization algorithms are population based   optimization 

approaches that have been applied to solve different combinatorial optimization 

problems. The inspiring source of ant colony optimization   is the foraging behavior of 

real ants. When searching for food, ants initially explore the area surrounding their nest 

in a random manner. As soon as an ant finds a food source, it evaluates the quantity and 

the quality of the food and carries some of it back to the nest. During the return trip, the 

ant deposits a chemical pheromone trail on the ground. The quantity of pheromone 

deposited, which may depend on the quantity and quality of the food, will guide other 

ants to the food source. Indirect communication between the ants via pheromone trails 

enables them to find shortest paths between their nest and food source. This 

characteristic of real ant colonies is exploited in artificial ant colonies in order to solve 

combinatorial optimization problems. Ant colony optimization   algorithms update the 

pheromone values using previously generated solutions. The update aims to concentrate 

the search in regions of the search space containing high quality solutions [1, 17, 19,21]. 

 Ant colony optimization is metaheuristic method. Artificial ants are 

characterized as agents that imitate the behavior of real ants. However, it should be 

noted that an artificial ant colony system has some differences in comparison with a real 

Ant colony system, as follows 
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• Artificial ants have memory.  

• They are not completely blind. 

• They live in an environment where time is discrete. 

On the other hand, an artificial Ant colony system   has several characteristics 

adopted from real ant colony system: 

• Artificial ants have a probabilistic preference for paths with a large amount of 

pheromone. 

• Shorter paths tend to have larger rates of growth in their amount of pheromone. 

• The ants use an indirect communication system based on the amount of the 

pheromone deposited in each path [2, 21]. 

    The key idea is that, when a given ant has to choose between two or more paths. 

The path that was more frequently chosen by other ants in the past will have a 

greater probability of being chosen by the ant. Therefore, trails with greater amount 

of pheromone are synonyms of shorter paths. Ant colony system performs a loop 

containing two basic procedures, namely: 

• A procedure specifying how the ants modify solutions of the problem being 

solved in a probabilistic way. The probability of adding a new item to the current 

partial solution is given by a function that depends on problem and on the amount of 

pheromone deposited by ants on this trail in the past. 

• A procedure to update the pheromone trails are implemented as a function that 

depends on the rate of pheromone evaporation and on the quality of the produced 

solution [21]. 

    In this paper, each ant in the colony chooses an arbitrary edge depended on the 

proposed additional steps with the problem constraints. The procedure continues for 

each ant in the colony has chosen an edge. Finally a set amount of pheromone is added 

to that chosen edge, and the ant in the colony chooses another edge. The amount of 

pheromone added to an edge is obtained by optimal solution 

3.1   Pheromone Update 

 Real ants deposit a substance called pheromone while moving from one point to 

another point. Artificial ants perform this action by adding a value called trace on the 

trail levels of moves chosen by them. The updating of trail levels can be performed 

either after each move or after completion of solution. In 1996, Dorigo et al. have 

experimentally shown that the performance of second way is much better than the first 

[17].  

 In this paper, each edge in the graph is given an initial pheromone value ph 

equal to 1.  There are n nodes in the graph, (assuming that the size of the colony of ant 

is n). Each ant will start its tour from a different node. When all ants finish their tour, 

they will track back and update the pheromone along their path by putting additional 

pheromone Δph. For each edge, the new pheromone value is as follows: 

ph  = ph  + Δph          

with  Δph = L / S       

where L is the summation of all edge’s weight in the graph. S is the length of the path  

built by the ant. 

 The pheromone evaporation (p)is defined is that factor which enables greater 

exploration of the search space and minimizes the chance of premature convergence to 

suboptimal solution by all ants in the colony. Colony optimization algorithm uses an 
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evaporation rate in order to forget previous bad choices at the cost of loosing useful 

information. Pheromone evaporation can help the ants escape from local minimum.  

Where    0 < p <1   [4].   

The pheromone will evaporate is as follows: 

ph   = (1- p) * ph     

In this paper, it is assumed that   p is equal to  0.2. 

 The heuristic information indicates the desirability of assigning the object i to 

the location j. There are several methods to estimate the desirability depending on the 

problem. In this paper, the artificial ants can move from one node in the tree to another 

without including heuristic information. That because the ants move in some 

deterministic way and they visit all edges in the search space depending on the 

constraints of problem. In 1997, Taillard and Gambardella proposed a fast ant colony 

algorithm namely FANT for quadratic assignment problem. In   FANT algorithm, each 

iteration uses only one ant and assignments are made without heuristic information [17]. 

