Classification of Zero Divisor Graphs of a Commutative Ring With Degree Equal 7 and 8

Nazar H. Shuker
nazarh_2013@yahoo.com
College of Computer Sciences and Mathematics University of Mosul, Mosul, Iraq
Husam Q. Mohammad
husam_alsabawi@yahoo.com
University of Mosul, Mosul, Iraq

Received on: 15/05/2012

Accepted on: 18/09/2012
In 2005 J . T Wang investigated the zero divisor graphs of degrees 5 and 6 . In this paper, we consider the zero divisor graphs of a commutative rings of degrees 7 and 8 .
Keywords: Zero-divisor, Ring, Zero-divisor graph.
ABSTRACT

Keyords: Zaro-divisor, Ring Zardior grat

$$
\begin{aligned}
& \text { تصنيف بيانات قواسم الصفر للحقات الإبدالية ذات الارجات } 7 \text { و } 8 \\
& \text { كلية علوم الحاسوب والرياضيات، جامعة الموصل } \\
& \text { تاريخ قبول البحث: 2012/09/18 } \\
& \text { تايخ استلام البحث: 2012/05/15 } \\
& \text { في عام } 2005 \text { درس Wang بيانات قواسم الصنر للحقات الإبدالية من الارجة } 5 \text { و6. في هذا البحث } \\
& \text { درسنا بيانات قواسم الصفر للحقات الإبدالية من الارجتين } 7 \text { و8. } \\
& \text { الكلمات المفتاحية: قواسم الصفر ، حلة، بيان قواسم الصفر . }
\end{aligned}
$$

1. Introduction

The concept of zero divisor graph of a commutative ring was introduced by Beck in [3]. He let all the elements of the ring be vertices of the graph. In [1] Anderson and Livingston introduced and studied the zero divisor graph whose vertices are the non-zero zero divisors.

Throughout this paper, all rings are assumed to be commutative rings with identity, and $Z(R)$ be the set of zero divisors. We associate a simple graph $\Gamma(\mathrm{R})$ to a ring R with vertices $Z(R)^{*}=Z(R)-\{0\}$, the set of all non-zero zero divisors of R. For all distinct $x, y \in Z(R)^{*}$, the vertices x and y are adjacent if and only if $x y=0 .(R, m)$ and $|S|$ will stand respectively for the local ring with maximal ideal m and cardinal numbers of a set S.

In [1] Anderson and Livingston proved that for any commutative ring $R \Gamma(R)$ is connected.

In 2005 J . T Wang [5] investigated the zero divisor graphs of degrees 5 and 6. In this paper, we extend this results to consider the zero divisor graphs of commutative rings of degrees 7 and 8 .

The main result when $\left|\mathrm{Z}(\mathrm{R})^{*}\right|=7$ is given in Theorem 2.7, while when $\left|\mathrm{Z}(\mathrm{R})^{*}\right|=8$ the main result is given in Theorem 3.4. We also extend Wang's result concerning local rings (Theorem 2.2)
2. Rings with $\left|\mathbf{Z}(\mathbf{R})^{*}\right|=7$

It is known that if R is a ring then $\Gamma(\mathrm{R})$ is connected. In this section, we find all possible graphs of $\Gamma(\mathrm{R})$ with $\Gamma(\mathrm{R})=7$.

Recall that if R is finite ring, then every element of R is either a unit or a zero divisor [2]. In [5] Wang proved the following result.

Lemma 2.1 :

Let $\left(\mathrm{R}_{1}, \mathrm{~m}_{1}\right)$ and ($\mathrm{R}_{2}, \mathrm{~m}_{2}$) are local rings, then $\left|\mathrm{Z}\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right)^{*}\right|=\left|\mathrm{R}_{1}\right| \mathrm{x}\left|\mathrm{m}_{2}\right|+\left|\mathrm{R}_{2}\right| \mathrm{x}\left|\mathrm{m}_{1}\right|_{-}$ $\left|\mathrm{m}_{1}\right|\left|\mathrm{m}_{2}\right|-1$.

Now, we shall prove the following theorem which extends Wang's result.

