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ABSTRACT 
Let R be a commutative ring with identity. We associate a graph Γ(R). In this 

paper, we find Hosoya polynomial and Wiener index of  Γ(Zn), with  n= pm or n= pmq, 

where p and q are distinct prime numbers and m is an integer with m≥2.  
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 الملخص

  فتتتتت  لتتتتتجا البحتتتتتح وجتتتتت  ا م عتتتتت    حتتتتت و  Γ(R)حلقتتتتتة اة اليتتتتتة دع نتتتتتر محا تتتتت    م تتتتتل ال يتتتتتا    Rلتتتتت    
وليتتتا  مف ل تتتا  أعتتت  ا   qو    p, دحوتتتح أ  mn= pأو  q mn=pحوتتتح )nZΓ(لوستتتويا و لوتتتل وي تتتر لل يتتتا  

   2موجب أك ر او يساوي ع   صحيح  mوا  

 م ع    ح و  لوسويا و لول وي ر ، الحلقات الاة الية مات الم  احية : ةيا  قاسم الن ر،ال ل

1. Introduction 

Let R be a commutative ring with identity, and let Z(R) be the set of all zero-

divisors in R, and Z*(R) is the set of all non-zero zero-divisors in it. We associate a 

simple graph Γ(R) to R with vertices Z*(R), and for two distinct vertices x,y𝜖Z*(R), 

there is an edge connecting x and y if and only if xy= 0. 

The notion of a zero divisor graph of a commutative ring was first introduced in 

1988 by Beck in [5], where he was interesting in colorings. This investigation of 

coloring of a commutative ring was then continued by Anderson and  Naseer in [3], and 

further Anderson and Livingston in [2] associate a graph Γ(R) to R. The principal ideal 

of an R is an ideal that is generated by one element of R, say a,  and usually denoted by 

(a). The ring R is called local ring if it contains exactly one maximal ideal.   

A graph G is said to be connected [6] if there is a path between any two distinct 

vertices of  G. For vertices x and y of G, let d(x, y) be the length of a shortest path from 

x to y. The diameter of G is defined by diam(G)= max{d(x,y) : x,y ∈ V(G)}, where 

V(G) is the set of all vertices of G. A graph is complete if every two of its vertices are 

adjacent, so the complete graph of order n is denoted  by Kn. The complement K̅n of the 
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complete graph Kn has n vertices and no edges, and is referred to as the empty graph of 

order n. The subsets V1 ,V2 , ... ,Vr, r ≥ 2, are called r-partite of the set V)G), if  Vi  is 

non empty, and the intersection between Vi and Vj is empty for any 1 ≤  i, j ≤  r with 

i≠ j, so that ⋃ Vi
r
i=1  = V(G). 

Hosoya polynomial of the graph G is defined by : H(G ; x) =  ∑ d(G, k)diam(G)
k=0 xk, 

where d(G, k) is the number of pairs of vertices of a graph G that are at distance k apart, 

for  k=0,1,2, . . ., diam(G). The Wiener index of G is defined as the sum of all  distances 

between vertices of the graph, and denoted by W(G), and we can find this index by 

differentiating Hosoya polynomial for the given distance with respect to x and putting x 

= 1. See [7, 9]. 

As usual we shall assume that  p and q are distinct positive prime numbers and m 

be an integer with m≥2. In [1] Ahmadi and Nezhad proved some results concerning the 

Wiener index of Γ(Zn) , where n = p2 , pq and  p2q. In this paper we extended these 

results to n= pm, pmq . 

2. Hosoya Polynomial and Wiener Index of  𝚪(𝐙𝐩𝐦) 

In this section, we find the Hosoya polynomial and the Wiener index of Γ(Zpm). It 

is clear that  Z∗(Zpm)= ( p )∖{ 0 }={ p, 2p, 3p, . . ., (pm−1 −1) p}, so we have 

| Z∗(Zpm) |= pm−1 −1. We shall begin this section with the following lemma : 

Lemma 2.1 [8, Lemma 2.1.] : Let Zn be a ring of integers modulo n. Then, the number  

of all non-zero zero-divisors for k|n are  
n 

k
 − 1 . 

 

Theorem 2.2 : Γ(Zp3) ≅ Kp−1 + K̅p2−p  . 

Proof : Since p is a prime number, then it is clear that the ring Zp3  is a local ring, so we 

have    Z*(Zp3) = ( p )∖{ 0 } = { kp : k = 1,2,3, . . . , p2−1 }. 

