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ABSTRACT 

Let I be a right ideal of R, then R / I is a right N–flat if and only if for each a  I, there 

exists b  I and a positive integer n such that an ≠ 0 and an = ban. In this paper, we first 

give and develop various properties of right N-flat rings, by which, many of the known 

results are extended. Also, we study the relations between such rings and regular, -

biregular ring. 

Key word: N-flat rings, weakly continuous rings, biregular rings. 

 N –حول الحلقات المسطحة من النمط 

 حسام قاسم محمد  رائدة داؤد محمود
 كلية علوم الحاسوب والرياضيات، جامعة الموصل 

 الملخص

 وع دد bIيوج د  aIلك ل  إذا وفق   إذا N–ال نم   م ن يمن   مس ححة ةحلق   R/I, فان  Rفي  أيمن مثالي  Iليكن 

 م ن المس ححة متنوع ة للحلق ات خواص ا أولا أعحين ا البح   ه اا ف ي  an=banو  an≠0بحي   ان  nموجب  صحيح

 ةالمنتظم   والحلق ات تل   الحلق ات ب ين العلاق ة درس نا المعروف ة  ك ال  النت ائ  م ن ع دد بتح وير قمنا , كما N –النم  
    -النم   من ثنائيا المنتظمة والحلقات

 , الحلقات المستمرة بضعف, الحلقات المنتظمة الثنائية   N –: الحلقات المسححة من النم  الكلمات المفتاحية

1. Introduction: 

Throughout this paper R is associative ring with identity, and R-module is 

unital. For a  R, r(a) and l(a) denote the right annihilator and the left annihilator of  a, 

respectively. We write J(R), P(R), Y(R) (Z(R)) and N(R) for the Jacobson radical, the 

prime radical, the right (left) singular ideal and the set of nilpotent elements of R, 

respectively. 

(1) A ring R is called a right SF-ring [8] if every simple right R-module is flat. (2) A 

ring R is said to be right (left) quasi-duo [11] if every maximal right (left) ideal is a 

two-sided ideal of R. (3) A ring R is said to be reversible [3] if ab = 0 implies ba = 0, 

a,b  R. (4) A ring R is called reduced  if contains no non-zero nilpotent elements. (5) 

A ring R is called Von Neumann (strongly resp.) regular provided that for every a  R 

there exists bR such that a = aba (a = a2b, resp.). (6) A ring R is called biregular [7] if 

for any a  R, RaR is generated by a central idempotent. (7) A ring R is said to be -

biregular [7] if for any a  R, RanR is generated by a central idempotent for some 

positive integer n. (8) A ring R is called right (left) Kasch ring [4] if every maximal 

right (left) ideal of R is a right (left) annihilator. (9) A ring R is called 2-primal if the 

set of nilpotent elements of the ring coincides with the prime radical. 

2. Simple N–flat: 

We introduce the notion of a right N–flat with some of their basic properties. We 

also give some relation between right N–flat rings and other rings. 
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Definition 2.1: Let I be a right (left) ideal of R. Then R / I is a right (left) N–flat if and 

only if for each a  I, there exists b  I and a positive integer n such that an ≠ 0 and an = 

ban (an= anb). ■ 

The following example illustrates the above definition. 

Examples:  

(1) Let Z10 be the ring of integers modulo 10 and I = {0, 2, 4, 6, 8}, J = {0, 5}. Then 

Z10/I and Z10 / J are N – flat. 

(2) Let Z9 be the ring of integers modulo 9 and K = {0, 3, 6}. Then Z9/K in not N – flat. 

Remark (1): Every SF – ring is simple N – flat. ■ 

Proposition 2.2: Let R be a ring whose every simple right R – module is right N – flat. 

Then,  

(1) Every left non – zero divisor element is a right invertible. 

(2) Z (R)  J(R). 