Theorem 2.2 :

If $\left(\mathrm{R}_{1}, \mathrm{~m}_{1}\right)$, $\left(\mathrm{R}_{2}, \mathrm{~m}_{2}\right)$ and $\left(\mathrm{R}_{3}, \mathrm{~m}_{3}\right)$ are finite local rings, then $\left|\mathrm{Z}\left(\mathrm{R}_{1} \times \mathrm{R}_{2} \times \mathrm{R}_{3}\right)^{*}\right|=\left|\mathrm{R}_{1}\right| \mathrm{x}\left|\mathrm{R}_{2}\right| \mathrm{x}\left|\mathrm{m}_{3}\right|+\left|\mathrm{Z}\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right)\right| \mathrm{x}\left(\left|\mathrm{R}_{3}\right|-\left|\mathrm{m}_{3}\right|\right)-1$ where $\left|Z\left(R_{1} \times R_{2}\right)\right|=\left|R_{1}\right| x\left|m_{2}\right|+\left|R_{2}\right| x\left|m_{1}\right|-\left|m_{1}\right| x\left|m_{2}\right|$.
Proof :
By Lemma $2.1\left|\mathrm{Z}\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right)^{*}\right|=\left|\mathrm{R}_{1}\right| \mathrm{x}\left|\mathrm{m}_{2}\right|+\left|\mathrm{R}_{2}\right| \mathrm{x}\left|\mathrm{m}_{1}\right|-\left|\mathrm{m}_{1}\right| \mathrm{x}\left|\mathrm{m}_{2}\right|$ - 1, therefore $\left|\mathrm{Z}\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right)\right|=\quad\left|\mathrm{Z}\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right)^{*}\right|+1=\left|\mathrm{R}_{1}\right| \mathrm{x}\left|\mathrm{m}_{2}\right|+\left|\mathrm{R}_{2}\right| \mathrm{x}\left|\mathrm{m}_{1}\right|-\left|\mathrm{m}_{1}\right| \mathrm{x}\left|\mathrm{m}_{2}\right|$. Let $\quad \mathrm{R}_{(1)(2)}=\mathrm{R}_{1} \times \mathrm{R}_{2}$, then $\left|\mathrm{R}_{(1)(2)}\right|=\left|\mathrm{R}_{1}\right| \mathrm{x}\left|\mathrm{R}_{2}\right|$ and $\left|\mathrm{Z}\left(\mathrm{R}_{(1)(2)}\right)\right|=\mathrm{Z}\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right)$.

For any non-zero-divisor (a, b) in $\mathrm{R}_{(1)(2)} \mathrm{xR}$, we have the following cases:
1- If a is non-zero divisor of $\mathrm{R}_{(1)(2)}$, then a must be a unit element. If b is a zero divisor of R_{3}, then there are $\left(\left|\mathrm{R}_{(1)(2))}\right|-\left|\mathrm{Z}\left(\mathrm{R}_{(1)(2)}\right)\right|\right) \mathrm{x}\left|\mathrm{m}_{3}\right|$ elements of this type.
2- If a is a non-zero zero divisor of $R_{(1)(2)}$ and b any element in R_{3}, then there are $\left(\left|Z\left(\mathrm{R}_{(1)(2)}\right)\right|-1\right) \mathrm{x}\left|\mathrm{R}_{3}\right|$ elements of this type.
3- If $a=0$, and b is a non-zero element in R_{3}, then there are $1 x\left(\left|R_{3}\right|-1\right)$.
Now, we sum up these three types of elements; there are as follows:
$\left(\left|\mathrm{R}_{(1)(2)}\right|-\left|\mathrm{Z}\left(\mathrm{R}_{(1)(2)}\right)\right|\right) \mathrm{x}\left|\mathrm{m}_{3}\right|+\left(\left|\mathrm{Z}\left(\mathrm{R}_{(1)(2)}\right)\right|-1\right) \mathrm{x}\left|\mathrm{R}_{3}\right|+1 \mathrm{x}\left(\left|\mathrm{R}_{3}\right|-1\right)=$
$\left|\mathrm{R}_{(1)(2)}\right| \mathrm{x}\left|\mathrm{m}_{3}\right|-\left|\mathrm{Z}\left(\mathrm{R}_{(1)(2)}\right)\right| \mathrm{x}\left|\mathrm{m}_{3}\right|+\left|\mathrm{Z}\left(\mathrm{R}_{(1)(2)}\right)\right| \mathrm{x}\left|\mathrm{R}_{3}\right|-\left|\mathrm{R}_{3}\right|+\left|\mathrm{R}_{3}\right|-1=$
$\left|\mathrm{R}_{1}\right| \mathrm{x}\left|\mathrm{R}_{2}\right| \mathrm{x}\left|\mathrm{m}_{3 \mid}\right|+\mathrm{Z}\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right) \mid\left(\left|\mathrm{R}_{3}\right|-\left|\mathrm{m}_{3}\right|\right)-1$ where
$\mathrm{Z}\left(\mathrm{R}_{1} \mathrm{xR} \mathrm{R}_{2}\right)\left|=\left|\mathrm{R}_{1}\right| \mathrm{x}\right| \mathrm{m}_{2}\left|+\left|\mathrm{R}_{2}\right| \mathrm{x}\right| \mathrm{m}_{1}\left|-\left|\mathrm{m}_{1}\right| \mathrm{x}\right| \mathrm{m}_{2} \mid$.
As a direct consequence to Theorem 2.2, we obtain the following:

Corollary 2.3 :

If R_{1}, R_{2} and R_{3} are finite fields, then
$\left|\mathrm{Z}\left(\mathrm{R}_{1} \times \mathrm{R}_{2} \times \mathrm{R}_{3}\right)^{*}\right|=\left|\mathrm{R}_{1}\right|\left|\mathrm{R}_{2}\right|+\left|\mathrm{R}_{1}\right|\left|\mathrm{R}_{3}\right|+\left|\mathrm{R}_{2}\right|\left|\mathrm{R}_{3}\right|-\left|\mathrm{R}_{1}\right|-\left|\mathrm{R}_{2}\right|-\left|\mathrm{R}_{3}\right|$.

Corollary 2.4 :

If R finite and $\mathrm{R} \cong \mathrm{R}_{1} \times \mathrm{R}_{2} \times \mathrm{R}_{3}$, then $\left|\mathrm{Z}(\mathrm{R})^{*}\right| \geq 13$ for some local rings R_{i} but not field.

Proof :

Suppose that R_{3} is local which is not a field, then clearly $\left|R_{3}\right| \geq 4$ and $\left|m_{3}\right| \geq 2$ and since $\left|R_{1}\right|,\left|R_{2}\right| \geq 2$ and $\left|m_{1}\right|,\left|m_{2}\right| \geq 1$, then $Z\left(R_{1} \times R_{2}\right) \geq 3$, therefore $\left|Z(R)^{*}\right| \geq 2.2 .2+3(4-2)-1=13$.

Next, we prove two fundamental lemmas

Lemma 2.5 :

If R is a ring with $|Z(R)|^{*}=7$, then is either R local ring or R is isomorphic to a product of two local rings.

Proof:

Since $\left|Z(R)^{*}\right|=7$, then R is finite and hence $R \cong R_{1} \times R_{2} x \ldots \times R_{n}$ where R_{i}, $\mathrm{i}=1,2, \ldots, \mathrm{n}$ are local rings. If $\mathrm{n} \geq 4$, then by [5,Lemma 4.7], $\left|\mathrm{Z}(\mathrm{R})^{*}\right| \geq 14$ this is a contradiction.

Now, consider $n=3$, if R_{i} local, but not field for some $1 \leq i \leq 3$, then by Corollary 2.4, $|Z(R) *| \geq 13$ which is a contradiction. Hence R_{i} are fields for all $1 \leq i \leq 3$. Applying Corollary $2.3\left|\mathrm{Z}\left(\mathrm{R}_{1} \times \mathrm{R}_{2} \times \mathrm{R}_{3}\right)^{*}\right|=\left|\mathrm{R}_{1}\right|\left|\mathrm{R}_{2}\right|+\left|\mathrm{R}_{1}\right|\left|\mathrm{R}_{3}\right|+\left|\mathrm{R}_{2}\right|\left|\mathrm{R}_{3}\right|-\left|\mathrm{R}_{1}\right|-\left|\mathrm{R}_{2}\right|-\left|\mathrm{R}_{3}\right|=7$. If $\left|\mathrm{R}_{1}\right|=\left|\mathrm{R}_{2}\right|=2$
then $\left|R_{3}\right|=7 / 3$ which is also a contradiction. Finally, if $\left|R_{i}\right| \geq 3$ for some i, then by [5,Lemma 4.5], $\left|\mathrm{Z}(\mathrm{R})^{*}\right| \geq 9$ which is also a contradiction. Therefore, $\mathrm{n}=1$ or 2