Also in this paper, one of attributes of FANT algorithm  is used without heuristic 

information. 

 3.2  Termination Condition 

     Ant colony optimization algorithm is similar to other metaheuristic such as 

simulated annealing. The ant algorithm can be terminated in several manners, e.g. 

repeating the algorithm for a maximum number of iterations or running for a stipulated 

time. Some researchers run the algorithm and  the best objective function value obtained 

in each iteration is recorded and compared with that obtained in earlier iterations. The 

algorithm stops if the objective function value has not been improved within the last 

certain number of iterations [17]. 

     In this paper, termination manner belongs to the way that run the algorithm and the 

best objective function value obtained in each iteration is recorded and compared with 

that obtained in earlier iterations. The algorithm stops by the number of iterations.   

4.  The Modified Procedure  

4.1  Preliminaries       

 The minimal spanning tree problem was originally stated by Boruvka in 1926.  

In many references, several algorithms are noticed to solve the minimal spanning tree 

problem, such as Prim’s algorithm which repeatedly adds edge (u,v) of minimum 

weight such that u  Vnew  (Vnew  is selected vertex) and v  V -  Vnew, and add v to Vnew 

until V= Vnew [14]. Another algorithm as Kruskal’s algorithm sorts edges and then adds 

edge of minimal weight first such that no cycles are created [9]. These algorithms are 

examples of the minimal spanning tree algorithms which are often referred to as Greedy 

algorithms. Such algorithms do not yield globally optimal solutions [22]. 

 Additional steps are proposed here to the spanning tree algorithm to create many 

neighbor states (neighbor solutions) in graph. These states will have different weights 

(different solutions). The uncontinuing Greedy algorithm yields globally optimal 

solutions. Just like Prim’s and Kruskal’s algorithms, these additional steps are based on 

the minimal spanning tree algorithm. Another reason; a graph often contains 

redundancy in that there can be multiple paths between some or among all nodes. 

Therefore, the proposed additional steps (modified spanning tree algorithm) visit all 

neighbor solutions in the search space. These steps may force us later to follow a “bad 
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edge” to explorer all probabilities solutions in graph tree (neighbors in search space). A 

survey of two algorithms (simulated annealing algorithm, ant colony optimization) is 

given here and  can reach optimal solution.               

4.2 The Proposed Steps 

 Figure (2-a) tree graph illustrates the following proposed steps: 

Step 1  

          Input the connected network with n of nodes 

          Let C = 0, solution = 0, C' = n  

Step 2  

          Choose a short weight of edge between any nodes in connected network   

          that represent as edge (i,j). 

Step 3 

          Assigned the two nodes i, j from connected set in C as C = {i, j}. 

     The remaining nodes in the network (unconnected set of nodes) are assigned in C'   

       as C' = {q,m}. 

Step 4 

          For each node in C do following: 

          { if we select the node i then the node j  is the closest node to the node i,  the two    

 nodes i and j in C as  C = {i, j}, and edge (i,j) will be in the minimum spanning 

 tree}. 

Step 5    

          Select arbitrarily, one of the node’s successors in set C  

          { the successors of nodes i, j is  m, q}. 

          { the edges are   edge (i, m), edge (i, q), edge (j, m)}. 

Step 6 

    Compute the solution as solution = solution + edge’s weight  

    {for example solution = solution + edge’s weight (i,m)} 

Step 7 

    Update the C and C' by adding the new node m to C and deleting from it   

    C'   as   C = {i , j, m}. 

  Step 8 

            If C' = ø goto step 9   {Test the set C'} 

    Else  

    Repeat step 5 

Step 9   

    Print the solution and the path of nodes in graph   

Step 10  

    End 

 

 

 

 

 

 

 

 
Figure (2-b) illustrates the proposed steps graphically. Figure (3) illustrates the 

flowchart of simulated annealing algorithm to solve spanning tree problem. Figure (4) 
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Figure (2-a). Tree graph  
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illustrates the flowchart of ant colony optimization algorithm to solve minimal spanning 

tree problem. 