Now, we can classify Z*(Zp3) into the two disjoint subsets as follows : 

A1= ( p2 ) ∖{ 0 }, and A2= ( p )∖ { A1∪{ 0 }}. It is clear that Z*(Zp3)=A1∪ A2 and 

by using Lemma 2.1 we have  | A1 | = 
p3

p2 − 1 = p − 1 , and | A2 | = 
  p3

p 
 − ( 

p3

p2 − 1+ 1) = 

p2 – p, so we can write A1={k1p
2: k1=1,2,…,p−1} and A2={k2p: k2=1,2,…,p2−1 ; p∤

k2}. 

Now, let x,y ∈ Z*(Zp3). Then, there are three cases : 

Case 1: If x,y∈ A1, then there exists positive integers k1 and k2 with p ∤ k1,k2 such that  

x= k1 p
2  and y= k2 p

2, and we have  

xy= k1 p
2 k2 p

2 = k1 k2 p
4 ≡ 0 (mod p3), then x adjacent with y in this case . 

Case 2: If x∈ A1 and y∈ A2 , then there exists positive integers k1 and k2 with p ∤ k1,k2 

such that x = k1 p
2, and y = k2 p, and we have  

xy =k1 p
2 k2 p = k1 k2 p

3 ≡ 0 ( mod p3), then x adjacent with y in this case . 

Case 3: If x,y∈ A2, then there exists positive integers  k1 and k2 with p ∤ k1,k2 such that  

x= k1 p  and y= k2 p, and we have xy =k1 p k2 p = k1 k2 p
2 ≢ 0 ( mod p3), then x and y are 

not adjacent in this case. 

From the previous, we see that every vertex in A1 is adjacent with any other vertex 

in A1 and A2, so that no vertex in A2 is adjacent with any other vertex in A2, therefore 

we have : Γ(Zp3) ≅ K|A1| + K̅|A2| = Kp−1 + K̅p2−p  . ∎                                                                                                                                                                         
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Theorem 2.3: H(Γ(Zp3); x) = a0 + a1 x
 + a2 x

2, where a0 = p2 – 1,   a1 = 
1

2
 (2 p3 – 3p2 – p 

+ 2 ), and a2 = 
1

2
 (p4 – 2p3 + p). 

Proof : From clearly that diam(Γ(Zp3))= d(x,y)= 2, for all x,y ∈A2 , therefore 

H(Γ(Zp3), x) = a0 + a1 x
 + a2 x

2, where ai = d(Γ(Zp3), i ) for i= 0,1,2. It is clear that a0 = 

d(Γ(Zp3), 0 ) = | Z*(𝑍p3) | = p2 – 1. 

Now, let Z*(𝑍p3)= A1∪ A2 , where A1= ( p2 )∖{ 0 } and A2= ( p )∖{ A1∪{ 0 }} and by 

Lemma 2.1 we have, |A1|= p − 1, and |A2|= p2 – p. 

To find a1, let x,y∈ Z*(Zp3) such that d(x,y)= 1, from the proof of Theorem 2.2 we 

get that d(x,y)= 1 if and only if  x,y ∈ A1 or x∈ A1 and      y∈ A2, then we have : 

a1 = d(Γ(Zp3) , 1)= (| A1 |
2

) + | A1 | | A2 |= (p−1
2

) + (p − 1)(p2 – p)=  
1

2
 (2 p3 – 3p2 – 

p + 2) . 

To find a2 , let x,y∈ Z*(Zp3) such that d(x,y)=2, from the proof of Theorem 2.2, we 

have d(x,y)= 2 if and only if  x,y∈A2, then we have : 

a2= d(Γ(Zp3),2)= (| A2 |
2

)= (p2−p
2

)= 
1

2
 (p4 – 2p3 + p).  ∎                                                                         

Corollary 2.4 : W( Γ(Zp3) ) = 
1

2
 (2p4 – 2p3 – 3p2 + p + 2). 

Proof : Since W( Γ(Zp3) ) = 
d

dx
H(Γ(Zp3);  x)|x=1, then we have    W(Γ(Zp3))= 0 + 

1

2
 (2 

p3 – 3p2 – p + 2 ) + 2x (
1

2
(p4 –  2p3 + p))| x=1 

                  = 
1

2
 (2p4– 2p3 – 3p2 + p+2) .  ∎                                                        

 Next, we give the following definition . 

