Classification of Zero Divisor Graphs of a Commutative Ring With Degree Equal 7 and 8

Nazar H. Shuker

Husam Q. Mohammad

husam_alsabawi@yahoo.com

نزار حمدون شکر

nazarh 2013@yahoo.com College of Computer Sciences and Mathematics University of Mosul, Mosul, Iraq

Received on: 15/05/2012

Accepted on: 18/09/2012

ABSTRACT

In 2005 J. T Wang investigated the zero divisor graphs of degrees 5 and 6. In this paper, we consider the zero divisor graphs of a commutative rings of degrees 7 and 8. Keywords: Zero-divisor, Ring, Zero-divisor graph.

تصنيف بيانات قواسم الصفر للحلقات الإبدالية ذات الدرجات 7 و 8

حسام قاسم محمد

كلية علوم الحاسوب والرياضيات، جامعة الموصل

الملخص

تاربخ قبول البحث: 2012/09/18

تايخ استلام البحث: 2012/05/15

في عام 2005 درس Wang بيانات قواسم الصفر للحلقات الإبدالية من الدرجة 5 و6. في هذا البحث درسنا بيانات قواسم الصغر للحلقات الإبدالية من الدرجتين 7 و 8. الكلمات المفتاحية: قواسم الصفر ، حلقة، بيان قواسم الصفر .

1. Introduction

The concept of zero divisor graph of a commutative ring was introduced by Beck in [3]. He let all the elements of the ring be vertices of the graph. In [1] Anderson and Livingston introduced and studied the zero divisor graph whose vertices are the non-zero zero divisors.

Throughout this paper, all rings are assumed to be commutative rings with identity, and Z(R) be the set of zero divisors. We associate a simple graph $\Gamma(R)$ to a ring R with vertices $Z(R)^* = Z(R) - \{0\}$, the set of all non-zero zero divisors of R. For all distinct $x, y \in Z(R)^*$, the vertices x and y are adjacent if and only if xy=0. (R,m) and |S|will stand respectively for the local ring with maximal ideal m and cardinal numbers of a set S.

In [1] Anderson and Livingston proved that for any commutative ring R $\Gamma(R)$ is connected.

In 2005 J. T Wang [5] investigated the zero divisor graphs of degrees 5 and 6. In this paper, we extend this results to consider the zero divisor graphs of commutative rings of degrees 7 and 8.

The main result when $|Z(R)^*|=7$ is given in Theorem 2.7, while when $|Z(R)^*|=8$ the main result is given in Theorem 3.4. We also extend Wang's result concerning local rings (Theorem 2.2)

2. Rings with $|Z(R)^*|=7$

It is known that if R is a ring then $\Gamma(R)$ is connected. In this section, we find all possible graphs of $\Gamma(R)$ with $\Gamma(R)=7$.

Recall that if R is finite ring, then every element of R is either a unit or a zero divisor [2]. In [5] Wang proved the following result.

Lemma 2.1 :

Let (R_1,m_1) and (R_2,m_2) are local rings, then $|Z(R_1xR_2)^*| = |R_1|x|m_2| + |R_2|x|m_1| - |m_1||m_2| - 1$.

Now, we shall prove the following theorem which extends Wang's result.

Theorem 2.2 :

If (R_1,m_1) , (R_2,m_2) and (R_3,m_3) are finite local rings, then $|Z(R_1xR_2xR_3)^*| = |R_1|x|R_2|x|m_3| + |Z(R_1xR_2)|x(|R_3|-|m_3|)-1$ where $|Z(R_1xR_2)| = |R_1|x|m_2| + |R_2|x|m_1|-|m_1|x|m_2|$.

Proof :

By Lemma 2.1 $|Z(R_1xR_2)^*| = |R_1|x|m_2| + |R_2|x|m_1| - |m_1|x|m_2| - 1$, therefore $|Z(R_1xR_2)| = |Z(R_1xR_2)^*| + 1 = |R_1|x|m_2| + |R_2|x|m_1| - |m_1|x|m_2|$. Let $R_{(1)(2)} = R_1xR_2$, then $|R_{(1)(2)}| = |R_1|x|R_2|$ and $|Z(R_{(1)(2)})| = Z(R_1xR_2)$.

For any non-zero-divisor (a,b) in $R_{(1)(2)}xR_3$, we have the following cases:

- 1- If a is non-zero divisor of $R_{(1)(2)}$, then a must be a unit element. If b is a zero divisor of R₃, then there are $(|R_{(1)(2)}|-|Z(R_{(1)(2)})|)x|m_3|$ elements of this type.
- 2- If a is a non-zero zero divisor of $R_{(1)(2)}$ and b any element in R_3 , then there are $(|Z(R_{(1)(2)})|-1)x|R_3|$ elements of this type.
- 3- If a=0, and b is a non-zero element in R_3 , then there are $1x(|R_3|-1)$. Now, we sum up these three types of elements; there are as follows:

 $(|\mathbf{R}_{(1)(2)}| - |\mathbf{Z}(\mathbf{R}_{(1)(2)})|)\mathbf{x}|\mathbf{m}_3| + (|\mathbf{Z}(\mathbf{R}_{(1)(2)})| - 1)\mathbf{x}|\mathbf{R}_3| + 1\mathbf{x}(|\mathbf{R}_3| - 1) =$

