# The Graph of Annihilating Ideals 

Nazar H. Shuker<br>nazarh_2013@yahoo.com<br>College of Computer Science and Mathematics<br>University of Mosul, Mosul, Iraq

Received on: 17/11/2013
Accepted on: 12/02/2014


#### Abstract

Let $R$ be a commutative ring with identity and $A G(R)$ be the set of ideals with non-zero annihilators. The annihilating ideal graph $\operatorname{AG}(R)$ is a graph of vertex set $\mathrm{AG}(\mathrm{R}) \backslash\{(0)\}$ and two distinct ideal vertices I and J are adjacent if and only if $\mathrm{IJ}=$ (0). In this paper, we establish a new fundamental properties of $A G(R)$ as well as its connection with $\Gamma(\mathrm{R})$.

Keywords: Annihilating ideal graph, zero divisor graph, reduced rings, finite local rings, rings integer modulo $n$

\section*{بيان للمثاليات التالفة} $$
\begin{aligned} & \text { تزنزار حمدون شكر } \\ & \text { كلية علوم الحاسوب والرياضيات } \\ & \text { جامعة الموصل، الموصل، العرقق } \\ & \text { تاريخ قبول البحث: 2014/02/12 } \\ & \text { تاريخ استلام البحث: 2013/11/17 } \end{aligned}
$$

\section*{(لملخص} ```لتكن R حلقة إبدالية تحتوي على العنصر المحايد، وان AG(R) مجموعة المثاليات ذات تالف غير صغري. يعرف بيان المثاليات التالفة AG(R) على انه البيان الذي رؤوسه في AG(R)\\{(0)\} ، وان أي رأسين } مثاليين مختلفين I وJ متجاورين اذا وفقط اذا IJ=(0) . في هذا البحث درسنا هذا النوع من البيانات وأعطينا العديد من شروطه الأساسية، اضافة الى ذلك أعطينا العلاقة بين AG(R) و الكلمات المفتاحية: بيان تالف المثاليات، بيان قاسم الصفر ، الحلقات المختزلة، الحقات المنتهية المحلية، الحقات``` . . الصحيحة معيار


## 1. Introduction:

Let $R$ be a commutative ring with identity, and let $Z(R)$ be its set of zero divisors. We associate a simple graph $\Gamma(R)$ to $R$ with vertices $Z^{*}(R)=Z(R) \backslash\{(0)\}$, the set of all non-zero zero divisors of R , and for distinct $x, y \in Z^{*}(\mathrm{R})$, the vertices x and y are adjacent if and only if $x y=0$. Thus, $\Gamma(\mathrm{R})$ is empty graph iff R is an integral domain.

Beck introduced the concept of zero divisor graph of a commutative ring in [4]. In the recent years zero divisor graph have been extensively studied by many authors in [1,2,3,8].

An ideal I of R is said to be annihilating ideal if there exists a non-trivial ideal J of R such that $I J=(0)$. Let $A G(R)$ be the set of annihilating ideals of $R$. The annihilating
ideal graph $A G(R)$ is a graph with vertex set $A G^{*}(R)=A G(R) \backslash\{(0)\}$ such that there is an edge between vertices $I$ and $J$ if and only if $I \neq J$ and $I J=(0)$. The idea of annihilating ideal graph was introduced by Behboodi and Rakeei in [5] and [6].

In the present paper, we investigate the annihilating ideal graph $A G(R)$. We establish a new of its basic properties and its relation of $\Gamma(R)$.

## Recall that:

1. $R$ is called reduced if $R$ has no non-zero nilpotent element.
2.The distance $\mathrm{d}(\mathrm{u}, \mathrm{v})$ between two vertices u and v of a connected graph $\Gamma$ is the minimum of the lengths of the $u-v$ paths of $\Gamma$ [7].
2. The degree of the vertex $a$ in the graph $\Gamma$ is the number of edges of $\Gamma$ incident with $a$ [7].
3. The graph $\Gamma$ is called a plane graph if it can be drawn in the plane with their edges crossing. A graph which is an isomorphic to a plane graph is called a planer graph[7].
4. A graph $\Gamma$ is bipartite graph, if it is possible to partition the vertex set of $\Gamma$ into two subsets $V_{1}$ and $V_{2}$ such that every element of edges of $\Gamma$ joins a vertex of $V_{1}$ to a vertex of $V_{2}$. A complete bipartite graph with partite sets $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ where, $\left|V_{1}\right|=\mathrm{m}$ and $\left|V_{2}\right|=\mathrm{n}$, is then denoted by $\mathrm{K}_{\mathrm{m}, \mathrm{n}}[7]$.

