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ABSTRACT 

This paper investigates an interleaved algorithm which combines between the 

extended conjugate gradient with the hybrid method of Touati-Storey. This combined 

algorithm is based on the exact line search to solve a number of non-linear test functions 

with different dimensions. Experimental results indicate that the modified  algorithm is 

more efficient than the original Sloboda algorithm.  
Keywords: A new conjugate gradient method, Numerical Results and Conclusions. 
  

 طريقة التدرج المترافق الموسعة للنماذج غير التربيعية                    
 عباس يونس البياتي  باسم عباس حسن  أسماعيل  سوسن سامي

 جامعة الموصل ، كلية علوم الحاسبات والرياضيات جامعة الموصل، التربيةكلية 
 4/11/2007ول البحث: تاريخ قب                                             25/3/2007تاريخ استلام البحث: 

  الملخص

ممم   ميمممة موسمممعةتمممي هممما بمممرا البحممم   بممم   وا    للتممم  ل المتراهمممو ممممة  وا  ميمممة تت مممتر المت تمممات المتراه مممة لم
Touati-Storey .لا تبما ستخ م    البح  التام لحل دوال غتمر  ييمة تات عاعماد مختل مة ت الخوا  مية الم ترحة 

مم   ساسمميةخوا  ميممة اأالالم ترحممة عك ممر ة مما ا مممر ة تمما ا العمليممة عخ الخوا  ميمم ك مما ا الخوا  ميممة الم ترحممة. علنتمم  ال  لم
Sloboda . 

 طري ة الت  ل المتراهو ال  ي ا , ال تا ا الع دية والاست تاجات. : المفتاحية الكلمات
1. Introduction  

The problem to be solved by the Sloboda algorithm is to calculate the least value 

of a general differentiable function of several variables. Let n be the number of 

variables, x be the vector of variables and q(x) be the objective function and g(x) be the 

gradient of q(x). i.e.  

q(x)  g(x) =                (1) 

           Conjugate gradient algorithm does not require any explicit second derivatives 

and it is an iterative method. The sequences of points x1 , x2 , x3 , … are calculated by 

the successive iteration procedure and it should converge to the point in the space of the 

variable at which q(x) is least.  

The conjugate gradient algorithm was first applied to the general unconstrained 

minimization problem by Fletcher & Reeves [7]. However, now there are several 

versions of the algorithm for this calculation. Let x1 be a given starting point in the 

space of the variable and let i denote the number of the current iteration starting with 

i=1. the iteration requires the gradient:  

gi = g(xi) ,  

if  i = 1, let di be the steepest descent direction,  

di = - gi                      (2) 

otherwise, for i > 1, we apply the formula: 
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di = - gi + βi di-1                (3) 

where βi and yi  have the values:  

i

T

i1i

T

ii d y / g y  +=                (4) 

yi = gi+1 – gi  

The vector norms being Euclidian and by searching for the least value of f(x) 

from xi along the direction di we can obtain the vector xi+1: 

iii1i d    x x +=+               (5) 

Where i  is the value of   that minimizes the function of one variable. 

)d   f(x  )( iii  +=               (6) 

This complete the value of the iteration, and another one is begun if f(xi+1) or gi+1 

is not sufficiently small, [10].  

Let A denote a symmetric and positive definite ii matrix. For iR x  , we 

define: 

c  x b A x   x
 2 

 1 
  )( TT ++=xq              (7) 

Let i
F : R  R  denote a strictly monotonic increasing function and define:  

)F(q(x)  )( =xf               (8) 

Such a function is called an extended quadratic function, Spedicato [12].  

When a minimization algorithm is applied to f, the ith iterate is denoted by xi, the 

corresponding function value by fi and its gradient by Gi , the function value and 

gradient value of q are denoted by qi & gi , respectively and the derivative of 
iF  at qi is 

denoted by iF  . we note that ii g   G iF =  and define 1iii c / c  +=  for i, where 
i ic F= , Al-

Assady and Al-Bayati [4]  

2. Non-Quadratic Sloboda Method 

Sloboda [11] proposed a generalized conjugate gradient algorithm for 

minimizing a strictly convex function of the general form: 

0  
 dq 

 dF 
     ;     F(q(x))  f(x) =              (9) 

This algorithm is as follows: 

▪ Algorithm 1:  

Step 1: Set  i = 1 ; d1 = - G1 ; 
*

11 gG =  .  