Proof: (1) Let a ≠ 0 be a left non – zero divisor, if aR ≠ R, then there exists a maximal 

right ideal M of R containing aR. Since a  aR M, and R / M is right N – flat, then 

there exists a positive integer n and b  M such that an ≠ 0 and an = ban which implies 

(1–b) an = 0. Since a is left non – zero divisor, then (1–b) = 0, and we get   b = 1 M 

which is a contradiction. Thus aR = R, and hence a is right invertible. 

(2) Let z  Z (R), then for any r  R, we have l(1 – r z) = 0, which implies that (1–rz) is 

right invertible, so that z  J(R). Therefore Z(R)  J(R). ■ 

Proposition 2.3 : If R is a ring whose every simple right R – module is right N – flat 

and R has a finite number of maximal right ideals whose product is contained in J( R ), 

then Z (R) = J(R) = 0 . 

Proof: Let M1, M2, …, Mm be maximal right ideals of R such that M1M2…Mm  J(R). 

First, suppose that J(R) is non – zero reduced. If x  J(R), and since mMx and 

mM/R is N–flat, then there exist a positive integer mn  and mm My  such that  

mm n

m

n
xyx = , which implies that mn

m1 y r(x )−  . Since J(R) is reduced and x  J(R), 

then )xr()xr( mn
= , thus )xr()r(xy1 mn

m =− . Therefore xyx m= . Since 

1mm M)RJ(xy −  and 1mM/R − is N – flat, there exist a positive integer 1mn −  and 

1m1m My −−   such that 1m1m n

1m

n
xyx −−

−= and we get xyx 1m−= , and so on. 

Finally, we have yi  Mi, 1  i  m, such that  

y1 y2 … ym-1 ym  M1 M2 … Mm  J(R) and x = y1 y2 ….. ym-1 ymx. 

Now z(1 - y1 y2 ….. ym) = 1 for some z  R which yields x = 1x = z (1 - y1 y2 ….. ym)   

x = 0, which is a contradiction. 

Now suppose that J(R) is not reduced. Then there exists 0≠aJ(R) such that a2 = 0. 

Since a  J(R)  Mm and R / Mm is N – flat, then a=bma for some bm  Mm. Since     

bma  J (R)  Mm-1 and R / Mm-1 is N–flat, then a= bma = bm-1 bma for some bm-1  Mm-1 

and so on. 

Finally we have bi  Mi, 1  i  m, such that 

 b1 b2 … bm-1 bm  M1 M2 … Mm-1 Mm  J(R) and a = b1 b2 … bm-1 bma . 

Now u(1-b1 b2 … bm) = 1 for some u  R which yields 

a = 1a = u(1-b1 … bm)a = 0. Thus J(R)=0 and by Proposition 2.2 Z(R)J(R), thus  

Z(R)= 0. ■ 
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Recall that a ring R is right (left) weakly continuous if J(R)=Y(R)(J(R)=Z(R)), 

R / J(R) is regular and idempotent can be left module J(R). Clearly every regular ring is 

right (left) weakly continuous . 

Corollary 2.4 : Let R be a left weakly continuous, whose every simple right R – 

module is N – flat and R has a finite number of maximal right ideals whose product is 

contained in J(R). Then R is regular. ■ 

Lemma 2.5 : [2]: A ring R has zero prime radical if and only if it contains no – nonzero 

nilpotent ideal. ■ 

Theorem 2.6: Let R be a semi–prime 2–primal ring whose every simple right R–

module is N–flat. Then R is biregular. 

Proof : Let 0 ≠ a  R such that a2 = 0. Thus, a  P(R). Now, since R is semi–prime ring 

then R has no non – zero nilpotent ideal, and by Lemma2.5, P(R) = 0, so a = 0 and 

hence R is reduced. 

Now, for any 0 ≠ a  R, r(RaR) = l(RaR) = l(aR) = r(aR)=r(a). If E = RaR + r(a), then E 

= RaR  r(RaR) [since RaR ∩ r(RaR) = 0]. 