 $|R_{(1)(2)}|x|m_3| - |Z(R_{(1)(2)})|x|m_3| + |Z(R_{(1)(2)})|x|R_3| - |R_3| + |R_3| - 1 =$

 $|R_1|x|R_2|x|m_3|+|Z(R_1xR_2)|(|R_3|-|m_3|)-1$ where

 $Z(R_1xR_2) = |R_1|x|m_2| + |R_2|x|m_1| - |m_1|x|m_2|.$

As a direct consequence to Theorem 2.2, we obtain the following:

Corollary 2.3 :

If R_1 , R_2 and R_3 are finite fields, then $|Z(R_1xR_2xR_3)^*| = |R_1||R_2| + |R_1||R_3| + |R_2||R_3| - |R_1| - |R_2| - |R_3|$.

Corollary 2.4 :

If R finite and $R \cong R_1 x R_2 x R_3$, then $|Z(R)^*| \ge 13$ for some local rings R_i but not field.

Proof :

Suppose that R_3 is local which is not a field, then clearly $|R_3| \ge 4$ and $|m_3| \ge 2$ and since $|R_1|, |R_2| \ge 2$ and $|m_1|, |m_2| \ge 1$, then $Z(R_1 x R_2) \ge 3$, therefore $|Z(R)^*| \ge 2.2.2 + 3(4-2) - 1 = 13$.

Next, we prove two fundamental lemmas

Lemma 2.5 :

If R is a ring with $|Z(R)|^*=7$, then is either R local ring or R is isomorphic to a product of two local rings.

Proof:

Since $|Z(R)^*|=7$, then R is finite and hence $R\cong R_1 x R_2 x \dots x R_n$ where R_i , $i=1,2,\dots,n$ are local rings. If $n\ge 4$, then by [5,Lemma 4.7], $|Z(R)^*|\ge 14$ this is a contradiction.

Now, consider n=3, if R_i local, but not field for some $1 \le i \le 3$, then by Corollary 2.4, $|Z(R)^*| \ge 13$ which is a contradiction. Hence R_i are fields for all $1 \le i \le 3$. Applying Corollary 2.3 $|Z(R_1xR_2xR_3)^*| = |R_1||R_2|+|R_1||R_3|+|R_2||R_3|-|R_1|-|R_2|-|R_3|=7$. If $|R_1|=|R_2|=2$

then $|R_3|=7/3$ which is also a contradiction. Finally, if $|R_i|\ge 3$ for some i, then by [5,Lemma 4.5], $|Z(R)^*|\ge 9$ which is also a contradiction. Therefore, n=1 or 2

Lemma 2.6 :

Let R be a ring which is not local and $|Z(R)|^*=7$, then $R \cong Z_4 x Z_3$ or $Z_2[X]/(X^2) x Z_3$ or $Z_2 x Z_7$ or $F_4 x Z_5$.

Proof:

Suppose that R is a ring which is not local, then by Lemma 2.5 $R \cong R_1 x R_2$. If R_1 and R_2 are local, but not a field, then by [5, Corollary 4.4], $|Z(R)^*| \ge 11$ which is a contradiction. If R_1 local, but not a field, R_2 field, then we have $|Z(R)^*| = |R_1|x|m_2| + |R_2|x|m_1| - |m_1|x|m_2| - 1 = 7$, this yields to $|R_1| + |m_1|(|R_2| - 1) - 8 = 0 \dots (1)$

Now, if $|\mathbf{m}_1|=p$ where p is prime number, then by [5, Lemma 4.2], $|\mathbf{R}_1|=|\mathbf{m}_1|^*=p^2$, so from equation (1) we have $p^2+kp-8=0$...(2), where $k=|\mathbf{R}_2|-1$ this implies that $p = \frac{-k + \sqrt{k^2 + 32}}{2}$, so the only solution for p to be prime is k=2, and hence p=2, and this implies $|\mathbf{R}_2|=4$ and $|\mathbf{R}_2|=3$. Then, by [4 pp 6871 $\mathbf{R}_2 \approx 7$; or $\mathbf{Z}_2[\mathbf{Y}]/(\mathbf{Y}^2)$ and $\mathbf{R}_2 \approx 7$.

this implies $|R_1|=4$ and $|R_2|=3$. Then, by [4,pp.687] $R_1\cong Z_4$ or $Z_2[X]/(X^2)$ and $R_2\cong Z_3$. Hence, $R\cong Z_4xZ_3$ or $Z_2[X]/(X^2)xZ_3$. Now if R_1 and R_2 are fields, then $|Z(R)^*|=|R_1|+|R_2|-2=7$, this yields to $|R_1|+|R_2|=9$. Therefore, $|R_1|=2$, $|R_2|=7$ or $|R_1|=4$, $|R_2|=5$. Thus, $R\cong Z_2xZ_7$ or F_4xZ_5 .

Now, we shall prove the main result of this section.

