Hosoya Polynomial and Wiener Index of Zero-Divisor Graph of $\mathbf{Z}_{\mathbf{n}}$

Husam Q. Mohammad
husam_alsabawi@yahoo.com
College of Computer Sciences and Mathematics University of Mosul, Mosul, Iraq

Received on: 23/02/2014
Accepted on: 09/04/2014

Abstract

Let R be a commutative ring with identity. We associate a graph $\Gamma(\mathrm{R})$. In this paper, we find Hosoya polynomial and Wiener index of $\Gamma\left(Z_{n}\right)$, with $n=p^{m}$ or $n=p^{m} q$, where p and q are distinct prime numbers and m is an integer with $\mathrm{m} \geq 2$. Keywords: Zero-divisor graph, commutative rings, Hosoya polynomial and Wiener index.

الملخص لـتكن R حلـــة ابداليـة بعنصـر محايـا نمثـل البيــان (R) هوسويا ودليل وينر للبيان ($$
\text { وان m عدد صحيح موجب أكبر او يساوي } 2 \text {. }
$$

الكلمات المفتاحية : بيان قاسم الصفر، الحلقات الابدالية، متعددة حدود هوسويا ودليل وينر.

1. Introduction

Let R be a commutative ring with identity, and let $Z(R)$ be the set of all zerodivisors in R, and $Z^{*}(R)$ is the set of all non-zero zero-divisors in it. We associate a simple graph $\Gamma(R)$ to R with vertices $Z^{*}(R)$, and for two distinct vertices $x, y \in Z^{*}(R)$, there is an edge connecting x and y if and only if $x y=0$.

The notion of a zero divisor graph of a commutative ring was first introduced in 1988 by Beck in [5], where he was interesting in colorings. This investigation of coloring of a commutative ring was then continued by Anderson and Naseer in [3], and further Anderson and Livingston in [2] associate a graph $\Gamma(\mathrm{R})$ to R . The principal ideal of an R is an ideal that is generated by one element of R, say a, and usually denoted by (a). The ring R is called local ring if it contains exactly one maximal ideal.

A graph G is said to be connected [6] if there is a path between any two distinct vertices of G. For vertices x and y of G, let $d(x, y)$ be the length of a shortest path from x to y. The diameter of G is defined by $\operatorname{diam}(G)=\max \{d(x, y): x, y \in V(G)\}$, where $\mathrm{V}(\mathrm{G})$ is the set of all vertices of G . A graph is complete if every two of its vertices are adjacent, so the complete graph of order n is denoted by K_{n}. The complement \bar{K}_{n} of the
complete graph K_{n} has n vertices and no edges, and is referred to as the empty graph of order n. The subsets $V_{1}, V_{2}, \ldots, V_{r}, r \geq 2$, are called r-partite of the set $V(G)$, if V_{i} is non empty, and the intersection between V_{i} and V_{j} is empty for any $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{r}$ with $\mathrm{i} \neq \mathrm{j}$, so that $\mathrm{U}_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{V}_{\mathrm{i}}=\mathrm{V}(\mathrm{G})$.

Hosoya polynomial of the graph G is defined by: $\mathrm{H}(\mathrm{G} ; \mathrm{x})=\sum_{\mathrm{k}=0}^{\text {diam }(G)} \mathrm{d}(\mathrm{G}, \mathrm{k}) \mathrm{x}^{\mathrm{k}}$, where $d(G, k)$ is the number of pairs of vertices of a graph G that are at distance k apart, for $\mathrm{k}=0,1,2, \ldots, \operatorname{diam}(\mathrm{G})$. The Wiener index of G is defined as the sum of all distances between vertices of the graph, and denoted by $\mathrm{W}(\mathrm{G})$, and we can find this index by differentiating Hosoya polynomial for the given distance with respect to x and putting x $=1$. See [7, 9].

As usual we shall assume that p and q are distinct positive prime numbers and m be an integer with $m \geq 2$. In [1] Ahmadi and Nezhad proved some results concerning the Wiener index of $\Gamma\left(\mathrm{Z}_{\mathrm{n}}\right)$, where $\mathrm{n}=\mathrm{p}^{2}$, pq and $\mathrm{p}^{2} \mathrm{q}$. In this paper we extended these results to $n=p^{m}, p^{m} q$.

2. Hosoya Polynomial and Wiener Index of $\Gamma\left(\mathbf{Z}_{p} \mathbf{m}\right)$

In this section, we find the Hosoya polynomial and the Wiener index of $\Gamma\left(\mathrm{Z}_{\mathrm{p}}{ }^{m}\right)$. It is clear that $Z^{*}\left(Z_{p} m\right)=(p) \backslash\{0\}=\left\{p, 2 p, 3 p, \ldots,\left(p^{m-1}-1\right) p\right\}$, so we have $\left|Z^{*}\left(Z_{p^{m}}\right)\right|=p^{m-1}-1$. We shall begin this section with the following lemma:
Lemma 2.1 [8, Lemma 2.1.] : Let Z_{n} be a ring of integers modulo n . Then, the number of all non-zero zero-divisors for $\mathrm{k} \mid \mathrm{n}$ are $\frac{\mathrm{n}}{\mathrm{k}}-1$.

Theorem 2.2: $\Gamma\left(\mathrm{Z}_{\mathrm{p}^{3}}\right) \cong \mathrm{K}_{\mathrm{p}-1}+\overline{\mathrm{K}}_{\mathrm{p}^{2}-\mathrm{p}}$
Proof : Since p is a prime number, then it is clear that the ring $\mathrm{Z}_{\mathrm{p}^{3}}$ is a local ring, so we have $Z^{*}\left(Z_{p^{3}}\right)=(p) \backslash\{0\}=\left\{k p: k=1,2,3, \ldots, p^{2}-1\right\}$.
Now, we can classify $Z^{*}\left(Z_{p^{3}}\right)$ into the two disjoint subsets as follows :
$A_{1}=\left(p^{2}\right) \backslash\{0\}$, and $A_{2}=(p) \backslash\left\{A_{1} \cup\{0\}\right\}$. It is clear that $Z^{*}\left(Z_{p^{3}}\right)=A_{1} \cup A_{2}$ and by using Lemma 2.1 we have $\left|A_{1}\right|=\frac{p^{3}}{p^{2}}-1=p-1$, and $\left|A_{2}\right|=\frac{p^{3}}{p}-\left(\frac{p^{3}}{p^{2}}-1+1\right)=$ $\mathrm{p}^{2}-\mathrm{p}$, so we can write $\mathrm{A}_{1}=\left\{\mathrm{k}_{1} \mathrm{p}^{2}: \mathrm{k}_{1}=1,2, \ldots, \mathrm{p}-1\right\}$ and $\mathrm{A}_{2}=\left\{\mathrm{k}_{2} \mathrm{p}: \mathrm{k}_{2}=1,2, \ldots, \mathrm{p}^{2}-1 ; \mathrm{p} \nmid\right.$ k_{2} \}.
Now, let $\mathrm{x}, \mathrm{y} \in \mathrm{Z}^{*}\left(\mathrm{Z}_{\mathrm{p}^{3}}\right)$. Then, there are three cases :
Case 1: If $\mathrm{x}, \mathrm{y} \in \mathrm{A}_{1}$, then there exists positive integers k_{1} and k_{2} with $\mathrm{p} \nmid \mathrm{k}_{1}, \mathrm{k}_{2}$ such that $x=k_{1} p^{2}$ and $y=k_{2} p^{2}$, and we have
$\mathrm{xy}=\mathrm{k}_{1} \mathrm{p}^{2} \mathrm{k}_{2} \mathrm{p}^{2}=\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{p}^{4} \equiv 0\left(\bmod \mathrm{p}^{3}\right)$, then x adjacent with y in this case .
Case 2: If $x \in A_{1}$ and $y \in A_{2}$, then there exists positive integers k_{1} and k_{2} with $p \nmid k_{1}, k_{2}$ such that $x=k_{1} p^{2}$, and $y=k_{2} p$, and we have
$x y=k_{1} p^{2} k_{2} p=k_{1} k_{2} p^{3} \equiv 0\left(\bmod p^{3}\right)$, then x adjacent with y in this case.
Case 3: If $x, y \in A_{2}$, then there exists positive integers k_{1} and k_{2} with $p \nmid k_{1}, k_{2}$ such that $x=k_{1} p$ and $y=k_{2} p$, and we have $x y=k_{1} p k_{2} p=k_{1} k_{2} p^{2} \not \equiv 0\left(\bmod p^{3}\right)$, then x and y are not adjacent in this case.