Step 2: Compute   by ELS & set i1 d iii xx +=+  .  

Step 3: Compute )
2

d  g(x  
2

1
−=

+i
g    

Step 4: Test for convergence, if achieved stop. if not continue.  

Step 5: If  i=0 nod(n) go to Step 1, else continue.  
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Step 6: *

2

1
i

*

1  - g  w ii gg
+

+ =  where 
 g d 

 g d 
  w

2

1
i

T

i

*

i

T

i

+

=  .  

Step 7: Compute the new search direction ii

*

1i1i d   g -  d += ++  where:  

 
 y d 

 g y 
  

i

T

i

*

1i

T

i +=i   and  i

*

1ii g  g  y −= +  .  

Step 8: Set 1    i += i ; and go to step 2.  

Algorithm 1 terminates after i iterations in the case of a nonlinear scaled 

quadratic function using ELS.  

A more general scaling has been considered by Spedicato [12], such a scaling 

transforms F into a new function where (9), is satisfied. He shows that the sequence of 

points generated is invariant with respect to nonlinear scaling if:  

 
dq

dF 

 g 
 - 

 
dq

dF 

 g 
 y ii 2

1+
=             (10) 

g H g    vH  v i

T

i

2

i

-1

i

T

i ==  

However, this type of scaling also uses functions for which the analytic form is 

known apriority.  

Al-Bayati [1] introduced another family of self-scaling VM-methods given by:  

)H y  v  vy (H 
b

  
 - H y y H 

a

 1 -  
  

 b 

  v v
 )

 b 

 a 
  (  H  H i

T

ii

T

iiii

T

iii

T

ii
i1i ++++=+


      (11) 

where   is again a free parameter; 
M

1
= , and a = ii

T

i yH y , b= i

T

i y v  

1    0 ; ) - (1 )
a

(   )
b

(  M +=  b         (11a) 

where =             (11b) 

)H y  v  vy (H 
 b 

 1 
 - 

 b 

  v v
 )

b

a
  (  H  H i

T

ii

T

iii

T

ii
i1i +++=+         (12) 

If an estimate of the inverse Hessian in maintained (rather than an estimate of 

the Hessian itself which is sometime preferred) then there is a strong motivation for 

choosing 0=  in (11 a), namely, that H-1 is not required, this gives 
b

a= .  

However, it is possible to generalize Al-Bayati’s family of self-scaling VM-

updates (12) to be invariant to a nonlinear scaling by the following algorithm, Al-Bayati 

[2].  

▪ Algorithm 2:  

Step 1: Set i = 1; H1 = I ; d1 = - H1 G1 ; 
*

11 g  G = .  

Step 2: Compute iii1i d    x x +=+  ;   determined by ELS.  

Step 3: Set 
*

i  i

*

1 g - g  w g
2

1+
=   ; 

 g d 

 g d 
  w

2
1i

T

i

*

i

T

i

+

=   and d)  
2

1
  g(x  g i  i 2

1 −=
+ .  

Step 4: Test for convergence; if not continue.  
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Step 5: Update the matrix H using (12).  

Step 6: Compute *

1ii1i g H -  d ++ = .  

Step 7: Set 1    i += i  and go to Step 2. 
  

In this section we shall describe also another algorithm which effectively 

interleaves CG & VM-steps. It is also related to one given originally by Buckley [6], but 

our implementation differs in that we use the scaled quadratic model instead of the 

quadratic itself.  

CG-algorithm 1. and the generalized VM-algorithm 2. The objective here is to 

show that, using Al-Bayati’s self-scaling VM-update (12), the sequence of the 

generating points is the same in the generalized CG-algorithm 1.  

Before making a few more observations we shall outline briefly the proposed 

strategy for the interleaved generalized CG-VM method Al-Bayati [2].  

▪ Algorithm 3:  

Let f be a non linear scaling of the quadratic function f; given x1 and a matrix  

H1 = I ; set *

11 g  G = ; i = 1 and t = 1 initially, k is the iteration index.  