## 2. Annihilating ideal graph:

In this section, we consider annihilating ideal graph, we give some of its basic properties and provide some examples.

Definition2.1[5]: Let R be a ring and let I and J are distinct non-trivial ideals of R.Then , I and J are adjacent ideal vertices in $\mathrm{AG}(\mathrm{R})$ if $\mathrm{I} \mathrm{J}=(0)$.

From now on, we shall use the symbol I-J to denote for two adjacent ideal vertices I and J. We start this section with the following example .

Example1: Let $\mathrm{Z}_{24}$ be the ring of integers modulo 24. The graph $\mathrm{AG}\left(\mathrm{Z}_{24}\right)$ can be drawn as follows:


The following result is an easy consequence of definition of 2.1.
Lemma2.2: If I and J are non-trivial ideals of R such that $I \cap J=(0)$, then $\mathrm{I}-\mathrm{J}$ is an edge of $\mathrm{AG}(\mathrm{R})$ and $I \cup J \subseteq Z(\mathrm{R})$.

The converse of Lemma2.2 is not true in general, as the following example shows.

Example2: Let $\mathrm{Z}_{12}$ be the ring of integers modulo 12.Then , (2)
(6) is an edge of the graph $\mathrm{AG}\left(\mathrm{Z}_{12}\right)$, but $(2) \cap(6) \neq(0)$.
We now give a sufficient condition for the converse of Lemma2.2 to be true.
Proposition2.3: Let R be a reduced ring, and let $\mathrm{I}-\mathrm{J}$ be an edge in $A G(\mathrm{R})$. Then, $I \cap J=(0)$.

Proof: Let $a \in I \cap J$. Then , $a \in I$ and $a \in J$, this implies that $a^{2} \in I J=(0)$, so $a^{2}=$ 0 . Since, R is a reduced ring , then $a=0$. Therefore , $I \cap J=(0)$.

The next result illustrates that the distance of any two nilpotent ideal vertices of $A G(R)$ is at most 2 .

Theorem2.4: Let $I$ and $J$ be two ideal vertices of $A G(R)$. If either $I$ or $J$ is a nilpotent, then $\mathrm{d}(\mathrm{I}, \mathrm{J}) \leq 2$.
Proof: Let $d(I, J)=3$. Then, there is a path from I to $J$ in $A G(R)$ say $I-K-L-J$. Let $I$ be a nilpotent ideal of $R$. Then, there exists an integer $n>1$ such that $I^{n}=(0)$. Consider the sequence $\mathrm{L}, \mathrm{LI}, \mathrm{LI}^{2}, \ldots, \mathrm{LI}^{\mathrm{n}}$. Let m be the smallest integer in which $\mathrm{LI}^{\mathrm{m}} \neq(0)$. Hence, $\mathrm{LI}^{\mathrm{m}+1}=(0)$. Obviously, $\mathrm{LI}^{\mathrm{m}}$ adjacent to both I and J. This contradict the fact that $\mathrm{d}(\mathrm{I}, \mathrm{J})=3$. Therefore, $\mathrm{d}(\mathrm{I}, \mathrm{J}) \leq 2$.

The next result illustrates the degree of a vertex adjacent to the set of zero divisors of R.

Proposition2.5: Let $R$ be a finite ring and let $Z(R)$ be an ideal of $R$. If $I-Z(R)$ is an edge in $\mathrm{AG}(\mathrm{R})$, then $\operatorname{deg}(\mathrm{I})=|\mathrm{AG}(R)|-1$.
Proof: Suppose that $I-Z(R)$ be an edge in $A G(R)$, it follows that $I \cdot Z(R)=(0)$. Let $J$ be any vertex of $\operatorname{AG}(R)$.Then, by Lemma2.2, J is a subset of $\mathrm{Z}(\mathrm{R})$. This implies that $\mathrm{I} \cdot \mathrm{J}=(0)$.Thus, I is adjacent to all vertices of $\mathrm{AG}(R)$.This means that $\operatorname{deg}(\mathrm{I})=|\mathrm{AG}(R)|-$ 1.