From the previous, we see that every vertex in A_{1} is adjacent with any other vertex in A_{1} and A_{2}, so that no vertex in A_{2} is adjacent with any other vertex in A_{2}, therefore we have: $\Gamma\left(\mathrm{Z}_{\mathrm{p}^{3}}\right) \cong \mathrm{K}_{\left|\mathrm{A}_{1}\right|}+\overline{\mathrm{K}}_{\left|\mathrm{A}_{2}\right|}=\mathrm{K}_{\mathrm{p}-1}+\overline{\mathrm{K}}_{\mathrm{p}^{2}-\mathrm{p}}$

Theorem 2.3: $\mathrm{H}\left(\Gamma\left(\mathrm{Z}_{\mathrm{p}^{3}}\right) ; \mathrm{x}\right)=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{2} \mathrm{x}^{2}$, where $\mathrm{a}_{0}=\mathrm{p}^{2}-1, \quad \mathrm{a}_{1}=\frac{1}{2}\left(2 \mathrm{p}^{3}-3 \mathrm{p}^{2}-\mathrm{p}\right.$ $+2)$, and $\mathrm{a}_{2}=\frac{1}{2}\left(\mathrm{p}^{4}-2 \mathrm{p}^{3}+\mathrm{p}\right)$.
Proof : From clearly that $\operatorname{diam}\left(\Gamma\left(Z_{p^{3}}\right)\right)=d(x, y)=2$, for all $x, y \in A_{2}$, therefore $H\left(\Gamma\left(Z_{p^{3}}\right), x\right)=a_{0}+a_{1} x+a_{2} x^{2}$, where $a_{i}=d\left(\Gamma\left(Z_{p^{3}}\right), i\right)$ for $i=0,1,2$. It is clear that $a_{0}=$ $\mathrm{d}\left(\Gamma\left(\mathrm{Z}_{\mathrm{p}^{3}}\right), 0\right)=\left|\mathrm{Z}^{*}\left(Z_{\mathrm{p}^{3}}\right)\right|=\mathrm{p}^{2}-1$.
Now, let $Z^{*}\left(Z_{p^{3}}\right)=A_{1} \cup A_{2}$, where $A_{1}=\left(p^{2}\right) \backslash\{0\}$ and $A_{2}=(p) \backslash\left\{A_{1} \cup\{0\}\right\}$ and by Lemma 2.1 we have, $\left|A_{1}\right|=p-1$, and $\left|A_{2}\right|=p^{2}-p$.

To find a_{1}, let $x, y \in Z^{*}\left(Z_{p^{3}}\right)$ such that $d(x, y)=1$, from the proof of Theorem 2.2 we get that $d(x, y)=1$ if and only if $x, y \in A_{1}$ or $x \in A_{1}$ and $y \in A_{2}$, then we have :
$\mathrm{a}_{1}=\mathrm{d}\left(\Gamma\left(\mathrm{Z}_{\mathrm{p}^{3}}\right), 1\right)=\binom{\left|\mathrm{A}_{1}\right|}{2}+\left|\mathrm{A}_{1}\right|\left|\mathrm{A}_{2}\right|=\binom{\mathrm{p}-1}{2}+(\mathrm{p}-1)\left(\mathrm{p}^{2}-\mathrm{p}\right)=\frac{1}{2}\left(2 \mathrm{p}^{3}-3 \mathrm{p}^{2}-\right.$ $p+2)$.

To find a_{2}, let $x, y \in Z^{*}\left(Z_{p^{3}}\right)$ such that $d(x, y)=2$, from the proof of Theorem 2.2, we have $d(x, y)=2$ if and only if $x, y \in A_{2}$, then we have :

$$
\mathrm{a}_{2}=\mathrm{d}\left(\Gamma\left(\mathrm{Z}_{\mathrm{p}^{3}}\right), 2\right)=\binom{\left|\mathrm{A}_{2}\right|}{2}=\binom{\mathrm{p}^{2}-\mathrm{p}}{2}=\frac{1}{2}\left(\mathrm{p}^{4}-2 \mathrm{p}^{3}+\mathrm{p}\right) .
$$

Corollary 2.4: $\mathrm{W}\left(\Gamma\left(\mathrm{Z}_{\mathrm{p}^{3}}\right)\right)=\frac{1}{2}\left(2 \mathrm{p}^{4}-2 \mathrm{p}^{3}-3 \mathrm{p}^{2}+\mathrm{p}+2\right)$.
Proof : Since $W\left(\Gamma\left(Z_{p^{3}}\right)\right)=\left.\frac{d}{d x} H\left(\Gamma\left(Z_{p^{3}}\right) ; x\right)\right|_{x=1}$, then we have $\quad W\left(\Gamma\left(Z_{p^{3}}\right)\right)=0+\frac{1}{2}(2$ $\left.\mathrm{p}^{3}-3 \mathrm{p}^{2}-\mathrm{p}+2\right)+\left.2 \mathrm{x}\left(\frac{1}{2}\left(\mathrm{p}^{4}-2 \mathrm{p}^{3}+\mathrm{p}\right)\right)\right|_{\mathrm{x}=1}$

$$
=\frac{1}{2}\left(2 p^{4}-2 p^{3}-3 p^{2}+p+2\right)
$$

Next, we give the following definition .
Definition 2.5 : Let $\mathrm{Z}_{\mathrm{p}} \mathrm{m}$ be the ring of integers modulo p^{m}. Then we can write $\mathrm{Z}^{*}\left(\mathrm{Z}_{\mathrm{p}} \mathrm{m}\right)=$ $\bigcup_{i=1}^{m-1} A_{i}$, where A_{i} are disjoint subsets of $Z^{*}\left(Z_{p} m\right)$, for $1 \leq i \leq m-1$, which are defined as follows:
$\mathrm{A}_{1}=\left(\mathrm{p}^{\mathrm{m}-1}\right) \backslash\{0\}, \mathrm{A}_{2}=\left(\mathrm{p}^{\mathrm{m}-2}\right) \backslash\left\{\mathrm{A}_{1} \cup\{0\}\right\}, \mathrm{A}_{3}=\left(\mathrm{p}^{\mathrm{m}-3}\right) \backslash\left\{\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup\{0\}\right\}, \ldots$,
$\mathrm{A}_{\mathrm{m}-1}=(\mathrm{p}) \backslash\left\{\left\{\mathrm{U}_{\mathrm{i}=1}^{\mathrm{m}-2} \mathrm{~A}_{\mathrm{i}}\right\} \cup\{0\}\right\}$.
Notice that, from Lemma 2.1, we get
$\left|A_{i}\right|=p^{i}-p^{i-1}$, for any $1 \leq i \leq m-1$, so that we can write
$A_{i}=\left\{k_{i} p^{m-i}: k_{i}=1,2, \ldots, p^{i}-1 ; p \nmid k_{i}\right\}$, for any $1 \leq i \leq m-1$.
Lemma 2.6 : Let A_{i}, for $1 \leq i \leq m-1$ be subsets of $Z^{*}\left(Z_{p m}\right)$ which are defined in Definition 2.5 and let s and t are two integers with $1 \leq \mathrm{s} \leq \mathrm{t} \leq \mathrm{m}-1$, then $\sum_{\mathrm{i}=\mathrm{s}}^{\mathrm{t}}\left|\mathrm{A}_{\mathrm{i}}\right|=$ $p^{t}-p^{s-1}$.
Proof: Since, $\left|A_{i}\right|=p^{i}-p^{i-1}, \forall 1 \leq i \leq m-1$, then we have

$$
\begin{aligned}
\sum_{\mathrm{i}=\mathrm{s}}^{\mathrm{t}} \mid \mathrm{A}_{\mathrm{i}} & =\sum_{\mathrm{i}=\mathrm{s}}^{\mathrm{t}}\left(\mathrm{p}^{\mathrm{i}}-\mathrm{p}^{\mathrm{i}-1}\right)=\mathrm{p}^{\mathrm{s}}-\mathrm{p}^{\mathrm{s}-1}+\mathrm{p}^{\mathrm{s}+1}-\mathrm{p}^{\mathrm{s}}+\ldots+\mathrm{p}^{\mathrm{t}-1}-\mathrm{p}^{\mathrm{t}-2}+\mathrm{p}^{\mathrm{t}}-\mathrm{p}^{\mathrm{t}-1} \\
& =\mathrm{p}^{\mathrm{s}-1} .
\end{aligned}
$$