Definition 2.5 : Let Zpm  be the ring of integers modulo pm. Then we can write Z∗(Zpm)= 

⋃ Ai
m−1
i=1 , where Ai are disjoint subsets of Z*(Zpm), for 1≤ i ≤ m−1, which are defined 

as follows :  

A1= (pm-1)∖{0}, A2= (pm-2)∖ {A1 ∪{0}}, A3= (pm-3)∖ {A1 ∪ A2 ∪ {0}} , . . . ,  

Am-1 = (p)∖{ {⋃ Ai
m−2
i=1 }∪{0}}. 

Notice that, from Lemma 2.1, we get 
| Ai | = pi – pi-1 , for any  1 ≤  i ≤  m − 1, so that we can write 

Ai ={ki p
m-i : ki=1,2,…,pi −1 ; p∤ ki}, for any 1≤ i ≤ m−1 . 

Lemma 2.6 : Let Ai, for 1≤ i ≤ m−1 be subsets of Z∗(Zpm) which are defined in 

Definition 2.5 and let s and t are two integers with 1≤s ≤ t ≤ m − 1, then  ∑ | Ai |
t
i=s  = 

pt – ps-1. 

Proof : Since, | Ai | = pi – pi-1, ∀ 1 ≤  i ≤  m − 1, then we have 

∑ | Ai |
t
i=s =∑ (pi − pi−1)t

i=s = ps – ps-1 + ps+1 − ps +. . .+ pt-1 − pt-2 + pt −pt-1 

               = pt – ps-1.  ∎ 

Theorem 2.7 : Let Ai, for 1≤ i ≤ m−1, be subsets of Z∗(Zpm) which are defined in 

Definition 2.5. Then, for any x,y∈ Z∗(Zpm), xy = 0 if and only if  x∈Ai and y∈Aj such 

that i + j≤ m, for some 1≤ i, j ≤ m−1. 

 Proof : From Definition 2.5 we have Z∗(Zpm)= ⋃ Ai
m−1
i=1 , where Ai ={ki pm-i ∶

 ki=1,2,…,pi−1 ; p∤ ki}, for 1≤ i ≤ m−1. Now, for any 1≤ i, j ≤ m−1, let x∈ Ai and 

y∈Aj. Then, there exists two positive integers ki and kj such that x= ki p
m-i and y = kj p

m-

j, with p ∤ ki,kj. 
        Now, if xy=0. Then, xy = ki p

m-i kj p
m-j = ki kj p

2m-(i+j)
 ≡ 0 ( mod pm), and since 

ki kj ≢ 0 ( mod pm), therefore p2m-(i+j)
 ≡ 0 ( mod pm), and that means pm divides p2m-(i+j), 

which implies that 2m−(i+j) ≥ m, therefore i + j≤ m. 
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Conversely: Let x∈ Ai and y∈ Aj such that i + j≤ m for some 1≤ i , j ≤ m−1, and 

suppose contrary that xy≠0 ⇒ xy= ki kj p
2m-(i+j) ≢ 0 ( mod pm) , and since, p ∤ ki,kj ,  

therefore pm ∤ p2m-(i+j).  Then, we get 2m−(i+j) < m, so that  2m – m < i+j, which 

implies that i+j > m, this contradiction, therefore xy=0 . ∎  
From Theorem 2.7 and Lemma 2.6 we can give the general form of the graph 

Γ(Zpt), where t=4,5 , as the following : 

 
 

Figure 2.1 : The general form of the graph 𝚪(𝒁𝒑𝟒) ≅ K )p-1) + (𝐊(p
2
 – p) ∪  𝐊 ̅(p3

 – p
2
) ) 

 
                          Figure 2.2                                                           Figure 2.3                                                                                 
    The general form of the graph 𝚪(𝒁𝒑𝟒)        The general form of the graph 𝚪(𝒁𝒑𝟓)                                                                                      

            We can now give the general form of the graph Γ(Zpm) : 
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Figure 2.4: The general form of the graph 𝚪(𝐙𝐩𝐦), where m is an even number with m≥6 . 

Figure 2.5 : The general form of the graph 𝚪(𝐙𝐩𝐦), where m is an odd number with m≥7 . 

Theorem 2.8 : The graph Γ(Zpm) is s-partite graph, where 

s = { 
p

m−1

2            ;  if m is an odd number   

p
m

2 − 1      ;   if m is an even number
   . 