 

 

 

 
 
 

 

 

 
 
                                                                                                                                                                                  
 

 

 

 

 

 

 

                                                                                                      

                                                                                                           

 

 

 

 

 

 

 

                                                               

                                                                                            

                                                                                                                                                                                                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (2-b). Proposed steps graphically 
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IF Df < = 0 

Initialize the value of 

t = temperature, i = 1 

loop = numbers of loop 

path = 0, solution = 0,  r is an integer 

random number between [0,1] 

 

 

 by calling the function *)Create a neighbor solution (sol

(proposed steps) 

 *)Calculate the difference between the (sol

and (sol) called Df 
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s 

No 

Call the function (proposed steps) to create initial solution 

 
Best solution = Initial solution 

IF t > 0 

IF i < loop 

)*Best solution = (sol 

u = generate random integer between  [0,1] 

e = exp (-Df / t) 

IF e>u )*Best solution = (sol 
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Figure (3). Flowchart of simulated annealing 

algorithm to solve spanning tree problem 
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4.3   Search Space (Configuration) of Problem 

 The Search space is the space of all possible solutions that can be considered 

(visited) during the search. In this paper, the nodes, edges and edge’s weights of search 

space in are shown in Table (1) 

Table (1). Edges of tree graph 

4.4  Initial Solution (Configuration) 

 The initial configuration is specified at the beginning of the search in the search 

space. In this paper, the above steps in section (4-2) are used to generate the initial 

solution.  

4.5  Neighborhood Structure 

     An immediate neighbor of the current trial solution is the one that is reached by 

adding a single link and then deleting one of the other links in the cycle that is formed 

by the addition of this link [20]. The neighborhoods contain all the feasible route 

configurations that can be obtained from the current solution. The neighborhood 

generally consists of solutions obtained by making small changes in the previous 

solution. 

 In this paper, a neighborhood configuration is constructed by making a single 

swap of current values of two arbitrary successors. The simulated annealing algorithm 

checks the objective function between the current solution and neighbor solution. The 

ant colony optimization algorithm is used also for the same purpose after evaluating the 

whole set of neighboring solutions and selecting the best of the objective functions.  

4.6  Move Set for Spanning Tree 

In  Figure (5), number of states to generate neighbor solution are illustrated. 

 

 

 

 

   

 

4.7 ETIME Function 

     When implementing the simulated annealing algorithm, the algorithm is still 

able to converge with duration of time, depending on the ETIME Elapsed time function 

in MATLAB 6.5 language. ETIME (T1, T0) returns the time in seconds that has elapsed 

between vectors T1 and T0.  The two vectors must be of six elements long, in the 

format returned by CLOCK given by: 
         T = [Year Month Day Hour Minute Second]  

Tree Graph Node number Edge Edge’s Weight 

1 (1,2),(1,3),(1,4) 1,5,2 

2 (2,1) 1 

3 (3,1),(3,4) 5,3 

4 (4,1),(4,3) 2,3 
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Figure (5). states of neighbor solution 
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 Time differences over many orders of magnitude are computed accurately. The 

result can be thousands of seconds if T1 and T0 differ in their first five components or 

small fractions of seconds if the first five components are equal. 
       T0 = clock; 
      Operation 
      T1=clock      

 ETIME (T1, T0) 
The time in seconds needed to perform a simulated annealing algorithm with minimal 

spanning tree is illustrated in Table (2).    

4.8 Objective Function 

 An optimization problem, of course, comes with an objective function to be 

minimized. In this paper, the energy function for minimal spanning tree include that 

there should be: 

1. A subgraph of graph G, (spanning tree) which contains all nodes from G. 

2. Spanning tree contains no cycle.  

3. The weight of edges in spanning tree that is minimized.  
 

 Many attempts are faced to find a better solution. In implementation the 

simulated annealing algorithm has different temperature mapping causing too much 

vibration between current and next state to reach the solution. Since, differences 

between the next and current solution are small, probability of switching over becomes 

close to one, while temperature is either not growing or growing too slowly in the 

algorithm to reach the solution. The algorithm runs efficiently  several times.     

5.  Experimental Results and Discussion 

5-1.  Results of Simulated Annealing Algorithm   

 A program is written in MATLAB 6.5 language. The core of the code 

programming to implement the simulated annealing algorithm consists of many 

functions, and the program makes use of other functions to perform the changes in the 

solution space. The input parameters of the program are the number of iterations, the 

search space, the matrix contains the number of the nodes, distances between these 

nodes (weights of the edges), control parameter or temperature decrease rate, and the 

stopping rule. The final output of the program is a table contains the value of 

temperature, value of loop, the best solution, time, path, current solution, old solution, 

difference between them, probability value and random value as illustrated in Table (2) 

and Appendix. The search is terminated after reaching the optimal solution, or after 

some number of iterations without an improvement in the objective function value.  
 