Theorem 2.7 : Let A_{i}, for $1 \leq i \leq m-1$, be subsets of $Z^{*}\left(Z_{p} m\right)$ which are defined in Definition 2.5. Then, for any $x, y \in Z^{*}\left(Z_{p^{m}}\right), x y=0$ if and only if $x \in A_{i}$ and $y \in A_{j}$ such that $\mathrm{i}+\mathrm{j} \leq \mathrm{m}$, for some $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{m}-1$.
Proof : From Definition 2.5 we have $Z^{*}\left(Z_{p} m\right)=\bigcup_{i=1}^{m-1} A_{i}$, where $A_{i}=\left\{k_{i} p^{m-i}\right.$: $\left.k_{i}=1,2, \ldots, p^{i}-1 ; p \nmid k_{i}\right\}$, for $1 \leq i \leq m-1$. Now, for any $1 \leq i, j \leq m-1$, let $x \in A_{i}$ and $y \in A_{j}$. Then, there exists two positive integers k_{i} and k_{j} such that $x=k_{i} p^{m-i}$ and $y=k_{j} p^{m-}$ ${ }^{\mathrm{j}}$, with $\mathrm{p} \nmid \mathrm{k}_{\mathrm{i}}, \mathrm{k}_{\mathrm{j}}$.

Now, if $x y=0$. Then, $x y=k_{i} p^{m-i} k_{j} p^{m-j}=k_{i} k_{j} p^{2 m-(i+j)} \equiv 0\left(\bmod p^{m}\right)$, and since $\mathrm{k}_{\mathrm{i}} \mathrm{k}_{\mathrm{j}} \equiv \equiv 0\left(\bmod \mathrm{p}^{\mathrm{m}}\right)$, therefore $\mathrm{p}^{2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})} \equiv 0\left(\bmod \mathrm{p}^{\mathrm{m}}\right)$, and that means p^{m} divides $\mathrm{p}^{2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})}$, which implies that $2 \mathrm{~m}-(\mathrm{i}+\mathrm{j}) \geq \mathrm{m}$, therefore $\mathrm{i}+\mathrm{j} \leq \mathrm{m}$.

Conversely: Let $x \in A_{i}$ and $y \in A_{j}$ such that $i+j \leq m$ for some $1 \leq i, j \leq m-1$, and suppose contrary that $\mathrm{xy} \neq 0 \Rightarrow \mathrm{xy}=\mathrm{k}_{\mathrm{i}} \mathrm{k}_{\mathrm{j}} \mathrm{p}^{2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})} \not \equiv 0\left(\bmod \mathrm{p}^{\mathrm{m}}\right)$, and since, $\mathrm{p} \nmid \mathrm{k}_{\mathrm{i}}, \mathrm{k}_{\mathrm{j}}$, therefore $\mathrm{p}^{\mathrm{m}} \nmid \mathrm{p}^{2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})}$. Then, we get $2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})<\mathrm{m}$, so that $2 \mathrm{~m}-\mathrm{m}<\mathrm{i}+\mathrm{j}$, which implies that $\mathrm{i}+\mathrm{j}>\mathrm{m}$, this contradiction, therefore $\mathrm{xy}=0$.

From Theorem 2.7 and Lemma 2.6 we can give the general form of the graph $\Gamma\left(\mathrm{Z}_{\mathrm{p}} \mathrm{t}\right)$, where $\mathrm{t}=4,5$, as the following :

Figure 2.1 : The general form of the graph $\left.\left.\Gamma\left(Z_{p^{4}}\right) \cong \mathbf{K}_{(p-1)}+\left(\mathbf{K}_{(p)}{ }^{2}-p\right) \cup \overline{\mathbf{K}}_{(p)}{ }^{3}-p^{2}\right)\right)$

Figure 2.2
The general form of the graph $\Gamma\left(\boldsymbol{Z}_{\boldsymbol{p}^{4}}\right)$

Figure 2.3
The general form of the graph $\Gamma\left(Z_{\boldsymbol{p}^{5}}\right)$
We can now give the general form of the graph $\Gamma\left(\mathrm{Z}_{\mathrm{p}} \mathrm{m}\right)$:

Figure 2.4: The general form of the graph $\Gamma\left(Z_{p m}\right)$, where m is an even number with $m \geq 6$.

Figure 2.5 : The general form of the graph $\left.\Gamma\left(\mathrm{Z}_{\mathrm{p}}\right)\right)$, where m is an odd number with $\mathrm{m} \geq 7$.
Theorem 2.8 : The graph $\Gamma\left(\mathrm{Z}_{\mathrm{p}^{m}}\right)$ is s-partite graph, where
$s= \begin{cases}p^{\frac{m-1}{2}} & ; \text { if } m \text { is an odd number } \\ p^{\frac{m}{2}}-1 & ; \text { if } m \text { is an even number }\end{cases}$
Proof: From Definition 2.5, we have $Z^{*}\left(Z_{p} m\right)=\bigcup_{i=1}^{m-1} A_{i}$, where $A_{i}=\left\{k_{i} p^{m-i}, k_{i}=1,2, \ldots\right.$,$\left.p^{i}-1 ; p \not k_{i}\right\}$, for $1 \leq i \leq m-1$.

Suppose that m is an odd number, we see that by Theorem 2.7, any two distinct vertices lie in $\bigcup_{i=1}^{\frac{m-1}{2}} A_{i}$ are adjacent because that $i+j \leq m$, for any $1 \leq i, j \leq \frac{m-1}{2}$, this means that, we cannot put the vertices of the sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\frac{m-1}{2}}$ in less than $\sum_{\mathrm{i}=1}^{\frac{\mathrm{m}-1}{2}}\left|\mathrm{~A}_{\mathrm{i}}\right|=\mathrm{p}^{\frac{\mathrm{m}-1}{2}}-1$ of partite sets. also by Theorem 2.7 we see that any vertex $\mathrm{x} \in$ $A_{\frac{m+1}{2}}$ is adjacent with every vertex of $U_{i=1}^{\frac{m-1}{2}} A_{i}$ because that $\frac{m+1}{2}+i \leq m$, for any $1 \leq i \leq$ $\frac{m-1}{2}$, so that X is not adjacent with any other vertex in $\frac{\mathrm{A}_{\mathrm{m}+1}}{2}$ because that $2\left(\frac{\mathrm{~m}+1}{2}\right)>\mathrm{m}$, therefore we must consider new partite set, say V , contains the vertices of $\frac{\mathrm{Am}_{2}}{2}$, in this case, we cannot put the vertices of the sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\frac{\mathrm{m}+1}{}}^{2}$, in less than $\left(\mathrm{p}^{\frac{\mathrm{m}-1}{2}}-\right.$
$1)+1=p^{\frac{m-1}{2}}$ of partite sets. Now, if we can put the vertices of $U_{i=\frac{m+3}{2}}^{m-1} A_{i}$ in V, then the theorem hold, that is : by Theorem 2.7 we see that any two distinct vertices in $U_{i=\frac{m+3}{2}}^{m-1} A_{i}$ are not adjacent because that $i+j>m$ for any $\frac{m+3}{2} \leq i, j \leq m-1$, so that any vertex in V is not adjacent with every vertex of $U_{i=\frac{m+3}{2}}^{m-1} A_{i}$ because that $\frac{m+1}{2}+i>$ m, for any $\frac{m+3}{2} \leq i \leq m-1$, and this shows that we cannot put the vertices of $Z^{*}\left(Z_{p^{m}}\right)=\bigcup_{i=1}^{m-1} A_{i}$ in less than $p^{\frac{m-1}{2}}$ of partite sets, therefore $\Gamma\left(Z_{p m}\right)$ is $p^{\frac{m-1}{2}}$-partite graph.