Suppose that E ≠ R. Let M be a maximal right ideal of R. Since R/M is N – flat and a  

M, there exists b  M and a positive integer n , such that an ≠ 0 and an = ban . 

Now, 1–b  l (an) = r (an) = r(a)  M which implies that l  M a contradiction. We have 

proved that R= E = RaR  r (RaR). Since every idempotent in reduced ring is central, 

then RaR is generated by a central idempotent. ■ 

Lemma 2.7. [11]: If R is a right quasi-duo with J(R) = 0 , then R is reduced. ■ 

We now consider other condition for right simple N-flat to be biregular. 

Theorem 2.8: If R is right quasi duo ring whose every simple right R – module is N – 

flat and R has a finite number of maximal right ideals whose product is contained in     

J(R), then R is biregular. 

Proof : By Proposition 2.3, J(R) = 0. Since R is right quasi-duo, then R is reduced by 

Lemma 2.7. The proof of R being biregular is similar to that of Theorem 2.6. ■ 

Remark (2) [5]: If M is an essential right  ideal, then RR / M can not be projective.■ 

We consider the condition (*) : R satisfies l (a)  r (a) for any a R. 

We begin with a property of rings whose simple right R–module are either  N–

flat or projective. 

Theorem 2.9: Let R b a ring satisfy condition (*). If every simple right R – module is 

either N – flat or projective, then Z(R) ∩ Y(R) = 0 . 

Proof: Let us first suppose that Z(R) ∩ Y(R) is non–zero reduced ideal of R.             If 0 

≠ x  Z(R) ∩ Y(R), r(x) is essential right ideal of R and xR∩r(x) ≠ 0. Let a  R such 

that 0 ≠ xa  r(x) . Since Z(R) ∩ Y(R) is reduced and xax  Z(R) ∩ Y(R), then 

(xax)2=0 which implies xax=0. Therefore (xa)2 = 0, which yields xa = 0, a contradiction. 

Now, suppose that Z(R) ∩ Y(R) ≠ 0 , then there exists 0≠yZ(R)∩Y(R) such that y2= 0. 

We will prove that RyR + r(y) = R. 

If not, let M be a maximal right ideal containing RyR + r(y). Since r(y) is essential right 

ideal then R / M can not be projective by Remark (2), whence it is N – flat. Since R / M 

is N – flat, then there exist d  M and a positive integer n such that yn  0 and    yn = dyn 
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, Since y2 = 0, then n = 1, so that y = dy and we get 1–d  l(y)  r(y)  M and l  M. 

Whence M = R, contradicting the maximally of M. Therefore R=RyR + r(y) . 

Now, 1 = u + z , u  RyR, z  r(y) which implies that y = yu . Since u  Z(R) and      

Ry ∩ l(u) = 0 then y = 0 a contradiction. We have proved that Z(R) ∩ Y(R) = 0 . ■ 

Corollary 2.10: Let R be a right weakly continuous satisfy condition (*). If every 

simple right R–module is N–flat or projective, then Z(R) ∩ J(R) = 0. ■ 

Corollary 2.11: Let R be weakly continuous ring satisfying condition (*). If every 

simple right R–module is N–flat or projective, then R is regular. ■ 

Proposition 2.12: Let R be a semi–prime ring satisfying condition (*), whose every 

simple right R–modules is either N–flat or projective. Then R is left non–singular. 

Proof : Suppose that Z(R) ≠ 0 . Then there exists, 0 ≠ z  Z(R) such that z2 = 0. Set  L 

= RzR + r(z) . Let K be a complement right ideal of R, then E = L  K is an essential 

right ideal of R .  

Then KRzR  K ∩ RzR  K ∩ L = 0 implies that (RzRK)2 = 0. Since R is semi–prime 

then RzRK = 0, which yields K  r (z)  L. Whence K = K ∩ L = 0. This shows that    

E = L is an essential right ideal of R . 