Table (2). Some results of simulated annealing algorithm 

Value of 

temperature 
Value of loop The best solution Time path 

5 5 8 248.27770 [1 2,1 3,1 4] 

5 7 8 92.7780 [1 2,1 4,1 3] 

5 10 6 256.9790 [1 2,1 4,4 3] 

10 5 8 157.7290 [1 2,1 3,1 4] 

10 10 6 336.3050 [1 2,1 4,4 3] 

10 50 6 718.2780 [1 2,1 4,4 3] 

100 5 8 162.4170 [1 2,1 3,1 4] 
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100 50 9 1.0522e+003 [1 2,1 3,3 4] 

 

Below some solutions in Table (2) as resulting solution is 8 and the path from beginning 

to the end of the solution is [1 2 ,1 3, 1 4] as illustrated  graphically in Figure (6) 

 

 

 

 

 

 

 
 

Another the resulting solution is 9 and the path from beginning to the end of the solution 

is [1 2 ,1 3, 3 4] as illustrated  graphically in Figure (7) 

 

  

 

 

 

 

 

  

The resulting best solution is 6 and the path from beginning to the end of the best 

solution is [1 2 ,1 4, 4 3] as illustrated  graphically in Figure (8) 

 

 

  

 

 

 

 

For example, the results in appendix illustrate the algorithm begins a high temperature t 

is 5. The number of iterations is 10. Call the proposed steps to create initial solution. 

Suppose the initial solution is best solution. Exam temperature is greater than zero and 

number of iterations is not equal zero to continue the algorithm. Call the proposed steps 

to create neighbor solution. Calculate the difference (Df) between neighbor solution and 

old solution. If difference less than or equal zero then  neighbor solution is best solution 

otherwise generate random integer between [0,1] as u. Calculate exp (-(Df / t) by e. If e 

greater than u then neighbor solution is best solution otherwise increment iteration by 1. 

These complete one iteration of the simulated annealing procedure and continue for 

loop. Choose r is an integer random number between [0,1]. The temperature is then 

reduced according to the roll  t = t - r * t. Temperature initially is very hot and then at a 

succession of decreasing temperatures. The algorithm is terminated when a sufficiently 

small temperature is obtained or a small enough change in the function values is found. 

Finally, the results in appendix illustrate the temperature near by zero and the best 

solution is 6.  

 5-2.   Results of Ant Colony Optimization Algorithm  

       The code programming to implement the ant colony optimization algorithm that 

simulates this research consists also of many functions. The ant starts the graph traversal 

Figure (8). best solution of spanning tree 
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Figure (6). Solution of spanning tree 

  

Figure (7). Solution of spanning tree   
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from an arbitrary selected node. It traverses edges until all edges are finished. Initial 

parameters are loaded as iteration, initial pheromone value, number of ants (equal 

number of nodes in the graph). Each of the edges is set with an initial pheromone value 

of 1. Ants are individually placed on arbitrary nodes.  

 After a number of ants have traversed the graph known as one iteration of ant 

colony optimization, the amount of pheromone is also evaporated from all edges, 

pheromone evaporation occurs in nature and in ant colony optimization. It can help the 

ants escape from local minimal. When examining the  ant colony optimization 

algorithm, it can be seen that  ants will initially tend to freely explorer the whole 

solution space, leading to many different solutions, however, overtime, pheromone will 

accumulate only on edges that are part of the those traversals. The pheromones are set to 

random initial values. They pheromones are necessary for later iterations of the 

algorithm, when they reinforce the traversal of the graph edges that lead to a good 

solution. 

 When traversing from a node i to a node j, the probability of an ant k choosing 

the edge that connects the node i with node j is given by the additional steps in section 

(4-2), and put the pheromone for every traversed edge.  

 In this paper, after terminating of iterations and an artificial ant has finished 

constructing solutions, the pheromone is updated. The updating of pheromone depends 

on the solution; is it feasible or not? The values of pheromones are sorted by 

descending. The maximum value of pheromone is selected with the solution. This 

solution is the best. The rest pheromones are ignored. After all ants have constructed 

solutions, the solutions are compared to those obtained by other ants. The minimum 

value of solution is the optimal one. Since no ant using the edges, had minimum values 

of pheromone, there is no additional pheromone given. Pheromone evaporation reduces 

the intensity of pheromone values on these edges. This will make such edges less 

attractive for future ants. The algorithm will proceed until a stopping criteria is met. 