Now, let m be an even integer number, similarly we cannot put the vertices of the set $U_{i=1}^{\frac{m}{2}} A_{i}$ in less than $\sum_{i=1}^{\frac{m}{2}}\left|A_{i}\right|=p^{\frac{m}{2}}-1$ of partite sets, say $V_{1}, V_{2}, \ldots, V_{p} \frac{m}{2}-1$, each of these partite sets contains only one vertex of the set $U_{i=1}^{\frac{m}{2}} A_{i}$, suppose that the partite set $\mathrm{V}_{\mathrm{p}^{\frac{m}{2}-1}}$ contains one of the vertices of the set $\mathrm{Am}_{\frac{m}{2}}$, and we are going to show that we can put the vertices of the set $U_{i=\frac{m+2}{2}}^{m-1} A_{i}$ in the partite set $V_{p^{2}-1}$, that is: by Theorem 2.7 we see that any two distinct vertices in the set $\bigcup_{i=\frac{m+2}{2}}^{m-1} A_{i}$ are not adjacent because that $i+j>m$ for any $\frac{m+2}{2} \leq i, j \leq m-1$, so that any vertex of the set $U_{i=\frac{m+2}{2}}^{m-1} A_{i}$ is not adjacent with every vertex of the set $\mathrm{A}_{\frac{m}{2}}$ because that $\frac{\mathrm{m}}{2}+\mathrm{i}>\mathrm{n}$ for any $\frac{\mathrm{m}+2}{2} \leq i \leq m-$ 1, and this shows we can put the vertices of the set $U_{i=\frac{m}{2}}^{m-1} A_{i}$ in the partite set $V_{p} \frac{m}{2}$, , therefore we cannot put the vertices of $Z^{*}\left(Z_{p^{m}}\right)=\bigcup_{i=1}^{m-1} A_{i}$ in less than $p^{\frac{m}{2}}-1$ of partite sets, hence $\Gamma\left(Z_{p^{m}}\right)$ is ($p^{\frac{m}{2}}-1$)-partite graph.
Lemma 2.9 [7] : Let G be a connected graph of order r. Then $\sum_{i=0}^{\text {diam(G) }} \mathrm{d}(\mathrm{G}, \mathrm{i})=\frac{1}{2} \mathrm{r}(\mathrm{r}+1)$.

Now, we give the main result in this section.
Theorem 2.10: $H\left(\Gamma\left(Z_{p} m\right) ; x\right)=a_{0}+a_{1} x+a_{2} x^{2}$, where
$\mathrm{a}_{0}=\mathrm{p}^{\mathrm{m}-1}-1$,
$\mathrm{a}_{1}=\frac{1}{2}\left[(\mathrm{~m}-1) \mathrm{p}^{\mathrm{m}}-\mathrm{mp} \mathrm{p}^{\mathrm{m}-1}-\mathrm{p}^{\left.\left\lvert\, \frac{\mathrm{m}}{2}\right.\right]}+2\right]$, and
$\mathrm{a}_{2}=\frac{1}{2}\left[\mathrm{p}^{2(\mathrm{~m}-1)}-(\mathrm{m}-1) \mathrm{p}^{\mathrm{m}}+(\mathrm{m}-3) \mathrm{p}^{\mathrm{m}-1}+\mathrm{p}^{\left\lfloor\frac{\mathrm{m}}{2}\right\rfloor}\right]$.
Proof : When $m=2$, we have $\Gamma\left(\mathrm{Z}_{\mathrm{p}^{2}}\right) \cong \mathrm{K}_{\mathrm{p}-1}$, and the theorem is true in this case.
Now, suppose that $m \geq 3$, since $Z_{p^{m}}$ is a local ring, then by
[4,
Theorem 2.3.], there is a vertex adjacent with every other vertices in $\Gamma\left(\mathrm{Z}_{\mathrm{p}} \mathrm{m}\right)$, this means that $\operatorname{diam}\left(\Gamma\left(Z_{p^{m}}\right)\right)=2$, therefore $H\left(\Gamma\left(Z_{p} m\right) ; x\right)=a_{0}+a_{1} x+a_{2} x^{2}$, where $a_{i}=d\left(\Gamma\left(Z_{p}\right)\right.$, i), for $\mathrm{i}=0,1,2$.

To find a_{0}, by Lemma 2.1 we have
$\mathrm{a}_{0}=\mathrm{d}\left(\Gamma\left(\mathrm{Z}_{\mathrm{p}^{\mathrm{m}}}\right), 0\right)=\left|\mathrm{Z}^{*}\left(Z_{\mathrm{p}^{\mathrm{m}}}\right)\right|=\frac{\mathrm{p}^{\mathrm{m}}}{\mathrm{p}}-1=\mathrm{p}^{\mathrm{m}-1}-1$.
To find a_{1}, suppose that m be an odd number, and let $x, y \in Z^{*}\left(Z_{p m}\right)$, since $Z^{*}\left(Z_{p} m\right)=\bigcup_{i=1}^{m-1} A_{i}$, then by Theorem 2.7 we see that $d(x, y)=1$ (i.e. $x y=0$) if and only if
$x \in A_{i}$ and $y \in A_{j}$ such that $i+j \leq m$, for some $\quad 1 \leq i, j \leq m-1$, and this holds if and only if one of the following two cases holds :
Case 1: $1 \leq \mathrm{i}, \mathrm{j} \leq \frac{\mathrm{m}-1}{2}$, because that $\mathrm{i}+\mathrm{j} \leq \mathrm{m}$ for any $1 \leq \mathrm{i}, \mathrm{j} \leq \frac{\mathrm{m}-1}{2}$, in this case there are m_{1} edges where
$\mathrm{m}_{1}=\binom{\sum_{\mathrm{i}=1}^{\frac{\mathrm{m}-1}{2}}\left|\mathrm{~A}_{\mathrm{i}}\right|}{2}=\binom{\mathrm{p}^{\frac{\mathrm{m}-1}{2}}-1}{2}=\frac{1}{2}\left(\mathrm{p}^{\frac{\mathrm{m}-1}{2}}-1\right)\left(\mathrm{p}^{\frac{\mathrm{m}-1}{2}}-2\right) \ldots$
Case 2: $1 \leq i \leq \frac{m-1}{2}$ and $\frac{m+1}{2} \leq j \leq m-i$, since that $i+j \leq m$ for any $\quad 1 \leq i \leq \frac{m-1}{2}$ and $\frac{m+1}{2} \leq j \leq m-i$, in this case there are m_{2} edges where $m_{2}=\sum_{i=1}^{\frac{m-1}{2}}\left(\left|A_{i}\right| \sum_{j=\frac{m}{2}}^{m-i}\left|A_{j}\right|\right)$, since $\left|A_{i}\right|=p^{i}-p^{i-1}$, for each $1 \leq i \leq m-1$, and by using Lemma 2.6 we get :

$$
\begin{aligned}
m_{2} & =\sum_{i=1}^{\frac{m-1}{2}}\left(p^{i}-p^{i-1}\right)\left(p^{m-i}-p^{\frac{m-1}{2}}\right) \\
& =\sum_{i=1}^{\frac{m-1}{2}} p^{i-1}(p-1)\left(p^{m-i}-p^{\frac{m-1}{2}}\right)=\sum_{i=1}^{\frac{m-1}{2}}(p-1)\left(p^{m-1}-p^{\frac{m-3}{2}} p^{i}\right) \\
& =\sum_{i=1}^{\frac{m}{2}} p^{m-1}(p-1)-p^{\frac{m-3}{2}}(p-1) \sum_{i=1}^{\frac{m-1}{2}} p^{i} \\
& =\frac{m-1}{2} p^{m-1}(p-1)-p^{\frac{m-3}{2}}(p-1) \sum_{i=1}^{\frac{m-1}{2}} p^{i} \text {, and since }\left\{p^{i}\right\}_{i=1}^{\frac{m-1}{2}} \text { is a geometric sequence, }
\end{aligned}
$$

therefore we can use $\sum_{i=1}^{k} a^{i}=\frac{a^{k+1}-a}{a-1}$ where a be any real number and k is any positive integer, hence we have : $\quad m_{2}=\frac{m-1}{2} p^{m-1}(p-1)-p^{\frac{m-3}{2}}(p-1)$

$$
\begin{aligned}
& \frac{p^{\frac{m+1}{2}}-p}{(p-1)} \\
& \quad=\frac{m-1}{2} p^{m-1}(p-1)-p^{\frac{m-1}{2}}\left(p^{\frac{m-1}{2}}-1\right) \ldots(* *) .
\end{aligned}
$$