Proof : From Definition 2.5, we have Z∗(Zpm)= ⋃ Ai
m−1
i=1 , where  Ai={ki p

m-i ,ki=1,2,… 

,pi−1 ; p∤ ki}, for 1≤ i ≤ m−1. 

           Suppose that m is an odd number, we see that by Theorem 2.7, any two distinct 

vertices lie in ⋃ Ai

m−1

2

i=1
 are adjacent because that i + j≤ m, for any  1≤ i, j ≤

m−1

2
 , this 

means that, we cannot put the vertices of the sets    A1 , A2 , . . . , Am−1

2

 in less than 

∑ |Ai|
m−1

2

i=1
 = p

m−1

2 − 1 of partite sets. also by Theorem 2.7 we see that any vertex x∈ 

Am+1

2

 is adjacent with every vertex of ⋃ Ai

m−1

2

i=1
 because that  

m+1

2
 + i ≤ m, for any 1≤ i ≤

 
m−1

2
 , so that x is not adjacent with any other vertex in Am+1

2

 because that 2(
m+1

2
) > m , 

therefore we must consider new partite set, say V, contains the vertices of Am+1

2

 , in this 

case, we cannot put the vertices of the sets A1 , A2 , . . . , Am+1

2

, in less than (p
m−1

2 − 
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1)+1= p
m−1

2  of partite sets. Now, if we can put the vertices of ⋃  Ai
m−1

i=
m+3

2

 in V, then the 

theorem hold, that is : by Theorem 2.7 we see that any two distinct vertices in 

⋃  Ai
m−1

i=
m+3

2

 are not adjacent because that  i+j > m for any  
m+3

2
≤ i, j ≤ m − 1, so that 

any vertex in V is not adjacent with every vertex of ⋃  Ai
m−1

i=
m+3

2

 because that  
m+1

2
 + i > 

m, for any 
m+3

2
≤ i≤ m − 1, and this shows that we cannot put the vertices of 

Z∗(Zpm) = ⋃ Ai
m−1
i=1   in less than p

m−1

2  of partite sets, therefore Γ(Zpm) is  p
m−1

2 -partite 

graph.  

Now, let m be an even integer number, similarly we cannot put the vertices of the 

set ⋃ Ai

m

2

i=1
 in less than ∑ |Ai|

m

2

i=1
 = p

m

2 −1 of partite sets, say V1,V2, . . . ,V
p

m
2 − 1

 , each of 

these partite sets contains only one vertex of the set ⋃ Ai

m

2

i=1
, suppose that the partite set 

V
p

m
2 − 1

contains one of the vertices of the set Am

2
, and we are going to show that we can 

put the vertices of the set  ⋃ Ai
m−1

i=
m+2

2

 in the partite set V
p

m
2 − 1

, that is : by Theorem 2.7 

we see that any two distinct vertices in the set ⋃ Ai
m−1

i=
m+2

2

 are not adjacent because that 

i+j>m  for any 
m+2

2
≤ i, j ≤ m − 1 , so that any vertex of the set ⋃ Ai

m−1

i=
m+2

2

 is not 

adjacent with every vertex of the set Am

2
 because that  

m

2
 + i > n for any 

m+2

2
≤ i ≤ m −

1, and this shows we can put the vertices of the set  ⋃ Ai
m−1

i=
m+2

2

 in the partite set V
p

m
2 − 1

, 

therefore we cannot put the vertices of Z∗(Zpm)= ⋃ Ai
m−1
i=1  in less than p

m

2 −1 of partite 

sets, hence Γ(Zpm) is  (p
m

2 − 1)-partite graph. ∎                                                                            

Lemma 2.9 [7] : Let G be a connected graph of order r. Then 

 ∑ d(G, i)
diam(G)
i=0 = 

1

2
 r (r+1). 

 Now, we give the main result in this section.  

Theorem 2.10:  H(Γ(Zpm);  x)= a0 + a1 x
 + a2 x

2, where 

a0 = pm-1 – 1, 

a1 = 
1

2
[(m−1) pm – m pm-1 −p⌊

m

2
⌋
 + 2], and  

a2 = 
1

2
 [  p2(m-1) − (m−1) pm +(m−3) pm-1 + p⌊

m

2
⌋
 ]. 

Proof : When m= 2, we have Γ(Zp2) ≅ Kp-1, and the theorem is true in this case.  