Now suppose that L ≠ R . Let M be a maximal right ideal of R containing L. Then R / M 

is N–flat, and there exists u  M and a positive integer n such that zn  ≠0 and zn = uzn 

which yields n=1 and 1–u  l(z)  r(z)  M. Thus 1  M , contradicting M ≠ R. 

Therefore L = R and 1 = s + t where s  RzR, t  r(z) and we have z = zs + zt = zs . 

Now Rz ∩ l (s) = 0 implies that z = 0. This is a contradiction, thus R is left non – 

singular. ■ 

Applying Proposition 2.12 we get the next result. 

Corollary 2.13:If R is a semi–prime left weakly continuous ring satisfying condition 

(*)  such that every simply right R–module is either N–flat or projective, then R is 

regular. ■ 

Recall that a ring R is called a FGP-injective ring [ 1 ] if, for any 0≠ a  R, there 

exists 0 ≠ c  R such that 0 ≠ ac = ca and any right R− homomorphism from acR to R 

extends to an endomorphism of R. 

Lemma 2.14 [9]: If Y(R) = 0 and satisfy condition (*), then R is reduced. ■ 

The following result is given in [1] 

Lemma 2 .15: If R is a right Kasch FGP-injective ring, then J(R)=Y(R)=Z(R). ■ 

Comparing Theorem 2.9 with Lemma 2.15 , we ask the following question: 

Question: Is a ring satisfying condition (*) whose every simple right R–module is 

either N–flat or projective strongly regular ring ? 

Theorem 2.16: Let R be a right Kasch and right FGP-injective ring satisfying condition 

(*) and whose every simple right R–module is N–flat or projective. Then R is strongly 

regular . 

Proof: Since R is right Kasch, right FGP-injective ring, then Z(R)=J(R)=Y(R) by 

Lemma 2.15 and Z(R)∩Y(R)=0 by Theorem 2.9, which implies Z(R)=Y(R)=0. 

Therefore R is reduced by Lemma 2.14. Let 0 ≠ a  R, we shall prove that aR+r(a)=R. 

If not, then there exists a maximal right ideal M containing aR + r(a). Since R is a right 
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Kasch ring, then there exists b  R such that M= r (b). Let x = ab + y, where     b R, y 

 r(a). So x  aR + r(a)  r(b) and bx = b (ab+y) = 0, since by = 0, then bab=0. But R is 

reduced so we have ab = ba = 0, which implies br(a)  r(b), therefore b2=0, since R is 

reduced then b= 0, which is contradiction. So that aR+r(a)=R and therefore, R is 

strongly regular ring. ■ 

3. Rings Whose Simple Singular R – Modules are N–Flat 

In this section, we give further properties of rings for which every simple 

singular R–modules are N–flat.  

Theorem 3.1: If R is a ring whose every simple singular right R–module is N–flat and 

satisfying condition (*), then J(R) ∩ Y(R) = 0 .  

Proof : If J(R) ∩ Y(R) ≠ 0,there exists an element 0≠ a  J(R) ∩ Y(R) such that   a2 = 

0. If r(a) + RaR ≠ R, there exists a maximal right ideal M of R containing r(a)+RaR. 

Since a Y(R), then r(a) is an essential and so M must be essential. By assumption, the 

simple singular right R–module R / M is N–flat. Thus there exists a positive integer n 

and b  M such that an ≠ 0 and an = ban. Since a2 = 0, then n =1, and therefore a = ba 

which implies that 1–b l(a)  r(a)M. Thus  1  M, which is a contradiction. This 

proves that r(a) + RaR = R, and hence a = ad for some d  RaR  J(R). 

Thus (1–d) is invertible and we get a = 0, which is the required contradiction. 