Now, from ${ }^{(*)}$ and $\left({ }^{* *}\right)$, we get

$$
\begin{aligned}
a_{1} & =m_{1}+m_{2}=\frac{1}{2}\left(p^{\frac{m-1}{2}}-1\right)\left(p^{\frac{m-1}{2}}-2\right)+\frac{m-1}{2} p^{m-1}(p-1)-p^{\frac{m-1}{2}}\left(p^{\frac{m-1}{2}}-1\right) \\
& =\frac{1}{2}\left[(m-1) p^{m}-m p^{m-1}-p^{\frac{m-1}{2}}+2\right] .
\end{aligned}
$$

Similarly, when an m be an even number we get that

$$
\mathrm{a}_{1}=\frac{1}{2}
$$

$$
\left[(m-1) p^{m}-m p^{m-1}-p^{\frac{m}{2}}+2\right] .
$$

Hence $\mathrm{a}_{1}=\frac{1}{2}\left[(\mathrm{~m}-1) \mathrm{p}^{\mathrm{m}}-\mathrm{m} \mathrm{p}^{\mathrm{m}-1}-\mathrm{p}^{\left\lfloor\frac{\mathrm{m}}{2}\right\rfloor}+2\right]$.
Next, to find a_{2} we shall use lemma 2.9, and we get :

$$
\begin{aligned}
\mathrm{a}_{2} & =\frac{1}{2} \mathrm{a}_{0}\left(\mathrm{a}_{0}+1\right)-\mathrm{a}_{0}-\mathrm{a}_{1} \\
& =\frac{1}{2}\left(\mathrm{p}^{\mathrm{m}-1}-1\right) \mathrm{p}^{\mathrm{m}-1}-\left(\mathrm{p}^{\mathrm{m}-1}-1\right)-\frac{1}{2}\left[(\mathrm{~m}-1) \mathrm{p}^{\mathrm{m}}-\mathrm{m} \mathrm{p}^{\mathrm{m}-1}-\mathrm{p}^{\left\lfloor\frac{\mathrm{m}}{2}\right]}+2\right] \\
& =\frac{1}{2}\left[\mathrm{p}^{2(\mathrm{~m}-1)}-(\mathrm{m}-1) \mathrm{p}^{\mathrm{m}}+(\mathrm{m}-3) \mathrm{p}^{\mathrm{m}-1}+\mathrm{p}^{\left[\frac{\mathrm{m}}{2}\right]}\right] .
\end{aligned}
$$

Corollary 2.11: $\mathbf{W}\left(\Gamma\left(Z_{p^{m}}\right)\right)=\frac{1}{2}\left[2 p^{2(m-1)}-(m-1) p^{m}+(m-6) p^{m-1}+p^{\left\lfloor\frac{m}{2}\right\rfloor}+2\right]$.

3. Hosoya Polynomial and Wiener Index of $\Gamma\left(Z_{p^{m}}\right)$.

In this section, we find the Hosoya polynomial and the Wiener index of $\Gamma\left(\mathrm{Z}_{\mathrm{p}}{ }_{\mathrm{m}}\right)$. First, we shall give the following lemma :

Lemma 3.1: The number of all non-zero zero-divisors of a ring $\mathrm{Z}_{\mathrm{p} \mathrm{m}_{\mathrm{q}}}$ is
$(\mathrm{p}+\mathrm{q}-1) \mathrm{p}^{\mathrm{m}-1}-1$.
Proof: Since, p and q are distinct prime numbers, then clearly
$Z(R)=(p) \cup(q)$, therefore $Z^{*}(R)=\{(p) \cup(q)\} \backslash\{0\}$.
Now, let $x \in Z^{*}(R)$, then either $x \in(p)$ or $x \in(q)$ with $x \notin(p q)$, so by Lemma 2.1 we
get :

$$
\begin{aligned}
\left|Z^{*}(R)\right| & =\left(\frac{p^{m} q}{p}-1\right)+\left(\frac{p^{m} q}{q}-1\right)-\left(\frac{p^{m} q}{p q}-1\right) \\
& =\left(p^{m-1} q-1\right)+\left(p^{m}-1\right)-\left(p^{m-1}-1\right) \\
& =p^{m-1} q-1+p^{m}-1-p^{m-1}+1 \\
& =(p+q-1) p^{m-1}-1 .
\end{aligned}
$$

Definition 3.2 : Let $\mathrm{Z}_{\mathrm{p} \mathrm{m}_{\mathrm{q}}}$ be the ring of integers modulo $\mathrm{p}^{\mathrm{m}} \mathrm{q}$, then we can write :
$\mathrm{Z}^{*}\left(\mathrm{Z}_{\mathrm{p}} \mathrm{m}\right)=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathrm{B}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{i}}\right)$, where B_{i} and C_{i}, are disjoint subsets of $\mathrm{Z}^{*}\left(\mathrm{Z}_{\mathrm{p}^{m}}\right)$, for $1 \leq \mathrm{i} \leq$ m , which are defined as follows:
$B_{1}=\left(p^{m-1} q\right) \backslash\{0\}, B_{2}=\left(p^{m-2} q\right) \backslash\left\{B_{1} \cup\{0\}\right\}$,
$B_{3}=\left(p^{m-3} q\right) \backslash\left\{B_{1} \cup B_{2} \cup\{0\}\right\}, \ldots$,
$\mathrm{B}_{\mathrm{m}}=(\mathrm{q}) \backslash\left\{\left\{\mathrm{U}_{\mathrm{i}=1}^{\mathrm{m}-1} \mathrm{~B}_{\mathrm{i}}\right\} \cup\{0\}\right\}$, and
$\mathrm{C}_{1}=\left(\mathrm{p}^{\mathrm{m}}\right) \backslash\{0\}, \mathrm{C}_{2}=\left(\mathrm{p}^{\mathrm{m}-1}\right) \backslash\left\{\mathrm{B}_{1} \cup \mathrm{C}_{1} \cup\{0\}\right.$,
$\mathrm{C}_{3}=\left(\mathrm{p}^{\mathrm{m}-2}\right) \backslash\left\{\mathrm{B}_{1} \cup \mathrm{C}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{C}_{2} \cup\{0\}\right\}, \ldots$,
$\left.\mathrm{C}_{\mathrm{m}}=(\mathrm{p})\right) \backslash\left\{\left\{\mathrm{U}_{\mathrm{i}=1}^{\mathrm{m}-1}\left(\mathrm{~B}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{i}}\right)\right\} \cup\{0\}\right\}$.
Notice that, by Lemma 2.1 we get :
$\left|\mathrm{B}_{\mathrm{i}}\right|=\mathrm{p}^{\mathrm{i}}-\mathrm{p}^{\mathrm{i}-1}$, for any $1 \leq \mathrm{i} \leq \mathrm{m},\left|\mathrm{C}_{1}\right|=(\mathrm{q}-1)$ and $\left|\mathrm{C}_{\mathrm{i}}\right|=\left(\mathrm{p}^{\mathrm{i}-1}-\mathrm{p}^{\mathrm{i}-2}\right)(\mathrm{q}-1)$, for all $2 \leq \mathrm{i} \leq \mathrm{m}$, also we can write :
$\mathrm{B}_{\mathrm{i}}=\left\{\mathrm{k}_{\mathrm{i}} \mathrm{p}^{\mathrm{m}-\mathrm{i}} \mathrm{q}: \mathrm{k}_{\mathrm{i}}=1,2, \ldots, \mathrm{p}^{\mathrm{i}}-1 ; \mathrm{p} \nmid \mathrm{k}_{\mathrm{i}}\right\}$, and $\quad \mathrm{C}_{\mathrm{i}}=\left\{\mathrm{k}_{\mathrm{i}} \mathrm{p}^{\mathrm{m}-\mathrm{i}+1}: \mathrm{k}_{\mathrm{i}}=1,2, \ldots, \mathrm{p}^{\mathrm{i}-1} \mathrm{q}-1 ; \mathrm{q} \nmid \mathrm{k}_{\mathrm{i}}\right\}$, for any $1 \leq \mathrm{i} \leq \mathrm{m}$.