Theorem 2.7 :

Let R be a ring which is not local and $|Z(R)|^*=7$, then the following graph can be realized as $\Gamma(R)$

Proof:

By Lemma 2.6, $R \cong Z_4 x Z_3$ or $Z_2[X]/(X^2) x Z_3$ or $Z_2 x Z_7$ or $F_4 x Z_5$. In Figure (1), can be realized as $\Gamma(Z_4 x Z_3)$ or $\Gamma(Z_2[X]/(X^2) x Z_3)$, Figure (2) can be realized as $\Gamma(Z_2 x Z_7)$ and Figure (3) can be realized as $\Gamma(F_4 x Z_5)$.

3. Rings with $|Z(R)^*|=8$

The main aim of this section is to find all possible zero divisor graphs of 8 vertices and rings which correspond to them.

We shall start this section with following lemmas which play a central role in the sequel.

Lemma 3.1 :

Let R be a ring with $|Z(R)|^*=8$, then R is local or R is isomorphic to a product of two local rings.

Proof:

Since $|Z(R)^*|=8$, then R is finite and hence, $R\cong R_1xR_2x...xR_n$ where R_i , i=1,2,...,n are local rings.

If $n \ge 4$, then by [5, Lemma 4.7], $|Z(R)^*| \ge 14$; this is a contradiction.

Now, consider n=3, if R_i local but not field for some $1 \le i \le 3$, then by Corollary 2.4, $|Z(R)^*| \ge 13$ which is a contradiction. So R_i is a field for all $1 \le i \le 3$. Then, by Corollary 2.3

 $|Z(R_1xR_2xR_3)^*| = |R_1||R_2|+|R_1||R_3|+|R_2||R_3|-|R_1|-|R_2|-|R_3| = 8$. If $|R_1|=|R_2|=2$ then and $|R_3|=8/3$ which is a contradiction. If $|R_i|\ge 3$ for some i, then by [5, Lemma 4.5], $|Z(R)^*|\ge 9$ which is a contradiction. Therefore, n=1 or 2.

Lemma 3.2 :

Let R be a ring which is not local and $|Z(R)|^*=8$, then R \cong F₁xF₂, where F₁ and F₂ are fields

Proof:

Since R not local, then by Lemma 3.1 $R \cong R_1 x R_2$, where R_1 , R_2 are local rings. If R_1 and R_2 local, but not field, then by [5, Corollary 4.4], $|Z(R)^*| \ge 11$ which is a contradiction.

If R₁ field and R₂ local not field, then $|m_1|=1$. if $|m_2|=p$ is prime number, then by [5,Lemma 4.8], $|R_2|=p^2$ and applied [5,Lemma 4.2], we have $p^2+kp-9=0$ where $k=|R_2|-1$, so that $p = \frac{-k + \sqrt{k^2 + 36}}{2}$(3), since p is prime, then we have a contradiction. If $|m_1|$ not prime then $|m_1|\ge 4$ and since $|R_2|\ge 2$, then $|R_1|=9-|m_1|(|R_2|-1)\le 9-4(2-1)=5$ which is a contradiction. Therefore, R₁ and R₂ are fields. Hence, R \cong F₁xF₂, where F₁ and F₂ are fields.

Lemma 3.3 :

Let R be a ring which is not local and $|Z(R)|^*=8$, then $R\cong Z_2xF_8$ or Z_3xZ_7 or Z_5xZ_5 .

Proof:

By Lemma3.2 R \cong F₁xF₂, where F₁,F₂ are fields, we have |F₁|+|F₂|-2 =8 which implies that |F₁|+|F₂|=10, so that |F₁|=2, |F₂|=8 or |F₁|=3, |F₂|=7 or |F₁|=5, |F₂|=5. Therefore, R \cong Z₂xF₈ or Z₃xZ₇ or Z₅xZ₅.

Now, we are in a position to give the main result of this section

Theorem 3.4 :

Let R be a ring which is not local and $|Z(R)^*| = 8$, then the following graph can be realized as $\Gamma(R)$.

Proof:

By Lemma 3.3, then $R \cong Z_2 x F_8$ or $Z_3 x Z_7$ or $Z_5 x Z_5$. In Figure (1), can be realized as $\Gamma(Z_2 x F_8)$. Figure (2), can be realized as $\Gamma(Z_3 x Z_7)$. Figure (3), can be realized as $\Gamma(Z_5 x Z_5)$.

REFERENCES

- [1] D.D. Andersen and P. S. Livingston , (1999) , "The zero divisor graph of a commutative ring". Journal of Algebra 217, pp. 434-447
- [2] A. Badawi, (2004), "Abstract Algebra Manual: Problems and Solutions 2nd Edition problems and solutions", Nova Science Publishe
- [3] I. Beck , (1988), "Coloring of commutative ring". Journal of Algebra 116, pp. 208-226.
- [4] G. Carbas and D. Williams, (2000), "Rings of Order p5.I Nonlocal Rings ", Journal of Algebra 231(2), pp. 677-690.
- [5] J. T. Wang, (2005), "Zero Divisor of Commutative Rings", M.Sc. Thesis the University of National Chung Cheng, Taiwan.