Step 1: Set  *

i g H -  d tt =            (13) 

Step 2: For k = t , t+1 , t+2 , … iterate with  

kkk1k d    x x +=+ ,  

k

T

k

ki

*T

1k
k y d

)y H (g
  += ,  

kk

*

1ki1k d   g H -  d += ++ ,  

 y d 

 g y 
  

k

T

k

*

1k

T

k
k

+= ,  
 g d 

 g d 
  w

2
1i

T

i

*

i

T

i

+

=  

*

kkk

*

1k g - g  w g
2

1++ =        

)d  
2

 1 
  g(x  g kkkk 2

1 −=
+  

k

*

1k g - g  y +=  

Here i is the index of the matrix updated only at restart steps and  k is the index 

of iteration and the algorithm is not converged, until a restart is indicated.  

Step 3: If a restart is indicated, namely that the Powell [9] restarting criterion is 

satisfied, i.e.  

*T *T
k 1 k k 1 k 1|g  g |  0.2 |g  g |+ + + ,           (14) 

Then reset t to the current k , update Hi by:  

])
b

y H
( -  v)

b

a 2
[(  v 

b
) vy (H

  H  H T

t

ti
t2

t

t
i

t

T

tti
i1i +−=+ .  

where ti

T

tt yHya =  and t

T

tt yvb =  

Step 4: Replace i by i + 1 and repeat from (13).  
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3. Hybrid Conjugate Gradient Method 

Despite the numerical superiority of PR-method over FR-method the later has 

better theoretical properties than the formal see Al-Baali [3]. Under certain conditions 

FR-method can be shown to have global convergence with exact line search Powell [10] 

and also with inexact line search satisfying the strong Wolf-Powell condition. This 

anomaly leads to speculation on the best way to choose βi .  

Touati – Ahmed and Storey in (12) proposed the following hybrid method:  

Step 1: if 2 i-1
i 1 ||g ||   (2m)+   , with 

1
m

2
    and 0   go to Step 2. Otherwise, Set  

 βi = 0 .  

Step 2: If 0PR

i  , Set PR

ii    =   , otherwise go to Step 3. 

Step 3: If 







 2

i

2

1-i

||g||

||g||
(1/2m)  PR

i , with m = , set PR

ii    = . Otherwise Set  

            
PR
ii   = .  

Here m,   and   user supplied parameters. This hybrid was shown to be 

globally convergence under both exact and inexact line searches and to be quite 

competitive  with PR- and FR-methods.  

4. New hybrid algorithm (Algorithm 4): 

Step1 : Set *

i g H -  d tt = , i = 1, t = 1, k is the index of iterations.  

Step 2: For k = t , t+1 , … iterate with  

 kkk1k d    x x +=+  ,  

            and  

 
k

T

k

ki

*T

1k
k y d

)y H (g
  +=  ,  

            Where i is the index of the matrix updated only at restart steps. 

Step 3: If 2 k 1
i-1 ||g ||   (2m)

+   with 
1

m
2
    go to Step 1. Otherwise set βi = 0.  

Step 4: If 0  PR

i  set PR
ii =   , otherwise go to Step 5.  

Step 5:If PR 2 2
i i-1 i

1
B   ( m) ||g || /||g ||

2
  with m , Set PR

iBBi = , otherwise set FR

iBBi = .  

Step 6: Compute kk

*

1ki1k d   g H -  d += ++ , where  *

kkk

*

1k g - g  w g
2

1++ =  

Step 7: If a restart is indicated, namely that the Powell, restarting criterion is satisfied,  

i.e.: 
k-1 k

*T *T
k k|g  g  |  0.2 |g  g  |  , then reset t to the current k, update Hi by: 

T

t

ti
t2

t

t
t

t

T

tti
i1i )]

b
y H

( -  v)
b

a 2
[(  v 

b
) vy (H

  H  H +−=+   

Step 8: Replace i by i+1 and repeat from (13).  

5. Conclusions and Numerical results:  

Several standard test functions were minimized (2 < n < 400) to compare the 

proposed algorithm with standard Sloboda algorithm which are coded in double 
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precision Fortran 90. The proposed hybrid algorithm needs matrix calculation for 

400400, this is the approximately the latest range for this computation of the matrix. 