 Explanation of how ants construct the solution about tree graph of Figure (1), is 

as follows: There are 4 nodes, (assuming that the number of ant is 4 also), each ant will 

start tour from different nodes; for example, the first ant starts from node 1, the second 

ant starts from node 2, and so on.  

Iteration 1 

 The first ant starts from node 1; there are three neighboring nodes to be visited. 

Any other ant also has three neighboring nodes to be visited. The probability of 

choosing any edges is calculated using the proposed steps in section (4-2) with the 

problem constraints. Table (3) illustrates the track of each ant in the colony in iteration 

1.Table (4) illustrates repeated edges, ant’s number visiting the edges, numbers of 

repeated edges and the pheromone update after performing pheromone evaporation 

procedure in iteration 1. 
  

Table (3). First track                    Table (4). Calculation pheromone for first track 
 

new pheromone 

ph   = (1- p) * ph 

number

s of 

repeate

d edges 

ant’s 

number 

visiting   

the edges 

repeated 

edges  ∆ph = L / S 
length 

of path 

(S) 
paths of each 

ant in graph ants 

5.9333 4 1,2,3,4 1    2  1.8333 6 [1  2,1  4,4  3] ant1 
5.9333 4 1,2,3,4 1    4  1.3750 8 [2  1,1  4,1  3] ant2 
3.7333 2 1,4 4    3  1.3750 8 [3  1,1  4,1  2] ant3 

3 2 2,3 1    3  1.8333 6 [4  1, 4  3,1 2] ant4 
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The resulting best solution is 6 and the path from beginning to the end of the best 

solution is [1 4 ,1 2, 3 4] as illustrated  graphically in Figure (9) 

 

 

   

 

 

 

 
 

Iteration 2 

     Also in iteration 2, the same process is performed and repeated as in the first 

iteration. The initial pheromone values on all edges are changed. Table (5) illustrates the 

track of each ant in the colony, Table (6) illustrates repeated edges, ant’s number 

visiting the edges, numbers of repeated edges and the pheromone update after 

pheromone evaporation procedure is performed in iteration 2. 
 

Table (5). Second track           Table (6). Calculation pheromone for second track 
       

 

In   Iteration 2, the best solution is 6 and the path from beginning to the end of the best  

solution is [1 2, 1 4, 3 4] as illustrated graphically in Figure (10). 

     

   

                                                                             

 

Iteration 3 

     The same process performed in the first iteration is repeated here. The initial 

pheromone values on all edges are modified. Table (7) illustrates the track of each ant in 

the colony, Table (8) illustrates the repeated edges, ant’s number visiting the edges, 

numbers of repeated edges and the pheromone update after pheromone evaporation 

procedure is performed in iteration 3. 

Table (7). Third track                          Table (8). Calculation pheromone for third track 

new pheromone 

ph   = (1- p) * ph 

numbers 

of 

repeated 

edges 

ant’s 

number  

visiting   

the edges 

repeate

d edges  ∆ph = L / S 
length 

of path 

(S) 
paths of each 

ant in graph ants 

9.2689 4 1,2,3,4 1  2  1.3750 8 [1  2,1  3,1  4] ant1 
7.3133 2 1,4 1  4  1.2222 9 [2  1,1  3,3  4] ant2 
6.4089 3 2,3,4 3  4  1.2222 9 [3  1,3  4,1  2] ant3 
5.4556 3 1,2,3 1  3  1.8333 6 [4  1,4  3,1  2] ant4 

new pheromone 

ph   = (1- p) * ph 

numbers 

of 

repeated 

edges 

ant’s 

number  

visiting   

the 

edges 

repeated 

edges  ∆ph = L / S 
length 

of path 

(S) 
paths of each 

ant in graph ants 

12.1818 4 1,2,3,4 1  2  1.3750 8 [1  2,1  3,1  4] ant1 
10.6173 3 1,2,3 1  4  1.8333 6 [2  1,1  4,4  3] ant2 
7.6644 3 1,3,4 1  3  1.3750 8 [3  1,1  2,1  4] ant3 

Figure (9). Solution of iteration 1 
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Figure (10). Solution of iteration 2 

 



 Isra N. Alkallak and Ruqaya Z. Sha’ban 
 

 

 132 

   

Here, the best solution is 8 and the path from beginning to the end of the best solution is 

[1 2,1 4,1 3]  as illustrated graphically in Figure (11). 