Example3: Let $Z_{16}$ be the ring of integers modulo 16. The vertices of $A G\left(Z_{16}\right)$ are $\mathrm{I}=(8)$
, $\mathrm{J}=(4)$ and $\mathrm{K}=(2)=\mathrm{Z}\left(\mathrm{Z}_{16}\right)$. Clearly $\operatorname{deg}(\mathrm{I})=\operatorname{deg}(\mathrm{J})=\left|\mathrm{AG}\left(Z_{16}\right)\right|=3-1$.


The next result considers the adjacency of two minimal ideals in the graph $\operatorname{AG}(R)$.
Proposition2.6: Every two distinct minimal ideals of R are adjacent in $\mathrm{AG}(R)$.
Proof: Let $M$ and $N$ be two distinct minimal ideals of $R$. Since, $M$ and $N$ contain MN , then $\mathrm{MN}=\mathrm{M}=\mathrm{N}$ or $\mathrm{MN}=(0)$. The first case is not true because M and N are distinct ideals. Thus , $\mathrm{MN}=(0)$. This means that M and N are adjacent vertices in $\mathrm{AG}(R)$.
(3)

Example4: Let $\mathrm{Z}_{18}$ be the ring of integers modulo 18 .
(9)


Clearly , the minimal ideals of $\mathrm{Z}_{18}$ are (6) and (9), which are adjacent vertices in $\mathrm{AG}\left(\mathrm{Z}_{18}\right)$.

The next result considers the number of minimal ideals of R .
Theorem2.7: If $A G(R)$ is a planar graph , then R has at most four minimal ideals.
Proof: Suppose that $R$ has five minimal ideals say $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$ and $\mathrm{M}_{5}$. By Proposition2.6, any two of $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$ and $\mathrm{M}_{5}$ are adjacent. This means that
$A G(R)$ contains the complete graph $\mathrm{K}_{5}$. This is contradiction that $A G(R)$ is a planar graph (See the Kuratowsky Theorem in [7]). Therefore, R has at most four minimal ideals.

Example5: Let $Z_{16}$ be the ring of integers modulo 16.


Clearly, the graph $\mathrm{AG}\left(\mathrm{Z}_{16}\right)$ is a planar graph and the only minimal ideal of $Z_{16}$ is (8).

## 3. The graphs $\Gamma(R)$ and $A G(R)$

In this section, we consider the relationship between $\Gamma(R)$ and $A G(\mathrm{R})$.
It is natural to ask whether $\Gamma(R)$ and $A G(\mathrm{R})$ are isomorphic, the answer is negative, as the following example shows.

Example6: Let $\mathrm{Z}_{12}$ be the ring of integer modulo 12. Then, the number of vertices of $\Gamma\left(\mathrm{Z}_{12}\right)$ is 7 , while the number of vertices of $A G\left(\mathrm{Z}_{12}\right)$ is 4 . Obviously, $\Gamma\left(\mathrm{Z}_{12}\right)$ and $A G\left(\mathrm{Z}_{12}\right)$ are not isomorphic.

The next result explores the relation between the set of zero divisors of R and the vertices of $A G(R)$.

Theorem3.1: For any ring $\mathrm{R}, \mathrm{Z}(\mathrm{R})=\mathrm{U}\{I: I$ is an ideal vertex of $\mathrm{AG}(R)\}$.
Proof: Let $0 \neq \mathrm{x} \in Z(R)$. Then, there exists $\mathrm{y} \in Z^{*}(R)$ such that $\mathrm{xy}=0$. This implies that $(\mathrm{x})(\mathrm{y})=(0)$. If $(\mathrm{x})=\mathrm{R}$,then x is a unit element. This contradicts the fact that $\mathrm{x} \in Z^{*}(R)$. So, (x) $\neq \mathrm{R}$. Since (x) is adjacent to (y), then $\mathrm{x} \in(x) \in$ $\{I: I$ is an ideal vertex of $\operatorname{AG}(R)\}$. Therefore, $\mathrm{x} \in \mathrm{U}\{I: I$ is an ideal vertex of $\mathrm{AG}(R)\}$. Conversely, suppose that $x \in \cup\{I: I$ is an ideal vertex of $\operatorname{AG}(R)\}$. Then, $x \in I$ for some vertex I of $\mathrm{AG}(R)$. By Lemma2.2, $\mathrm{x} \in Z(R)$.Hence, $\mathrm{Z}(\mathrm{R})=\mathrm{U}\{I: I$ is a vertex of $\mathrm{AG}(R)\}$.

