The Graph of Annihilating Ideals

Nazar H. Shuker

Fryad H. Abdulqadir

nazarh_2013@yahoo.com

College of Computer Science and Mathematics University of Mosul, Mosul, Iraq

Received on: 17/11/2013

Accepted on: 12/02/2014

ABSTRACT

Let R be a commutative ring with identity and AG(R) be the set of ideals with non-zero annihilators. The annihilating ideal graph AG(R) is a graph of vertex set AG (R)\{(0)} and two distinct ideal vertices I and J are adjacent if and only if IJ = (0). In this paper, we establish a new fundamental properties of AG(R) as well as its connection with $\Gamma(R)$.

Keywords: Annihilating ideal graph, zero divisor graph, reduced rings, finite local rings, rings integer modulo n

بيان للمثاليات التالفة

فرباد عبد القادر

نزار حمدون شکر

كلية علوم الحاسوب والرياضيات جامعة الموصل، الموصل، العراق

تاريخ قبول البحث: 2014/02/12

تاريخ استلام البحث: 2013/11/17

الملخص

لتكن R حلقة إبدالية تحتوي على العنصر المحايد، وان AG(R) مجموعة المثاليات ذات تالف غير صفري. يعرف بيان المثاليات التالفة AG(R) على انه البيان الذي رؤوسه في {(0)}/AG(R) ، وان أي رأسين مثاليين مختلفين I و J متجاورين اذا وفقط اذا (0)=IJ . في هذا البحث درسنا هذا النوع من البيانات وأعطينا العديد من شروطه الأساسية، اضافة الى ذلك أعطينا العلاقة بين AG(R) و (Γ)R و (Γ)R . الكلمات المفتاحية: بيان تالف المثاليات، بيان قاسم الصفر ، الحلقات المختزلة، الحلقات المنتهية المحلية، الحلقات

الصحيحة معيار n .

1. Introduction:

Let R be a commutative ring with identity, and let Z(R) be its set of zero divisors. We associate a simple graph $\Gamma(R)$ to R with vertices $Z^*(R)=Z(R)\setminus\{(0)\}$, the set of all non-zero zero divisors of R, and for distinct $x, y \in Z^*(R)$, the vertices x and y are adjacent if and only if xy=0. Thus, $\Gamma(R)$ is empty graph iff R is an integral domain.

Beck introduced the concept of zero divisor graph of a commutative ring in [4]. In the recent years zero divisor graph have been extensively studied by many authors in [1,2,3,8].

An ideal I of R is said to be annihilating ideal if there exists a non-trivial ideal J of R such that I J=(0). Let AG(R) be the set of annihilating ideals of R. The annihilating

ideal graph AG(R) is a graph with vertex set AG^{*}(R)=AG(R)\{(0)} such that there is an edge between vertices I and J if and only if $I \neq J$ and I J = (0). The idea of annihilating ideal graph was introduced by Behboodi and Rakeei in [5] and [6].

In the present paper , we investigate the annihilating ideal graph AG(R). We establish a new of its basic properties and its relation of $\Gamma(R)$.

Recall that:

1. R is called reduced if R has no non-zero nilpotent element.

2. The distance d(u,v) between two vertices u and v of a connected graph Γ is the minimum of the lengths of the u—v paths of Γ [7].

3. The degree of the vertex *a* in the graph Γ is the number of edges of Γ incident with *a* [7].

4. The graph Γ is called a plane graph if it can be drawn in the plane with their edges crossing. A graph which is an isomorphic to a plane graph is called a planer graph[7].

5. A graph Γ is bipartite graph, if it is possible to partition the vertex set of Γ into two subsets V₁ and V₂ such that every element of edges of Γ joins a vertex of V₁ to a vertex of V₂. A complete bipartite graph with partite sets V₁ and V₂ where, $|V_1|$ =m and $|V_2|$ =n, is then denoted by K_{m,n}[7].

2. Annihilating ideal graph:

In this section, we consider annihilating ideal graph, we give some of its basic properties and provide some examples.

Definition2.1[5]: Let R be a ring and let I and J are distinct non-trivial ideals of R. Then , I and J are adjacent ideal vertices in AG(R) if I J=(0).

From now on , we shall use the symbol I-J to denote for two adjacent ideal vertices I and J. We start this section with the following example .

Example1: Let Z_{24} be the ring of integers modulo 24. The graph AG(Z_{24}) can be drawn as follows:

The following result is an easy consequence of definition of 2.1.

Lemma2.2: If I and J are non-trivial ideals of R such that $I \cap J = (0)$, then I—J is an edge of AG(R) and $I \cup J \subseteq Z(R)$.

The converse of Lemma2.2 is not true in general, as the following example shows.

Example2: Let Z_{12} be the ring of integers modulo 12. Then, (2) — (6) is an edge of the graph $AG(Z_{12})$, but (2) \cap (6) \neq (0).

We now give a sufficient condition for the converse of Lemma2.2 to be true.