    

 

 

 The search is terminated after reaching the optimal solution or after repeating 

some number of iterations without an improvement in the objective function value. In 

our example, the optimal solution (minimum value of length of path ) is 6. 

6.  Conclusions 

 Simulated annealing algorithm and ant colony optimization are well suited for 

solving combinatorial optimization problems. Simulated annealing has proven an 

effective technique for problems where there are many solutions and no efficient way to 

derive which one is the best. A local solution is a state that is not the best solution but 

where any change from the current state update the cost. Ant colony optimization 

algorithm is easy to implement and is more efficient than the simulated annealing 

algorithm in computation time. The proposed steps perform significantly better than 

manual method. Simulated annealing and ant colony optimization perform better than 

any local optimization method and yield a solution close to global optimum. Despite the 

classical method (manual method) can give the exact solution, it takes a large space and 

needs more computations. Therefore, the proposed solution facilitates the difficultly in 

solving those problems that are proportional to the size, as the problem space and the 

number of nodes increased. The proposed solution will be close to be the global 

optimum. Moreover, our results show the advantages of this new approach over more 

traditional (manual approach). 
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Appendix 

The results of simulated annealing algorithm about example in figure (1): 
   Tempe.     Loop     current sol   old_sol   deferens   prop    rand       best_sol  
  

    5.0000    1.0000   9.0000     9.0000         0         0               0          9.0000 
    5.0000    2.0000    9.0000    9.0000         0         0               0           9.0000 
    5.0000    3.0000    6.0000    9.0000   -3.0000     0               0           6.0000 
    5.0000    4.0000    8.0000    6.0000    2.0000    0.6703    0.6813    6.0000 
    5.0000    5.0000    6.0000    8.0000   -2.0000    0.6703    0.6813    6.0000 
    5.0000    6.0000    9.0000    6.0000    3.0000    0.5488    0.7857    6.0000 
    5.0000    7.0000    8.0000    9.0000   -1.0000    0.5488    0.7857    8.0000 
    5.0000    8.0000    8.0000    8.0000         0        0.5488    0.7857    8.0000 
    5.0000    9.0000    8.0000    8.0000         0        0.5488    0.7857    8.0000 
    5.0000   10.0000    8.0000    8.0000        0        0.5488    0.7857    8.0000 
    4.1823    1.0000    8.0000    8.0000         0        0.5488    0.7857    8.0000 
    4.1823    2.0000    8.0000    8.0000         0        0.5488    0.7857    8.0000 
    4.1823    3.0000    9.0000    8.0000    1.0000    0.7873    0.7590    9.0000 
    4.1823    4.0000    6.0000    9.0000   -3.0000    0.7873    0.7590    6.0000 
    4.1823    5.0000    6.0000    6.0000         0        0.7873    0.7590    6.0000 
    4.1823    6.0000    6.0000    6.0000         0        0.7873    0.7590    6.0000 
    4.1823    7.0000    8.0000    6.0000    2.0000    0.6199    0.8609    6.0000 
    4.1823    8.0000    8.0000    8.0000         0        0.6199    0.8609    8.0000 