 Now, suppose that m≥3, since Zpm  is a local ring, then by                    [4, 

Theorem 2.3.], there is a vertex adjacent with every other vertices in Γ(Zpm), this means 

that diam(Γ(Zpm))= 2, therefore H(Γ(Zpm);  x)= a0 + a1 x
 + a2 x

2, where ai = d(Γ(Zpm) , i 

), for i = 0,1,2 . 

 To find a0, by Lemma 2.1 we have 

a0 = d(Γ(Zpm) , 0 )= | Z*(𝑍pm) | =  
   pm

p
 – 1 = pm-1 – 1.  

 To find a1, suppose that m be an odd number, and let  x,y ∈ Z∗(Zpm), since 

Z∗(Zpm)= ⋃ Ai
m−1
i=1 , then by Theorem 2.7 we see that d(x,y)=1 (i.e. xy=0) if and only if 
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x∈Ai and y∈Aj such that i + j≤ m, for some                   1≤ i, j ≤ m−1, and this holds if 

and only if  one of the following two cases holds : 

Case 1 :  1 ≤ i, j ≤
m−1

2
, because that i+j≤m  for any 1 ≤ i,j ≤ 

m−1

2
, in this case there 

are m1 edges where 

m1= (
∑ |Ai|

m−1
2

i=1
1
2

)= (
p

m−1
2 −1 
2
2

)= 
1

2
 (p

m−1

2 − 1) (p
m−1

2 − 2)   . . . (*) . 

Case 2 : 1 ≤ i ≤
m−1

2
  and   

m+1

2
≤ j ≤ m − i, since that i+j≤m for any       1 ≤ i ≤

m−1

2
  

and   
m+1

2
≤ j ≤ m − i, in this case there are m2 edges where 

m2=∑ (|Ai| ∑ |Aj|)
m−i

j=
m+1

2

m−1

2

i=1
, since  | Ai |= pi – pi-1 , for each  1 ≤  i ≤  m − 1, and by 

using Lemma 2.6 we get :  

m2= ∑ (pi − pi−1)(pm−i − p
m−1

2 )
m−1

2

i=1
  

   =∑  pi−1(p − 1)(pm−i − p
m−1

2 )
m−1

2

i=1
=∑  (p − 1)(pm−1 − p

m−3

2 pi)
m−1

2

i=1
 

   =∑  pm−1(p − 1)
m−1

2

i=1
− p

m−3

2 (p−1) ∑  pi
m−1

2

i=1
 

   = 
m−1

2
 pm−1(p − 1) − p

m−3

2 (p−1) ∑  pi
m−1

2

i=1
, and since {pi}

i=1

m−1

2  is a geometric sequence, 

therefore we can use ∑  𝑎𝑖𝑘
𝑖=1  = 

𝑎𝑘+1−𝑎

𝑎−1
  where a be any real number and k is any positive 

integer, hence we have :                                  m2 =  
m−1

2
 pm−1(p − 1) − p

m−3

2 (p−1) 

p
m+1

2 −p

(p−1)
 

      =  
m−1

2
 pm−1(p − 1) − p

m−1

2 (p
m−1

2 −1)   . . . (**). 

     Now, from (*) and (**), we get 

a1 = m1+ m2 = 
1

2
(p

m−1

2 − 1) (p
m−1

2 − 2) + 
m−1

2
 pm−1(p − 1) − p

m−1

2 (p
m−1

2 −1)    

    = 
1

2
 [(m−1) pm – m pm-1 − p

m−1

2  + 2]. 

Similarly, when an m be an even number we get that                              a1= 
1

2
 

[(m−1) pm – m pm-1−p
m

2  + 2]. 

Hence a1= 
1

2
[(m−1) pm – m pm-1 −p⌊

m

2
⌋
 + 2]. 

     Next, to find a2 we shall use lemma 2.9, and we get : 

a2= 
1

2
 a0 (a0+1) − a0 – a1 

     = 
1

2
 (pm-1 – 1) pm-1 – (pm-1 – 1) − 

1

2
[(m−1) pm – m pm-1 −p

⌊
m

2
⌋
 + 2] 

    = 
1

2
 [  p2(m-1) – (m –1) pm +(m–3) pm-1 + p⌊

m

2
⌋
 ] .  ∎ 

Corollary 2.11: W(Γ(Zpm))= 
1

2
 [2 p2(m-1)−(m−1) pm+(m−6) pm-1+p⌊

m

2
⌋
 + 2] . 