Proposition2.3: Let R be a reduced ring , and let I-J be an edge in AG(R). Then, $I \cap J = (0)$. **Proof:** Let $a \in I \cap J$. Then, $a \in I$ and $a \in J$, this implies that $a^2 \in IJ = (0)$, so $a^2 = 0$. Since, R is a reduced ring, then a=0. Therefore, $I \cap J = (0)$.

The next result illustrates that the distance of any two nilpotent ideal vertices of AG(R) is at most 2.

Theorem2.4: Let I and J be two ideal vertices of AG(R). If either I or J is a nilpotent, then $d(I,J) \leq 2$.

Proof: Let d(I,J)=3. Then, there is a path from I to J in AG(R) say I—K—L—J. Let I be a nilpotent ideal of R. Then, there exists an integer n>1 such that $I^n=(0)$. Consider the sequence L, LI, $LI^2,..., LI^n$. Let m be the smallest integer in which $LI^m \neq (0)$. Hence, $LI^{m+1}=(0)$. Obviously, LI^m adjacent to both I and J. This contradict the fact that d(I,J)=3. Therefore, $d(I,J)\leq 2$.

The next result illustrates the degree of a vertex adjacent to the set of zero divisors of R.

Proposition2.5: Let R be a finite ring and let Z(R) be an ideal of R. If I - Z(R) is an edge in AG(R), then deg(I)=|AG(R)|-1.

Proof: Suppose that I - Z(R) be an edge in AG(R), it follows that $I \cdot Z(R) = (0)$. Let J be any vertex of AG(R). Then, by Lemma2.2, J is a subset of Z(R). This implies that $I \cdot J = (0)$. Thus, I is adjacent to all vertices of AG(R). This means that deg(I)=|AG(R)|-1.

Example3: Let Z_{16} be the ring of integers modulo 16. The vertices of AG(Z_{16}) are I=(8)

, J=(4) and K=(2)= Z(Z₁₆). Clearly $\deg(I) = \deg(J) = |AG(Z_{16})| = 3-1$.

The next result considers the adjacency of two minimal ideals in the graph AG(R).

Proposition2.6: Every two distinct minimal ideals of R are adjacent in AG(R). **Proof:** Let M and N be two distinct minimal ideals of R. Since , M and N contain MN , then MN=M=N or MN=(0). The first case is not true because M and N are distinct ideals. Thus , MN=(0). This means that M and N are adjacent vertices in AG(R).

Example4: Let Z_{18} be the ring of integers modulo 18.

Clearly , the minimal ideals of Z_{18} are (6) and (9) , which are adjacent vertices in $AG(Z_{18})$.

The next result considers the number of minimal ideals of R.

Theorem2.7: If AG(R) is a planar graph, then R has at most four minimal ideals. **Proof:** Suppose that R has five minimal ideals say M_1 , M_2 , M_3 , M_4 and M_5 . By Proposition 2.6, any two of M_1 , M_2 , M_3 , M_4 and M_5 are adjacent. This means that AG(R) contains the complete graph K₅. This is contradiction that AG(R) is a planar graph (See the Kuratowsky Theorem in [7]). Therefore, R has at most four minimal ideals.

Example5: Let Z_{16} be the ring of integers modulo 16. (2) Clearly, the graph AG(Z_{16}) is a planar graph and the (4) only minimal ideal of Z_{16} is (8).

3. The graphs $\Gamma(R)$ and AG(R)

In this section, we consider the relationship between $\Gamma(R)$ and AG(R).

It is natural to ask whether $\Gamma(R)$ and AG(R) are isomorphic, the answer is negative, as the following example shows.

Example6: Let Z_{12} be the ring of integer modulo 12. Then, the number of vertices of $\Gamma(Z_{12})$ is 7, while the number of vertices of $AG(Z_{12})$ is 4. Obviously, $\Gamma(Z_{12})$ and $AG(Z_{12})$ are not isomorphic.

The next result explores the relation between the set of zero divisors of R and the vertices of AG(R).

Theorem3.1: For any ring R, $Z(R)=\cup \{I: I \text{ is an ideal vertex of } AG(R)\}$.

Proof: Let $0 \neq x \in Z(R)$. Then, there exists $y \in Z^*(R)$ such that xy=0. This implies that (x)(y)=(0). If (x)=R, then x is a unit element. This contradicts the fact that $x \in Z^*(R)$. $(\mathbf{x}) \neq \mathbf{R}.$ Since adjacent So, (x) is to (y), then $x \in (x) \in$ $\{I: I \text{ is an ideal vertex of } AG(R)\}$. Therefore, $x \in \bigcup \{I: I \text{ is an ideal vertex of } AG(R)\}$. Conversely, suppose that $x \in \bigcup \{I: I \text{ is an ideal vertex of } AG(R)\}$. Then, $x \in I$ for some vertex I of AG(R). By Lemma2.2, $x \in Z(R)$. Hence, $Z(R) = \bigcup \{I: I \text{ is a vertex of } AG(R)\}$.

Let us give the following easy result.