The numerical results are obtained on personal Pentium IV Computer. The compete set 

of results are given in tables 5.1 and 5.2. 

The linear search routine used was a cubic interpolation which use function and 

gradient values and it is adaptation of the routine published by Bunday [5].  

We tabulate for all the algorithms; the number of functions evaluations (NOF) 

and the number of iterations (NOI). Overall totals are also given for NOF and NOI with 

each algorithm.  

Table 5.1 gives the comparison between the standard Sloboda algorithm and the 

proposed algorithm. Table 5.2 indicates that the suggested algorithm is more efficient 

than the standard Sloboda algorithm. Namely, there are an improvement of about (53 

%) in both NOI and  NOF according to our selected group of test functions.  

Table 5.1 

Comparison between Sloboda method and the proposed hybrid method for 2 < n < 400 

Test function Dimension 

Sloboda method Hybrid method 

NOI NOF NOI NOF 

ROSEN 2 33 85 9 30 

BEAL 2 10 26 8 20 

DIXON 2 6 17 5 14 

NON.DI 10 16 49 9 30 

ROSEN 10 16 49 9 30 

POWELL 4 51 130 26 77 

WOOD 4 33 80 27 70 

SHALLO 4 8 21 8 19 

BEAL 40 8 20 9 23 

POWELL-3 40 17 37 11 25 

POWELL 40 60 165 35 88 

ROSEN 60 17 48 9 30 

WOOD 60 102 217 28 72 

WOLFE 80 52 105 39 79 

POWELL 80 90 260 37 99 

WOOD 80 98 209 28 72 

BEAL 100 8 20 9 23 

POWELL 100 112 384 36 90 

WOLFE 100 53 107 39 79 

WOOD 400 103 213 28 72 

WOLF 400 53 107 39 79 

TOTAL  946 2349 448 1121 
 

Table 5.2 

Performance of the new algorithm in relation to Sloboda’s algorithm 

Measurement Sloboda New Algorithm 

NOI 100 47.35 
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NOF 100 47.72 

 All the algorithms terminated when -10

min 10  5  | f - f|   .  

Appendix 

These test function are from general literature [8]. 

 

1. Generalized Powell Function  

]) x- (X 10                                                                    

 ) x2 - (x  ) x- 5(x  ) x10 - [(x  F(X)

4

4i-34i

n/4

2i

4

1-4i2-4i

2

4i1-4i

2

2-4i-34i

+

++=
=  

T

o )  , 1 , 0 , 1- , (3  x =  

2. Generalized Wood Function  

]0.1)1()x-x(90                  

)x-(1) x[100(x  F(x)

22

14

42

1-4i4i

n/4

2i

2

3-4i

22

3-4i2-4i

+−++

+−=

−

=



ix

 

T

o )  , 1 - , 3 - , 1- , 3 (-  x =  

 

3. Non-diagonal Functions:  


=

+=
n

2i

2

i

22

oi ]) x- (1  ) x- [100(x  F(x)  

T

o ) , 1- (  x =   

 

4. Generalized Dixon Function  


=

++−+−=
9

2i

1ii

2

o

2

1 )x-(x ) x(1) x(1  F(x)  

T

o )  , (-1  x =   

5. Wolfe Functions:  


=

+ ++++=
1-n

1i

2

nn1-n

2

1iii1-i

2

21 1) - /2)(3x  x- (x  1) - 2x  /2)x- (3  x- (x  1) - 2x  /2)x- (3 x (-  F(X)  

T

o )  , (-1  x =  

6. Shallo Function  


=

+=
n/2

1i

2

1-2i

2

2i

2

1-2i ) x- (1  ) x- (x  F(x)  

T

o ) , 2 - , 2- (  x =  

7. Generalized Rosenbrock Function  


=

−+−=
n/2

2i

2

1-2i

22

1-2i2i )x(1) x100(x  F(x)  

T

o )  , 1 , 2 , 1 (-  x =  

8. Beale Function  
23

21

22

21

2

21 )) x (1 x (2.625  )) x (1 x (2.25  )) x (1 x (1.5  F(x) −−+−−+−−=  
T

o 0) , (0  x =   
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