3. Hosoya Polynomial and Wiener Index of  𝚪(𝐙𝐩𝐦𝐪(. 

 In this section, we find the Hosoya polynomial and the Wiener index of 

 Γ(Zpmq). First, we shall give the following lemma : 
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Lemma 3.1 : The number of all non-zero zero-divisors of a ring Zpmq is  

(p+q−1) pm−1 −1 . 

Proof : Since, p and q are distinct prime numbers, then clearly 

Z(R)= (p)∪(q), therefore Z*(R)= {(p)∪(q)} ∖{0} . 

 Now, let x∈ Z*(R), then either x∈(p) or x∈(q) with x∉(pq), so by Lemma 2.1 we 

get : 

|Z*(R)|= (
pmq

p
− 1) + (

pmq

q
− 1) – (

pmq

pq
− 1) 

 = (pm−1q − 1) + (pm − 1) − ( pm−1 − 1) 

 = pm−1q −1+ pm − 1 − pm−1+1 

 = ( p+q−1) pm−1 −1 . ∎ 

Definition 3.2 : Let Zpmq be the ring of integers modulo pmq, then we can write : 

Z∗(Zpm)= ⋃ (Bi
m
i=1 ∪  Ci), where Bi and Ci, are disjoint subsets of  Z∗(Zpmq) ,for  1≤ i ≤

 m, which are defined as follows : 

B1= (pm-1q)∖{0}, B2= (pm-2q)∖{B1 ∪{0}},                                                                            

B3= (pm-3q)∖ {B1 ∪ B2 ∪ {0}}, . . .,                                                                                   

Bm = (q)∖{{⋃ Bi
m−1
i=1 }∪{0}}, and                                                                                   

C1=(pm)∖{0}, C2=(pm-1)∖{B1∪C1∪{0},                                                                               

C3=(pm-2)∖{B1∪C1∪B2∪C2∪{0}}, . . .,                                                                               

Cm = (p) )∖{{⋃ (Bi
m−1
i=1 ∪  Ci)} ∪{0}}. 

Notice that, by Lemma 2.1 we get : 
| Bi | = pi – pi-1, for any 1 ≤  i ≤  m, | C1 |=(q−1) and | Ci |=(pi-1−pi-2)(q−1) , for all 

2≤ i ≤ m, also we can write : 
Bi ={kip

m-iq : ki=1,2,…,pi −1 ; p∤ ki}, and    Ci ={kip
m-i+1 : ki=1,2,…, pi-1q −1 ; q∤ ki}, 

for any 1≤ i ≤ m. 

Remarks :  

(1) ∑ | Bi | 
m
i=1 = pm – 1. 

(2) ∑ | Ci | 
m
i=1 = pm-1(q – 1). 

(3) | Ci |=(q−1) | Bi−1 |, for any 2≤ i ≤ m. 

(4) | Ai |= | Bi |, for any 1≤ i ≤ m−1, where Ai ,for all 1≤ i ≤ m−1, be subsets of  

Z∗(Zpm) which are defined in Definition 2.5 . 

Lemma 3.3 : Let Bi and Ci , for all 1≤ i ≤ m, be subsets of  Z∗(Zpmq) which are defined 

in Definition 3.2 then : 

1- If s and t are two integers with 1≤s ≤ t ≤ m, then  ∑ | Bi |
t
i=s = pt – ps-1.  

2- If t be an integer with 1≤ t ≤ m , then ∑ | Ci |
t
i=1 = (q–1) pt-1. 

3- If s and t are two integers with 2≤s ≤ t ≤ m, then   ∑ | Ci |
t
i=s = (q–1)(pt-1 – ps-2). 

Proof : By the same method of a proof of Lemma 2.6 . ∎                     

 

Theorem 3.4 :  Let Bi and Ci , for 1 ≤ i ≤ m, be subsets of Z∗(Zpmq) which are defined 

in Definition 3.2, and let x,y ∈ Z∗(Zpmq). Then, xy= 0 if and only if either x∈ Bi and y∈ 

Bj with i+j ≤m, or x∈ Bi and y∈ Cj with i+j≤m+1, for some 1 ≤ i, j ≤ m . 