    4.1823    9.0000    6.0000    8.0000   -2.0000    0.6199    0.8609    6.0000 
    4.1823   10.0000    9.0000    6.0000    3.0000    0.4881   0.0678    9.0000 
    2.9490    1.0000    9.0000    9.0000         0         0.4881   0.0678    9.0000 
    2.9490    2.0000    8.0000    9.0000   -1.0000     0.4881   0.0678    8.0000 
    2.9490    3.0000    6.0000    8.0000   -2.0000     0.4881   0.0678    6.0000 
    2.9490    4.0000    8.0000    6.0000    2.0000     0.5075    0.3490    8.0000 
    2.9490    5.0000    8.0000    8.0000         0         0.5075    0.3490    8.0000 
    2.9490    6.0000    6.0000    8.0000   -2.0000     0.5075    0.3490    6.0000 
    2.9490    7.0000    6.0000    6.0000         0         0.5075    0.3490    6.0000 
    2.9490    8.0000    6.0000    6.0000         0         0.5075    0.3490    6.0000 
    2.9490    9.0000    8.0000    6.0000    2.0000     0.5075    0.4106    8.0000 
    2.9490   10.0000    9.0000    8.0000    1.0000    0.7124    0.9525    8.0000 
    0.1516    1.0000    9.0000    9.0000         0         0.7124    0.9525    9.0000 
    0.1516    2.0000    8.0000    9.0000   -1.0000     0.7124    0.9525    8.0000 
    0.1516    3.0000    6.0000    8.0000   -2.0000     0.7124    0.9525    6.0000 
    0.1516    4.0000    6.0000    6.0000         0         0.7124    0.9525    6.0000 
    0.1516    5.0000    6.0000    6.0000         0         0.7124    0.9525    6.0000 
    0.1516    6.0000    8.0000    6.0000    2.0000    0.0000     0.4231    6.0000 
    0.1516    7.0000    8.0000    8.0000         0        0.0000    0.4231     8.0000 
    0.1516    8.0000    8.0000    8.0000         0        0.0000    0.4231    8.0000 
    0.1516    9.0000    8.0000    8.0000         0        0.0000    0.4231    8.0000 
    0.1516   10.0000    8.0000    8.0000        0        0.0000    0.4231    8.0000 
    0.0357    1.0000    9.0000    8.0000    1.0000    0.0000    0.5081    8.0000 
    0.0357    2.0000    9.0000    9.0000         0        0.0000    0.5081    9.0000 
    0.0357    3.0000    8.0000    9.0000   -1.0000    0.0000    0.5081    8.0000 
    0.0357    4.0000    9.0000    8.0000    1.0000    0.0000    0.4281    8.0000 
    0.0357    5.0000    9.0000    9.0000         0        0.0000    0.4281    9.0000 
    0.0357    6.0000    8.0000    9.0000   -1.0000    0.0000    0.4281    8.0000 
    0.0357    7.0000    6.0000    8.0000   -2.0000    0.0000    0.4281    6.0000 
    0.0357    8.0000    8.0000    6.0000    2.0000    0.0000    0.8947    6.0000 
    0.0357    9.0000    6.0000    8.0000   -2.0000    0.0000    0.8947    6.0000 
    0.0357   10.0000    9.0000    6.0000    3.0000    0.0000   0.7763    6.0000 
    0.0271    1.0000    8.0000    9.0000   -1.0000    0.0000    0.7763    8.0000 
    0.0271    2.0000    9.0000    8.0000    1.0000    0.0000    0.6897    8.0000 
    0.0271    3.0000    8.0000    9.0000   -1.0000    0.0000    0.6897    8.0000 
    0.0271    4.0000    8.0000    8.0000         0        0.0000    0.6897    8.0000 
    0.0271    5.0000    6.0000    8.0000   -2.0000    0.0000    0.6897    6.0000 
    0.0271    6.0000    8.0000    6.0000    2.0000    0.0000    0.5262    6.0000 
    0.0271    7.0000    8.0000    8.0000         0        0.0000    0.5262    8.0000 
    0.0271   10.0000    9.0000    6.0000    3.0000    0.0000   0.6434    6.0000 