Let us give the following easy result.
Proposition3.2: Let $\Gamma(\mathrm{R})$ and $\mathrm{AG}(R)$ are finite graphs , then $|\Gamma(R)| \geq|\operatorname{AG}(R)|$.
The following result demonstrates the isomorphism between $\Gamma(R)$ and $\mathrm{AG}(\mathrm{R})$ by considering $\mathrm{R}=\mathrm{Z}_{\mathrm{n}}$.

Theorem3.3: Let $\mathrm{n}>1$ be a non-prime integer. Then, $\Gamma\left(\mathrm{Z}_{\mathrm{n}}\right)$ contains a subgraph which isomorphic with $\mathrm{AG}\left(\mathrm{Z}_{\mathrm{n}}\right)$.
Proof: Define the graph G by $\mathrm{G}=\left\{a-b: a-b\right.$ is an edge in $\Gamma\left(\mathrm{Z}_{\mathrm{n}}\right), a|\mathrm{n}, \mathrm{b}| \mathrm{n}$ and $a \neq \mathrm{b}\}$. Obviously, G is a subgraph of $\Gamma\left(\mathrm{Z}_{\mathrm{n}}\right)$. Now, define a function $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{AG}\left(\mathrm{Z}_{\mathrm{n}}\right)$ by $\mathrm{f}(a)=(a)$, with $a \in \mathrm{G}$. Clearly f is onto. Now, for any distinct vertices $a, \mathrm{~b} \in \mathrm{G}, a \mid \mathrm{n}$ and $\mathrm{b} \mid \mathrm{n}$. $\operatorname{So}, \mathrm{f}(a)=(a) \neq(\mathrm{b})=\mathrm{f}(\mathrm{b})$. Thus, f is one to one. Now, suppose that $a-b$ is an edge in G . Then, $a \mathrm{~b}=0$, so $(a)(\mathrm{b})=(0)$. This shows that $\mathrm{f}(a) \mathrm{f}(\mathrm{b})=(0)$, and hence $\mathrm{f}(a)-\mathrm{f}(\mathrm{b})$ is an edge in $\mathrm{AG}\left(\mathrm{Z}_{\mathrm{n}}\right)$. Thus f preserves the adjacency property. This proves that $G \cong A G\left(Z_{n}\right)$.

The following result gives a sufficient conditions for two vertices of $\Gamma(\mathrm{R})$ such that their annihilators are adjacent ideal vertices in $\mathrm{AG}(R)$.

Theorem3.4: If $a$ and b are two vertices in $\Gamma(\mathrm{R})$ such that $\mathrm{d}(a, \mathrm{~b})=3$, then $\operatorname{Ann}(a)$ and Ann(b) are adjacent ideal vertices in $\mathrm{AG}(R)$.

Proof: Since, $a, b \in Z^{*}(R)$, then both $\operatorname{Ann}(a)$ and $\operatorname{Ann}(b)$ are non-zero. On the other hand, $\mathrm{d}(a, \mathrm{~b})=3$. This means that neither $\mathrm{b} \in \operatorname{Ann}(a)$ nor $a \in \operatorname{Ann}(\mathrm{~b})$. Then, neither $\operatorname{Ann}(a)=\mathrm{R}$ nor $\operatorname{Ann}(\mathrm{b})=\mathrm{R}$. So, both $\operatorname{Ann}(a)$ and $\operatorname{Ann}(b)$ are nontrivial ideals. If we assume that $\operatorname{Ann}(a) \operatorname{Ann}(b) \neq(0)$, then there exists $c \in \operatorname{Ann}(a)$ and $d \in \operatorname{Ann}(b)$ such that $\mathrm{cd} \neq 0$. Clearly $a(\mathrm{~cd})=\mathrm{b}(\mathrm{cd})=0$. This means that $a-c d-b$ is a path in $\Gamma(\mathrm{R})$.This contradicts the fact that $\mathrm{d}(a, \mathrm{~b})=3$. Therefore, $\operatorname{Ann}(a)$ and $\operatorname{Ann}(\mathrm{b})$ are adjacent ideal vertices in $\mathrm{AG}(R)$.