Remarks :

(1) $\sum_{i=1}^{m}\left|B_{i}\right|=p^{m}-1$.
(2) $\sum_{\mathrm{i}=1}^{\mathrm{m}}\left|\mathrm{C}_{\mathrm{i}}\right|=\mathrm{p}^{\mathrm{m}-1}(\mathrm{q}-1)$.
(3) $\left|\mathrm{C}_{\mathrm{i}}\right|=(\mathrm{q}-1)\left|\mathrm{B}_{\mathrm{i}-1}\right|$, for any $2 \leq \mathrm{i} \leq \mathrm{m}$.
(4) $\left|A_{i}\right|=\left|B_{i}\right|$, for any $1 \leq i \leq m-1$, where A_{i}, for all $1 \leq i \leq m-1$, be subsets of $\mathrm{Z}^{*}\left(\mathrm{Z}_{\mathrm{p}} \mathrm{m}\right)$ which are defined in Definition 2.5 .
Lemma 3.3 : Let B_{i} and C_{i}, for all $1 \leq i \leq m$, be subsets of $Z^{*}\left(Z_{p^{m}}\right)$ which are defined in Definition 3.2 then :

1- If s and t are two integers with $1 \leq \mathrm{s} \leq \mathrm{t} \leq \mathrm{m}$, then $\sum_{i=s}^{\mathrm{t}}\left|\mathrm{B}_{\mathrm{i}}\right|=\mathrm{p}^{\mathrm{t}}-\mathrm{p}^{\mathrm{s}-1}$.
2- If t be an integer with $1 \leq \mathrm{t} \leq \mathrm{m}$, then $\sum_{\mathrm{i}=1}^{\mathrm{t}}\left|\mathrm{C}_{\mathrm{i}}\right|=(\mathrm{q}-1) \mathrm{p}^{\mathrm{t}-1}$.
3- If s and t are two integers with $2 \leq \mathrm{s} \leq \mathrm{t} \leq \mathrm{m}$, then $\sum_{\mathrm{i}=\mathrm{s}}^{\mathrm{t}}\left|\mathrm{C}_{\mathrm{i}}\right|=(\mathrm{q}-1)\left(\mathrm{p}^{\mathrm{t}-1}-\mathrm{p}^{\mathrm{s}-2}\right)$.
Proof : By the same method of a proof of Lemma 2.6 .
Theorem 3.4 : Let B_{i} and C_{i}, for $1 \leq i \leq m$, be subsets of $Z^{*}\left(Z_{p} m_{q}\right)$ which are defined in Definition 3.2, and let $x, y \in Z^{*}\left(Z_{p m_{q}}\right)$. Then, $x y=0$ if and only if either $x \in B_{i}$ and $y \in$ B_{j} with $i+j \leq m$, or $x \in B_{i}$ and $y \in C_{j}$ with $i+j \leq m+1$, for some $1 \leq i, j \leq m$.
Proof : From the Definition 3.2, we have $Z^{*}\left(Z_{p m}{ }_{q}\right)=\bigcup_{i=1}^{m}\left(B_{i} \cup C_{i}\right)$. Now, let $x, y \in$ $Z^{*}\left(Z_{p^{m}}{ }_{q}\right)$ such that $x y=0$, since $x, y \in \bigcup_{i=1}^{m}\left(B_{i} \cup C_{i}\right)$, then there are two cases :
Case 1: $x \in B_{i}$ and $y \in B_{j}$ for some $1 \leq i, j \leq m$, in this case, there are positive integers k_{i} and k_{j} with $\mathrm{p} \not \mathrm{k}_{\mathrm{i}}, \mathrm{k}_{\mathrm{j}}$, such that $\mathrm{x}=\mathrm{k}_{\mathrm{i}} \mathrm{p}^{m-\mathrm{i}} \mathrm{q}$ and $\mathrm{y}=\mathrm{k}_{\mathrm{j}} \mathrm{p}^{m-\mathrm{j}} \mathrm{q}$, for some $1 \leq \mathrm{i}, \mathrm{j} \leq m$, since $x y=0$ by hypothesis, then we get $x y=\left(k_{i} k_{j}\right) p^{2 m-(i+j)} q^{2} \equiv 0\left(\bmod p^{m} q\right)$, since $p \nmid k_{i}, k_{j}$,
therefore $\mathrm{p}^{2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})} \mathrm{q}^{2} \equiv 0\left(\bmod \mathrm{p}^{\mathrm{m}} \mathrm{q}\right)$, this means that $\mathrm{p}^{2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})}$ is divisible by p^{m}.
Therefore $2 \mathrm{~m}-(\mathrm{i}+\mathrm{j}) \geq \mathrm{m}$, hence $\mathrm{i}+\mathrm{j} \leq \mathrm{m}$.
Case 2: $x \in B_{i}$, and $y \in C_{j}$ for some $1 \leq i, j \leq m$, in this case, there are positive integers k_{i} and k_{j} with $\mathrm{p} \not \mathrm{k}_{\mathrm{i}}$ and $\mathrm{q} \not \mathrm{k}_{\mathrm{j}}$, such that $\mathrm{x}=\mathrm{k}_{\mathrm{i}} \mathrm{p}^{\mathrm{m-i}} \mathrm{q}$ and $\mathrm{y}=\mathrm{k}_{\mathrm{j}} \mathrm{p}^{\mathrm{m}-\mathrm{j}+1}$, for some $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{m}$, since $x y=0$ by hypothesis, then $x y=\left(k_{i} k_{j}\right) p^{2 m-(i+j)+1} q \equiv 0\left(\bmod p^{m} q\right)$, Since $p \nmid k_{i}$ and $\mathrm{q} \nmid \mathrm{k} \mathrm{k}$, therefore $\mathrm{p}^{2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})} \mathrm{q} \equiv 0\left(\bmod \mathrm{p}^{\mathrm{m}} \mathrm{q}\right)$, this means that $\mathrm{p}^{2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})}$ is divisible by p^{m}, therefore $2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})+1 \geq \mathrm{m}$, hence $\mathrm{i}+\mathrm{j} \leq \mathrm{m}+1$.
Finally, we see that when $x \in C_{i}$ and $y \in C_{j}$, then $x y \neq 0$ for any $1 \leq i, j \leq m$.
From previous, we get that if $x y=0$, then either $x \in B_{i}$ and $y \in B_{j}$ with $i+j \leq m$, or $x \in B_{i}$ and $y \in C_{j}$ with $i+j \leq m+1$, for some $1 \leq i, j \leq m$.
Conversely : Let $x \in B_{i}$ and $y \in B_{j}$ for some $1 \leq i, j \leq m$, such that $i+j \leq m$, and suppose contrary that $\mathrm{xy} \neq 0$, we get $\mathrm{xy}=\left(\mathrm{k}_{\mathrm{i}} \mathrm{k}_{\mathrm{j}}\right) \mathrm{p}^{2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})} \mathrm{q}^{2} \not \equiv 0\left(\bmod \mathrm{p}^{\mathrm{m}} \mathrm{q}\right)$, since $\mathrm{p} \nmid \mathrm{k}_{\mathrm{i}}, \mathrm{k}_{\mathrm{j}}$ and q divides q^{2} then $\mathrm{p}^{2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})}$ is not divisible by p^{m}, therefore $2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})<\mathrm{m} \Rightarrow \mathrm{i}+\mathrm{j}>\mathrm{m}$, this contradiction, therefore must be $\mathrm{xy}=0$.