 

 

 

     Tempe.     Loop     current sol   old_sol   deferens   prop    rand       best_sol  
  

    0.0112    1.0000    9.0000    9.0000         0         0.0000   0.6434    9.0000 
    0.0112    2.0000    8.0000    9.0000   -1.0000     0.0000   0.6434    8.0000 
    0.0112    3.0000    9.0000    8.0000    1.0000     0.0000    0.4899    8.0000 
    0.0112    4.0000    9.0000    9.0000         0         0.0000    0.4899    9.0000 
    0.0112    5.0000    9.0000    9.0000         0         0.0000    0.4899    9.0000 
    0.0112    6.0000    6.0000    9.0000   -3.0000     0.0000    0.4899    6.0000 
    0.0112    7.0000    8.0000    6.0000    2.0000     0.0000    0.8155    6.0000 
    0.0112    8.0000    6.0000    8.0000   -2.0000     0.0000    0.8155    6.0000 
    0.0112    9.0000    9.0000    6.0000    3.0000     0.0000    0.7899    6.0000 
    0.0112   10.0000    6.0000    9.0000   -3.0000    0.0000    0.7899    6.0000 
    0.0093    1.0000    8.0000    6.0000    2.0000     0.0000    0.2660    6.0000 
    0.0093    2.0000    9.0000    8.0000    1.0000     0.0000    0.6400    6.0000 
    0.0093    3.0000    8.0000    9.0000   -1.0000    0.0000     0.6400    8.0000 
    0.0093    4.0000    8.0000    8.0000         0         0.0000    0.6400    8.0000 
    0.0093    5.0000    8.0000    8.0000         0         0.0000    0.6400    8.0000 
    0.0093    6.0000    6.0000    8.0000   -2.0000     0.0000    0.6400    6.0000 
    0.0093    7.0000    6.0000    6.0000         0         0.0000    0.6400    6.0000 
    0.0093    8.0000    6.0000    6.0000         0         0.0000    0.6400    6.0000 
    0.0093    9.0000    6.0000    6.0000         0         0.0000    0.6400    6.0000 
    0.0093   10.0000    8.0000    6.0000    2.0000    0.0000    0.8896    6.0000 
    0.0020    1.0000    9.0000    8.0000    1.0000     0.0000    0.4642    6.0000 
    0.0020    2.0000    8.0000    9.0000   -1.0000     0.0000    0.4642    8.0000 
    0.0020    3.0000    8.0000    8.0000         0         0.0000    0.4642    8.0000 
    0.0020    4.0000    6.0000    8.0000   -2.0000     0.0000    0.4642    6.0000 
    0.0020    5.0000    9.0000    6.0000    3.0000         0         0.2737    6.0000 
    0.0020    6.0000    8.0000    9.0000   -1.0000         0         0.2737    8.0000 
    0.0020    7.0000    9.0000    8.0000    1.0000     0.0000    0.7346    8.0000 
    0.0020    8.0000    6.0000    9.0000   -3.0000     0.0000    0.7346    6.0000 
    0.0020    9.0000    8.0000    6.0000    2.0000         0       0.7054      6.0000 
    0.0020   10.0000    6.0000    8.0000   -2.0000        0       0.7054     6.0000 
    0.0009    1.0000    9.0000    6.0000     3.0000        0        0.6825     6.0000 
    0.0009    2.0000    8.0000    9.0000    -1.0000        0        0.6825     8.0000 
    0.0009    3.0000    9.0000    8.0000     1.0000        0        0.7017     8.0000 
    0.0009    4.0000    8.0000    9.0000    -1.0000        0        0.7017     8.0000 
    0.0009    5.0000    8.0000    8.0000         0             0        0.7017     8.0000 
    0.0009    6.0000    8.0000    8.0000         0             0        0.7017     8.0000 
    0.0009    7.0000    8.0000    8.0000         0             0        0.7017     8.0000 
    0.0009    8.0000    9.0000    8.0000    1.0000         0        0.3459     8.0000 
    0.0009    9.0000    9.0000    9.0000         0             0        0.3459     9.0000 
    0.0009   10.0000    8.0000    9.0000   -1.0000        0        0.3459     8.0000 
    0.0004    1.0000    8.0000    8.0000         0             0        0.3459     8.0000 
    0.0004    2.0000    8.0000    8.0000         0             0        0.3459     8.0000 
    0.0004    3.0000    6.0000    8.0000   -2.0000         0        0.3459     6.0000 
    0.0004    4.0000    8.0000    6.0000    2.0000         0        0.4826     6.0000 
    0.0004    5.0000    8.0000    8.0000         0             0        0.4826     8.0000 
    0.0004    6.0000    9.0000    8.0000    1.0000         0        0.6987     8.0000 
    0.0004    7.0000    8.0000    9.0000   -1.0000         0        0.6987     8.0000 
    0.0004    8.0000    8.0000    8.0000         0             0        0.6987     8.0000 
    0.0004    9.0000    9.0000    8.0000    1.0000         0        0.7090     8.0000 
    0.0004   10.0000    8.0000    9.0000   -1.0000        0        0.7090     8.0000 
    0.0001    1.0000    8.0000    8.0000         0             0        0.7090     8.0000 
    0.0001    2.0000    6.0000    8.0000   -2.0000         0        0.7090     6.0000 
    0.0001    3.0000    8.0000    6.0000    2.0000         0        0.0799     6.0000 
    0.0001    4.0000    9.0000    8.0000    1.0000         0        0.9067     6.0000 
    0.0001    5.0000    9.0000    9.0000         0             0        0.9067     9.0000 
    0.0001    6.0000    9.0000    9.0000         0             0        0.9067     9.0000 
    0.0001    7.0000    8.0000    9.0000   -1.0000         0        0.9067     8.0000 
    0.0001    8.0000    9.0000    8.0000    1.0000         0        0.5343     8.0000 
    0.0001    9.0000    6.0000    9.0000   -3.0000         0        0.5343     6.0000 
    0.0001   10.0000    8.0000    6.0000    2.0000        0         0.8672    6.0000

 

 
 