Proposition 3.2: Let $\Gamma(R)$ and AG(R) are finite graphs, then $|\Gamma(R)| \ge |AG(R)|$.

The following result demonstrates the isomorphism between $\Gamma(R)$ and AG(R) by considering R=Z_n.

Theorem3.3: Let n>1 be a non-prime integer. Then, $\Gamma(Z_n)$ contains a subgraph which isomorphic with $AG(Z_n)$.

Proof: Define the graph G by $G = \{a - b : a - b \text{ is an edge in } \Gamma(Z_n), a | n, b | n \text{ and } a \neq b\}$. Obviously, G is a subgraph of $\Gamma(Z_n)$. Now, define a function $f: G \to AG(Z_n)$ by f(a)=(a), with $a \in G$. Clearly f is onto. Now, for any distinct vertices $a, b \in G, a | n$ and b | n. So, $f(a) = (a) \neq (b) = f(b)$. Thus, f is one to one. Now, suppose that a - b is an edge in G. Then, ab = 0, so (a)(b)=(0). This shows that f(a) f(b) = (0), and hence f(a) - f(b) is an edge in $AG(Z_n)$.

The following result gives a sufficient conditions for two vertices of $\Gamma(R)$ such that their annihilators are adjacent ideal vertices in AG(*R*).

Theorem3.4: If *a* and b are two vertices in $\Gamma(R)$ such that d(a,b)=3, then Ann(*a*) and Ann(b) are adjacent ideal vertices in AG(*R*).

Proof: Since, $a, b \in Z^*(R)$, then both Ann(*a*) and Ann(b) are non-zero. On the other hand, d(a,b)=3. This means that neither $b \in Ann(a)$ nor $a \in Ann(b)$. Then, neither Ann(*a*)=R nor Ann(b)=R. So, both Ann(*a*) and Ann(b) are nontrivial ideals. If we assume that Ann(*a*)Ann(b) \neq (0), then there exists $c \in Ann(a)$ and $d \in Ann(b)$ such that $cd \neq 0$. Clearly a(cd)=b(cd)=0. This means that a-cd-b is a path in $\Gamma(R)$. This contradicts the fact that d(a,b)=3. Therefore, Ann(*a*) and Ann(b) are adjacent ideal vertices in AG(*R*).

Example7: Let Z_{12} be the ring of integers modulo 12. Clearly , d((3),(10))=3 in AG(Z_{12}) and Ann(3)Ann(10)=(4)(6)=(0). This means that Ann(3) and Ann(10) are adjacent in AG(Z_{12}).

We end this paper by showing that,

Proposition3.5: If R is a finite local ring, then $AG(R) \neq K_{mn}$ for any integers m,n>1. **Proof:** Suppose that $AG(R) = K_{mn}$ for some integers m,n>1, and let A={I₁,I₂,...,I_n} and B={J₁,J₂,...,J_m} be the partition of AG(R). Since, R is a local ring , then by Theorem1.2 in [9], Z(R) is an ideal of R and there exists a vertex *a* of $\Gamma(R)$ such that $a \cdot Z(R)=(0)$. It follows that $(a) \cdot Z(R)=(0)$. Hence, Z(R) is a vertex of AG(R), yielding $Z(R) \in A$ or $(R) \in B$. Now, if $(R) \in A$, then J_i Z(R)=(0) for all i=1,2,...,m.By Theorem3.1, J_i J_k=(0) for i≠k. This contradicts the fact that J_i and J_k are not adjacent. If $(R) \in B$, this will lead to a contradiction. Thus, $AG(R) \neq K_{mn}$ for any integers m,n>1. ■

<u>REFERENCES</u>

- [1] S. Akbari , H. R. Maimani and S. Yassemi, " when zero divisor graph is planner or a complete r-partite graph", J. Algebra 270 (2003), 1 , 169-180.
- [2] D. F. Anderson, A. Frazier, A, Laune and P. S. Livingston "The zero divisor graph of a commutative ring Π Lecture note in pure and applied Mathematics", 220, Dekker, Newyork (2001).
- [3] D. F. Anderson and P. S. Livingston, "The zero divisor graph of a commutative ring", J. Algebra. 217 (1999), 434-447.
- [4] I. Beck, "Coloring of commutative ring", J. Algebra 116 (1988), 1, 206-226.
- [5] M. Behboodi and Z. Rakeei, "The Annihilating-Ideal Graph of Commutative Rings I", J. Algebra Appl. 10 (2011), 741-753.
- [6] M. Behboodi and Z. Rakeei, "The Annihilating-Ideal Graph of Commutative Rings II", J. Algebra Appl. 10 (2011), 727-739.
- [7] C. Gary and L. Linda , "Graphs & Diagraphs", California, A divison of Wadsworth Inc(1986).
- [8] R. Levy and J. Shapiro, "The zero divisor graph of nonneam regular rings", comm. Algebra 30 (2002), 2, 745-750.
- [9] A. Michael, S. Joe and T. Wallace, "Zero divisor ideals and realizable zero divisor graphs", Communicated by Scott Chapman (2009).