Proof : From the Definition 3.2, we have Z∗(Zpmq)= ⋃ (Bi
m
i=1 ∪ Ci). Now, let x,y ∈

Z∗(Zpmq) such that xy= 0, since x,y ∈ ⋃ (Bi
m
i=1 ∪ Ci), then there are two cases :  

Case 1 : x∈ Bi  and y∈ Bj for some 1 ≤ i, j ≤ m, in this case, there are positive integers 

ki and kj with p∤ki, kj , such that x=ki p
m-iq and y=kj p

m-jq , for some 1 ≤ i, j ≤ m, since 

xy=0 by hypothesis, then we get  xy=(ki kj)p
2m-(i+j)q2 ≡ 0 (mod pmq), since p∤ki, kj , 
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therefore  p2m-(i+j) q2 ≡ 0 (mod pmq), this means that p2m-(i+j) is divisible by pm. 

Therefore 2m–(i+j) ≥m, hence i+j ≤m.                                                            

Case 2 : x∈ Bi , and y∈ Cj for some 1 ≤ i, j ≤ m, in this case, there are positive integers 

ki and kj with p∤ki  and q∤kj , such that x= kip
m-iq  and  y= kjp

m-j+1, for some 1 ≤ i, j ≤ m, 

since xy=0 by hypothesis, then  xy= (ki kj)p
2m-(i+j)+1 q ≡ 0 (mod pmq), Since p∤ki and 

q∤kj, therefore   p2m-(i+j) q ≡ 0 (mod pmq), this means that p2m-(i+j) is divisible by pm, 

therefore   2m–(i+j)+1 ≥m, hence i+j ≤m+1.  

Finally, we see that when x∈ Ci and y∈ Cj, then xy≠ 0 for any 1 ≤ i, j ≤ m. 

From previous, we get that if  xy= 0, then either x∈ Bi and y∈ Bj with i+j ≤m , or 

x∈ Bi and y∈ Cj with i+j ≤m+1, for some 1 ≤ i, j ≤ m .    

Conversely : Let x∈ Bi and y∈ Bj for some 1 ≤ i, j ≤ m, such that i+j ≤m, and suppose 

contrary that xy≠ 0,we get  xy= (ki kj)p
2m-(i+j)q2 ≢ 0 (mod pmq), since p∤ki, kj and q 

divides q2 then      p2m-(i+j) is not divisible by pm, therefore 2m–(i+j)<m ⟹ i+j>m, this 

contradiction, therefore must be xy=0. 

Now, let x∈ Bi  and y∈ Cj for some 1 ≤ i, j ≤ m, such that i+j ≤m+1, and 

suppose contrary that xy≠ 0 ,we get                                                      xy= (ki kj)p
2m-

(i+j)+1 q ≢ 0 (mod pmq), and since p∤ki and q∤kj then p2m-(i+j)+1 is not divisible by pm, 

therefore 2m–(i+j)+1<m ⟹ i+j>m+1, also this is a contradiction, therefore must be 

xy=0. ∎ 

       From Theorem 3.4 and Lemma 3.3, we can give the general form of the  

graph Γ(Zptq(, where t=3,4 , as follows : 
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Figure 3.1 : The general form of the graph 𝚪(𝐙𝐩𝟑𝐪( 

 

 

Figure 3.2 : The general form of the graph  𝚪(𝐙𝐩𝟒𝐪( 

We can now give the general form of the graph Γ(Zpmq(, as the following : 
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Figure 

3.3 : The general form of the graph 𝚪(𝐙𝐩𝐦𝐪(, where m is an odd number with m≥5. 

 

Figure 3.4 : The general form of the graph  𝚪(𝐙𝐩𝐦𝐪 (, where m is an even number with m≥6. 

Lemma 3.5 [8, Proposition 3.2.] : Let Zpmq be a ring of integers modulo pmq. Then, 

diam(Γ(Zpmq()= 3. 

Now, we give the main result in this section.  

Theorem 3.6:  H(Γ(Zpmq);  x) = a0 + a1 x
 + a2 x

2+ a3 x
3, where 

a0 = (p+q−1) pm−1 −1 , 

a1= 
1

2
 [ 2mq (p−1)−(m+1) p + m] pm-1 − 

1

2
 p⌊

m

2
⌋
 + 1, 

a2 = 
1

2
 (p2 + q2 −1) p2m-2 + 

1

2
 [(m−4) p−2(m−1) pq +(2m−5)q – m +5] pm-1 + 

1

2
 p⌊

m

2
⌋
, and  

a3=(q−1)(p−1) ( p2m-2− pm-1) . 

Proof : By Lemma 3.5 we have diam(Γ(Zpmq() = 3 , then H(Γ(Zpmq);  x)= a0 + a1 x
 + a2 

x2 + a3 x
3, where ai = d(Γ(Zpmq) , i ), for i = 0,1,2,3 . 