Therefore J(R) ∩ Y(R) = 0. ■ 

Theorem 3.2: If R is a ring satisfying condition (*) and whose every simple singular 

right R–module is N – flat, then J(R) = 0 if and only if J(R) is a reduced ideal of R. 

Proof : Suppose that J(R) is reduced. If for any a  J(R), then set L=aR+r(a). If L=R, 

then 1 = ab + c, for some  b  R and c  r( a ), which implies that a = a2b. Since a  

J(R), then a – aba  J(R) and (a – aba)2=0 which yields a = aba. 

Therefore a = ae, where e = ba is idempotent. Since J(R) can not contain a non–zero 

idempotent, then a = 0 . 

If L ≠ R, then there exists a right ideal M of R such that L  M is an essential right ideal 

of R. 

We claim that L  M = R. If not, there is a maximal essential right ideal K of R 

containing L  M. By assumption, the simple singular right R–module R / K is N–flat. 

Since J(R) contains no non–zero nilpotent elements and a  J(R), then a  K and an = 

dan for some d  K , an ≠ 0 and a positive integer n. 

Now (1–d)  l(an) = r(an) = r(a)  K. Which implies that 1 K, contradicting that K is 

maximal. This shows that L  M = R. 

Then aR+r(a) = eR with e2 = e  R. So a2 = a2e = aea = abaa =ba2, for some b  R. But 

a  J(R), thus a = 0 by the proceeding proof. This proves that if J(R) is reduced, then 

J(R) = 0. 

The converse is obvious. ■ 

Finally, there is an investigation of the Von Neumann regularity of whose 

simple singular right R–Modules are N–flat. 

Theorem 3.3: If R is a ring satisfying condition (*) and right weakly continuous whose 

every simple singular right R–module is N–flat, then R is a strongly regular ring. 

Proof :From Theorem 3.1 J(R)  Y(R) = 0. Since R is weakly continuous, then J(R)= 

Y(R) = 0 and R is strongly regular ring. ■ 
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Lemma 3.4. [6]: Let R be a semi–prime ring. Then R is reduced if it is a reversible 

ring.■ 

Following [10] a right R–module M is said to be Wjcp–injective if for aY(R) , 

there exists a positive integer n such that an ≠ 0 and every right R–homomorphism from 

anR to M can be extended to one of R to M. If RR is Wjcp–injective, we call R is a right 

Wjcp–injective ring. 

 Before closing this section, we present the connection between simple singular 

N-flat and -biregular rings. 

Theorem 3.5: Let R be a semi–prime and reversible ring whose every simple singular 

right R–module is either Wjcp–injective or N–flat. Then R is a -biregular ring. 

Proof : For any 0 ≠ a R, l(RaR)=r(RaR) =r(a) =l(a) by Lemma 3.4. If RanRr(an) ≠ R, 

then there exists a maximal right ideal M of R containing RanR  r(an). If M is not 

essential in R, then M = r(e), 0≠e2=eR. Therefore ea=0. Since R is reversible, then ae 

= 0. Hence er(a)  r(e), which is a contradiction. So M is essential in R. By hypothesis 

R / M is either Wjcp–injective or N–flat. First we assume that R / M is Wjcp–injective 

and a  Y( R ). Hence, there exists a positive integer n such that an ≠ 0 and any right R–

homomorphism, an R → R / M can be extended to R → R / M. 

Set f : anR → R / M defined by f (anr) = r + M, r  R. Then f is well-defined right R – 

homomorphism. Hence, there exists c  R  such that f(an r) = canr + M. So 1 + M = f(an) 

=  can + M,  that is 1 – can  M. Since can  RanR  M , then 1  M, which is a 

contradiction. 

Hence R/M is N–flat. Since aM, then an ≠ 0 , an  = dan for some d M and a positive 

integer n. Now 1–d  l(an) = r(an)  M, which implies that 1  M, again a 

contradiction. Hence RanR  r(an) = R,  therefore R is  - biregular. ■ 
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