Now, let $x \in B_{i}$ and $y \in C_{j}$ for some $1 \leq i, j \leq m$, such that $i+j \leq m+1$, and suppose contrary that $x y \neq 0$, we get

$$
x y=\left(k_{i} k_{j}\right) p^{2 m-}
$$ ${ }^{(i+j)+1} \mathrm{q} \not \equiv 0\left(\bmod \mathrm{p}^{\mathrm{m}} \mathrm{q}\right)$, and since $\mathrm{p} \nmid \mathrm{k}_{\mathrm{i}}$ and $\mathrm{q} \nmid \mathrm{k}_{\mathrm{j}}$ then $\mathrm{p}^{2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})+1}$ is not divisible by p^{m}, therefore $2 \mathrm{~m}-(\mathrm{i}+\mathrm{j})+1<\mathrm{m} \Rightarrow \mathrm{i}+\mathrm{j}>\mathrm{m}+1$, also this is a contradiction, therefore must be $\mathrm{xy}=0$.

From Theorem 3.4 and Lemma 3.3, we can give the general form of the graph $\Gamma\left(\mathrm{Z}_{\mathrm{p}^{t_{q}}}\right)$, where $\mathrm{t}=3,4$, as follows :

Figure 3.1: The general form of the graph $\Gamma\left(\mathrm{Z}_{\mathrm{p}^{3} \mathrm{q}}\right)$

Figure 3.2 : The general form of the graph $\Gamma\left(\mathrm{Z}_{\mathrm{p}^{4}}{ }\right)$
We can now give the general form of the graph $\Gamma\left(\mathrm{Z}_{\mathrm{p}_{\mathrm{q}}}\right)$, as the following :

3.3 : The general form of the graph $\Gamma\left(Z_{p^{m} q}\right)$, where m is an odd number with $m \geq 5$.

Figure 3.4 : The general form of the graph $\Gamma\left(\mathrm{Z}_{\mathbf{p}^{m}}\right)$, where \mathbf{m} is an even number with $\mathbf{m} \geq 6$.
Lemma 3.5 [8, Proposition 3.2.] : Let $\mathrm{Z}_{\mathrm{p}}{ }_{\mathrm{q}}$ be a ring of integers modulo $\mathrm{p}^{\mathrm{m}} \mathrm{q}$. Then, $\operatorname{diam}\left(\Gamma\left(\mathrm{Z}_{\mathrm{p}^{\mathrm{m}}}\right)\right)=3$.
Now, we give the main result in this section.
Theorem 3.6: $H\left(\Gamma\left(Z_{p}{ }_{q}\right) ; x\right)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$, where
$\mathrm{a}_{0}=(\mathrm{p}+\mathrm{q}-1) \mathrm{p}^{\mathrm{m}-1}-1$,
$\mathrm{a}_{1}=\frac{1}{2}[2 m q(p-1)-(m+1) p+m] p^{m-1}-\frac{1}{2} p^{\left\lfloor\frac{m}{2}\right\rfloor}+1$,
$\mathrm{a}_{2}=\frac{1}{2}\left(\mathrm{p}^{2}+\mathrm{q}^{2}-1\right) \mathrm{p}^{2 \mathrm{~m}-2}+\frac{1}{2}[(\mathrm{~m}-4) \mathrm{p}-2(\mathrm{~m}-1) \mathrm{pq}+(2 \mathrm{~m}-5) \mathrm{q}-\mathrm{m}+5] \mathrm{p}^{\mathrm{m}-1}+\frac{1}{2} \mathrm{p}^{\left\lfloor\frac{\mathrm{m}}{2}\right\rfloor}$, and $a_{3}=(q-1)(p-1)\left(p^{2 m-2}-p^{2-1}\right)$.
Proof : By Lemma 3.5 we have $\operatorname{diam}\left(\Gamma\left(Z_{p} m_{q}\right)\right)=3$, then $H\left(\Gamma\left(Z_{p^{m}}\right) ; x\right)=a_{0}+a_{1} x+a_{2}$ $x^{2}+a_{3} x^{3}$, where $a_{i}=d\left(\Gamma\left(Z_{p} m_{q}\right)\right.$, $\left.i\right)$, for $i=0,1,2,3$.
To find a_{0}, by Lemma 3.3 we have
$\mathrm{a}_{0}=\mathrm{d}\left(\Gamma\left(\mathrm{Z}_{\mathrm{p} \mathrm{m}_{\mathrm{q}}}\right), 0\right)=\left|\mathrm{Z}^{*}\left(\mathrm{Z}_{\mathrm{p}^{\mathrm{m}}}\right)\right|=(\mathrm{p}+\mathrm{q}-1) \mathrm{p}^{\mathrm{m}-1}-1$.
Now, to find a_{1}, let $x, y \in Z^{*}\left(Z_{p^{m}}\right)$ such that $d(x, y)=1$ (i.e. $x y=0$), hence by using Theorem 3.4 there are two cases :

Case 1: $x \in B_{i}$ and $y \in B_{j}$ with $i+j \leq m$, for some $1 \leq i, j \leq m$, the same as the proof of Theorem 2.7, we get that there are m_{1} edges in this case, where
$\mathrm{m}_{1}=\frac{1}{2}\left[(\mathrm{~m}-1) \mathrm{p}^{\mathrm{m}}-\mathrm{mp}^{\mathrm{m}-1}-\mathrm{p}^{\left\lfloor\frac{\mathrm{m}}{2}\right]}+2\right] \ldots(*)$
Case 2: $x \in B_{i}$ and $y \in C_{j}$ with $i+j \leq m+1$, for some $1 \leq i, j \leq m$, this holds if and only if $1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq \mathrm{m}-\mathrm{i}+1$, because that $\mathrm{i}+\mathrm{j} \leq \mathrm{m}+1$ for any $\quad 1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq$ $\mathrm{j} \leq \mathrm{m}-\mathrm{i}+1$, so that $\mathrm{i}+\mathrm{j}>\mathrm{m}+1$ in otherwise of this case, so that there are m_{2} edges, where $\mathrm{m}_{2}=\sum_{\mathrm{i}=1}^{\mathrm{m}}\left(\left|\mathrm{B}_{\mathrm{i}}\right| \sum_{\mathrm{j}=1}^{\mathrm{m}-\mathrm{i}+1}\left|\mathrm{C}_{\mathrm{j}}\right|\right)$, and since $\left|\mathrm{B}_{\mathrm{i}}\right|=\left(\mathrm{p}^{\mathrm{i}}-\mathrm{p}^{\mathrm{i}-1}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{m}$, then by Lemma 3.3, we get that
$\mathrm{m}_{2}=\sum_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathrm{p}^{\mathrm{i}}-\mathrm{p}^{\mathrm{i}-1}\right) \mathrm{p}^{\mathrm{m}-\mathrm{i}+1-1}(\mathrm{q}-1)=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{p}^{\mathrm{i}-1}(\mathrm{p}-1) \mathrm{p}^{\mathrm{m}-\mathrm{i}}(\mathrm{q}-1)$

$$
=\sum_{\mathrm{i}=1}^{\mathrm{m}}(\mathrm{p}-1)(\mathrm{q}-1) \mathrm{p}^{\mathrm{m}-1}=\mathrm{m}(\mathrm{p}-1)(\mathrm{q}-1) \mathrm{p}^{\mathrm{m}-1} \ldots(* *)
$$