Example7: Let $\mathrm{Z}_{12}$ be the ring of integers modulo 12. Clearly , $\mathrm{d}((3),(10))=3$ in $\operatorname{AG}\left(\mathrm{Z}_{12}\right)$ and $\operatorname{Ann}(3) \operatorname{Ann}(10)=(4)(6)=(0)$. This means that $\operatorname{Ann}(3)$ and $\operatorname{Ann}(10)$ are adjacent in $\mathrm{AG}\left(\mathrm{Z}_{12}\right)$.

We end this paper by showing that,
Proposition3.5: If R is a finite local ring , then $A G(R) \neq K_{m n}$ for any integers $\mathrm{m}, \mathrm{n}>1$. Proof: Suppose that $A G(R)=K_{m n}$ for some integers $\mathrm{m}, \mathrm{n}>1$, and let $\mathrm{A}=\left\{\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots, \mathrm{I}_{\mathrm{n}}\right\}$ and $\mathrm{B}=\left\{\mathrm{J}_{1}, \mathrm{~J}_{2}, \ldots, \mathrm{~J}_{\mathrm{m}}\right\}$ be the partition of $A G(R)$. Since, R is a local ring, then by Theorem 1.2 in $[9], \mathrm{Z}(\mathrm{R})$ is an ideal of R and there exists a vertex $a$ of $\Gamma(R)$ such that $a \cdot \mathrm{Z}(\mathrm{R})=(0)$. It follows that $(a) \cdot \mathrm{Z}(\mathrm{R})=(0)$. Hence, $\mathrm{Z}(\mathrm{R})$ is a vertex of $A G(R)$, yielding $Z(R) \in A$ or $(R) \in B$. Now, if $(R) \in A$, then $\mathrm{J}_{\mathrm{i}} \mathrm{Z}(\mathrm{R})=(0)$ for all $\mathrm{i}=1,2, \ldots, \mathrm{~m}$. By Theorem3.1, $\mathrm{J}_{\mathrm{i}} \mathrm{J}_{\mathrm{k}}=(0)$ for $\mathrm{i} \neq \mathrm{k}$. This contradicts the fact that $\mathrm{J}_{\mathrm{i}}$ and $\mathrm{J}_{\mathrm{k}}$ are not adjacent. If $(R) \in B$, this will lead to a contradiction. Thus, $A G(R) \neq K_{\mathrm{mn}}$ for any integers $\mathrm{m}, \mathrm{n}>1$.

## REFERENCES

[1] S. Akbari , H. R. Maimani and S. Yassemi, " when zero divisor graph is planner or a complete r-partite graph", J. Algebra 270 (2003), 1, 169-180.
[2] D. F. Anderson , A. Frazier , A, Laune and P. S. Livingston "The zero divisor graph of a commutative ring $\Pi$ Lecture note in pure and applied Mathematics" , 220, Dekker, Newyork (2001).
[3] D. F. Anderson and P. S. Livingston, "The zero divisor graph of a commutative ring" , J. Algebra. 217 (1999), 434-447.
[4] I. Beck, "Coloring of commutative ring" , J. Algebra 116 (1988), 1, 206-226.
[5] M. Behboodi and Z. Rakeei , "The Annihilating-Ideal Graph of Commutative Rings I", J. Algebra Appl. 10 (2011), 741-753.
[6] M. Behboodi and Z. Rakeei, "The Annihilating-Ideal Graph of Commutative Rings II" , J. Algebra Appl. 10 (2011), 727-739.
[7] C. Gary and L. Linda, "Graphs \& Diagraphs", California, A divison of Wadsworth Inc(1986).
[8] R. Levy and J. Shapiro, "The zero divisor graph of nonneam regular rings", comm. Algebra 30 (2002), 2 , 745-750.
[9] A. Michael , S. Joe and T. Wallace, "Zero divisor ideals and realizable zero divisor graphs", Communicated by Scott Chapman (2009).