To find a0, by Lemma 3.3 we have 

a0= d(Γ(Zpmq) , 0 )= |Z∗(Zpmq) |= (p+q−1) pm−1 −1 . 

Now, to find a1, let x,y ∈ Z∗(Zpmq) such that d(x,y)=1 (i.e. xy=0), hence by using 

Theorem 3.4  there are two cases : 
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Case 1 : x∈ Bi and y∈ Bj with i+j ≤ m, for some 1≤i,j≤m, the same as the proof of 

Theorem 2.7, we get that there are m1 edges in this case, where 

m1= 
1

2
 [(m−1) pm – m pm-1 − p⌊

m

2
⌋
 + 2]   . . . ( * ) 

Case 2 : x∈ Bi and y∈ Cj with i+j ≤ m+1, for some 1≤i,j≤m, this holds if and only if 

1≤ i ≤m and 1≤ j ≤m−i+1, because that i+j ≤ m+1 for any      1≤ i ≤m and 1≤ 

j ≤m−i+1, so that i+j>m+1 in otherwise of this case , so that there are m2 edges, where 

m2= ∑ (|Bi| ∑ |Cj|)
m−i+1
j=1

m
i=1 , and since |Bi|= (pi−pi-1) for 1≤ i ≤m, then by Lemma 3.3, 

we get that 

m2 = ∑ (pi − pi−1)pm−i+1−1(q − 1)m
i=1  = ∑ pi−1(p − 1)pm−i(q − 1)m

i=1                                        

.    = ∑ (p − 1)(q − 1)m
i=1 pm−1             = m (p − 1)(q − 1) pm−1 . . . ( * * ) 

Now, from ( * ) and ( ** ), we get that 

a1 = m1+m2 = 
1

2
 (m−1) pm – 

1

2
 m pm-1− 

1

2
 p⌊

m

2
⌋
 + 1 + m (pm − pm−1) (q − 1) 

    = 
1

2
 m pm−

1

2
 pm − 

1

2
 m pm-1 − 

1

2
 p⌊

m

2
⌋
 + 1 + m pmq − m pm−m pm-1q +mpm-1  

    = 
1

2
 [ 2mq (p−1)−(m+1) p + m] pm-1 − 

1

2
 p⌊

m

2
⌋
 + 1 

Now, to find ai, for i=2,3 ,in the first, we shall find a3 . 

          Let x,y ∈ Z∗(Zpmq) such that d(x,y)=3, then x∈ Bi and y∈ Cj for some 1≤i,j≤m, 

in this case, we see that d(x,y)=3 if and only if i=m and 2≤ j ≤m, because that  d(x,y)≤ 

2 for any 1≤ i ≤m−1 and 2≤ j ≤m, also that d(x,y)=1 for 1≤ i ≤m and j=1, therefore 

the number of pairs of vertices that are distance three apart is (|Bm| ∑ |Cj|)
m
j=2 , i.e. 

a3= |Bm| ∑ |Cj|
m
j=2 , since |Bm|= (pm −pm-1), then by Lemma 3.3, we get that : 

a3=(pm−pm-1)(q−1) (pm-1− 1) = (q−1)(p−1) ( p2m-2−pm-1). 

Now, to find a2 we shall use lemma 2.9 , that is : 

a2= 
1

2
 a0 (a0+1) − a0 – a1 – a3 = 

1

2
 a0 (a0 −1) – a1 – a3 

     = 
1

2
 ((p+q−1) pm−1 −1 ) ((p+q−1) pm−1 −2) − [ 

1

2
 ( 2mq (p−1)−(m+1) p + m) pm-1 

− 
1

2
 p⌊

m

2
⌋
 + 1]− (q−1)(p−1) ( p2m-2−pm-1) 

   = 
1

2
 (p2 + q2 −1) p2m-2 + 

1

2
 [(m−4) p−2(m−1) pq +(2m−5) q – m +5] pm-1+ 

1

2
 p⌊

m

2
⌋
 . ∎ 

Corollary 3.7 : W(Γ(Zpmq))= [p2 + q2 + 3( pq – p – q ) + 2] p2m-2 + 
1

2
 [(m − 3)p – 

2(m+1) pq + 2(m−2)q ] pm-1 + 
1

2
 p⌊

m

2
⌋
 + 1 . 
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