Now, from (*) and (**), we get that

$$
\begin{aligned}
\mathrm{a}_{1} & =\mathrm{m}_{1}+\mathrm{m}_{2}=\frac{1}{2}(\mathrm{~m}-1) \mathrm{p}^{\mathrm{m}}-\frac{1}{2} \mathrm{~m} \mathrm{p}^{\mathrm{m}-1}-\frac{1}{2} \mathrm{p}^{\left.\left\lvert\, \frac{\mathrm{m}}{2}\right.\right]}+1+\mathrm{m}\left(\mathrm{p}^{\mathrm{m}}-\mathrm{p}^{\mathrm{m}-1}\right)(\mathrm{q}-1) \\
& =\frac{1}{2} \mathrm{mp}^{\mathrm{m}}-\frac{1}{2} \mathrm{p}^{\mathrm{m}}-\frac{1}{2} \mathrm{~m} \mathrm{p}^{\mathrm{m}-1}-\frac{1}{2} \mathrm{p}^{\left.\left\lvert\, \frac{\mathrm{m}}{2}\right.\right]}+1+\mathrm{m} \mathrm{p}^{\mathrm{m}} \mathrm{q}-\mathrm{m} \mathrm{p}^{\mathrm{m}}-\mathrm{m} \mathrm{p}^{\mathrm{m}-1} \mathrm{q}+\mathrm{mp}^{\mathrm{m}-1} \\
& =\frac{1}{2}[2 \mathrm{mq}(\mathrm{p}-1)-(\mathrm{m}+1) \mathrm{p}+\mathrm{m}] \mathrm{p}^{\mathrm{m}-1}-\frac{1}{2} \mathrm{p}^{\left\lfloor\frac{\mathrm{m}}{2}\right]}+1
\end{aligned}
$$

Now, to find a_{i}, for $i=2,3$, in the first, we shall find a_{3}.
Let $\mathrm{x}, \mathrm{y} \in \mathrm{Z}^{*}\left(\mathrm{Z}_{\mathrm{p}} \mathrm{m}_{\mathrm{q}}\right)$ such that $\mathrm{d}(\mathrm{x}, \mathrm{y})=3$, then $\mathrm{x} \in \mathrm{B}_{\mathrm{i}}$ and $\mathrm{y} \in \mathrm{C}_{\mathrm{j}}$ for some $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{m}$, in this case, we see that $\mathrm{d}(\mathrm{x}, \mathrm{y})=3$ if and only if $\mathrm{i}=\mathrm{m}$ and $2 \leq \mathrm{j} \leq \mathrm{m}$, because that $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq$ 2 for any $1 \leq \mathrm{i} \leq \mathrm{m}-1$ and $2 \leq \mathrm{j} \leq \mathrm{m}$, also that $\mathrm{d}(\mathrm{x}, \mathrm{y})=1$ for $1 \leq \mathrm{i} \leq \mathrm{m}$ and $\mathrm{j}=1$, therefore the number of pairs of vertices that are distance three apart is $\left(\left|B_{m}\right| \sum_{j=2}^{m}\left|C_{j}\right|\right)$, i.e.
$\mathrm{a}_{3}=\left|\mathrm{B}_{\mathrm{m}}\right| \sum_{\mathrm{j}=2}^{\mathrm{m}}\left|\mathrm{C}_{\mathrm{j}}\right|$, since $\left|\mathrm{B}_{\mathrm{m}}\right|=\left(\mathrm{p}^{\mathrm{m}}-\mathrm{p}^{\mathrm{m}-1}\right)$, then by Lemma 3.3, we get that:
$\mathrm{a}_{3}=\left(\mathrm{p}^{\mathrm{m}}-\mathrm{p}^{\mathrm{m}-1}\right)(\mathrm{q}-1)\left(\mathrm{p}^{\mathrm{m}-1}-1\right)=(\mathrm{q}-1)(\mathrm{p}-1)\left(\mathrm{p}^{2 \mathrm{~m}-2}-\mathrm{p}^{\mathrm{m}-1}\right)$.
Now, to find a_{2} we shall use lemma 2.9 , that is :

$$
\begin{aligned}
\mathrm{a}_{2} & =\frac{1}{2} \mathrm{a}_{0}\left(\mathrm{a}_{0}+1\right)-\mathrm{a}_{0}-\mathrm{a}_{1}-\mathrm{a}_{3}=\frac{1}{2} \mathrm{a}_{0}\left(\mathrm{a}_{0}-1\right)-\mathrm{a}_{1}-\mathrm{a}_{3} \\
& =\frac{1}{2}\left((\mathrm{p}+\mathrm{q}-1) \mathrm{p}^{\mathrm{m}-1}-1\right)\left((\mathrm{p}+\mathrm{q}-1) \mathrm{p}^{\mathrm{m}-1}-2\right)-\left[\frac{1}{2}(2 \mathrm{mq}(\mathrm{p}-1)-(\mathrm{m}+1) \mathrm{p}+\mathrm{m}) \mathrm{p}^{\mathrm{m}-1}\right. \\
- & \left.\frac{1}{2} \mathrm{p}^{\left[\frac{\mathrm{m}}{2}\right]}+1\right]-(\mathrm{q}-1)(\mathrm{p}-1)\left(\mathrm{p}^{2 \mathrm{~m}-2}-\mathrm{p}^{\mathrm{m}-1}\right) \\
& =\frac{1}{2}\left(\mathrm{p}^{2}+\mathrm{q}^{2}-1\right) \mathrm{p}^{2 \mathrm{~m}-2}+\frac{1}{2}[(\mathrm{~m}-4) \mathrm{p}-2(\mathrm{~m}-1) \mathrm{pq}+(2 \mathrm{~m}-5) \mathrm{q}-\mathrm{m}+5] \mathrm{p}^{\mathrm{m}-1}+\frac{1}{2} \mathrm{p}^{\left[\frac{\mathrm{m}}{2}\right]} .
\end{aligned}
$$

Corollary 3.7: $\mathrm{W}\left(\Gamma\left(\mathrm{Z}_{\mathrm{p}^{m}} \mathrm{q}\right)\right)=\left[\mathrm{p}^{2}+\mathrm{q}^{2}+3(\mathrm{pq}-\mathrm{p}-\mathrm{q})+2\right] \mathrm{p}^{2 \mathrm{~m}-2}+\frac{1}{2}[(\mathrm{~m}-3) \mathrm{p}-$ $2(m+1) p q+2(m-2) q] p^{m-1}+\frac{1}{2} p^{\left[\frac{m}{2}\right]}+1$.

REFERENCES

[1] Ahmdi M. R. and Nezhad R.J., (2011), "Energy and Wiener Index of Zero-Divisor Graphs", Iranian Journal of Mathematical Chemistry, Vol. 2, No. 1, 45-51.
[2] Anderson D. and Livingston P., (1999), "The Zero-Divisor Graph of a Commutative Ring", J. Algebra, 217, 434-447.
[3] Anderson D. and Naseer M., (1993), "Beck's Coloring of a Commutative Ring", J. Algebra 159 500-514.
[4] Axtell M., Stickles J., and Trampbachls W., (2009), "Zero-Divisor Ideals and Realizable Zero-Divisor Graph", Involve a journal of mathematics Vol. 2, No. 2, 17-27.
[5] Beck I., (1988), "Coloring of Commutative Rings", J. Algebra 116 208-226.
[6] Chartrand G., and Lesniak L., (1986), "Graphs and Digraphs", $3^{\text {rd }}$ ed.,Wadsworth and Brooks / Cole, California.
[7] Hosoya H., (1985), "On Some Counting Polynomials in Chemistry", Discrete Applied Math. Vol.19, 239-257.
[8] Shukar N.H., Mohammad H.Q. and Ali A.M., (2012), "The Zero-Divisor Graph of $\mathrm{Z}_{\mathrm{p}} \mathrm{n}_{\mathrm{q}}$ ", Int. Journal of Algebra, Vol. 6, No. 22, 1049-1055.
[9] Wiener H., (1947), "Structural Determination of The Paraffin Boiling Points", J. Am. Chem. Soc. 6917-20.