Lemma 2.6 :

Let R be a ring which is not local and $|\mathrm{Z}(\mathrm{R})|^{*}=7$, then $\mathrm{R} \cong \mathrm{Z}_{4} \mathrm{x} \mathrm{Z}_{3}$ or $\mathrm{Z}_{2}[\mathrm{X}] /\left(\mathrm{X}^{2}\right) \mathrm{x}$ Z_{3} or $\mathrm{Z}_{2} \mathrm{XZ}_{7}$ or $\mathrm{F}_{4} \mathrm{XZ} \mathrm{Z}_{5}$.

Proof:

Suppose that R is a ring which is not local, then by Lemma $2.5 \mathrm{R} \cong \mathrm{R}_{1} \times R_{2}$. If R_{1} and R_{2} are local, but not a field, then by [5, Corollary 4.4$],\left|\mathrm{Z}(\mathrm{R})^{*}\right| \geq 11$ which is a contradiction. If R_{1} local, but not a field, R_{2} field, then we have $\left|\mathrm{Z}(\mathrm{R})^{*}\right|=\left|\mathrm{R}_{1}\right| \mathrm{x}\left|\mathrm{m}_{2}\right|+\left|\mathrm{R}_{2}\right| \mathrm{x}\left|\mathrm{m}_{1}\right|-\left|\mathrm{m}_{1}\right| \mathrm{x}\left|\mathrm{m}_{2}\right|-1=7$, this yields to $\left|\mathrm{R}_{1}\right|+\left|\mathrm{m}_{1}\right|\left(\left|\mathrm{R}_{2}\right|-1\right)-8=0 \ldots$ (1)

Now, if $\left|\mathrm{m}_{1}\right|=\mathrm{p}$ where p is prime number, then by [5, Lemma 4.2], $\left|\mathrm{R}_{1}\right|=\left|\mathrm{m}_{1}\right|^{*}=\mathrm{p}^{2}$, so from equation (1) we have $\mathrm{p}^{2}+\mathrm{kp}-8=0 \ldots(2)$, where $\mathrm{k}=\left|\mathrm{R}_{2}\right|-1$ this implies that $p=\frac{-k+\sqrt{k^{2}+32}}{2}$, so the only solution for p to be prime is $\mathrm{k}=2$, and hence $\mathrm{p}=2$, and this implies $\left|R_{1}\right|=4$ and $\left|R_{2}\right|=3$. Then, by [4,pp.687] $R_{1} \cong Z_{4}$ or $Z_{2}[X] /\left(X^{2}\right)$ and $R_{2} \cong Z_{3}$. Hence, $R \cong Z_{4} X Z_{3}$ or $Z_{2}[X] /\left(X^{2}\right) x Z_{3}$. Now if R_{1} and R_{2} are fields, then $\left|Z(R)^{*}\right|=\left|R_{1}\right|+\left|R_{2}\right|-$ $2=7$, this yields to $\left|\mathrm{R}_{1}\right|+\left|\mathrm{R}_{2}\right|=9$. Therefore, $\left|\mathrm{R}_{1}\right|=2,\left|\mathrm{R}_{2}\right|=7$ or $\left|\mathrm{R}_{1}\right|=4,\left|\mathrm{R}_{2}\right|=5$. Thus, $\mathrm{R} \cong \mathrm{Z}_{2} \mathrm{xZ}_{7}$ or $\mathrm{F}_{4} \mathrm{XZ}_{5}$.

Now, we shall prove the main result of this section.

Theorem 2.7 :

Let R be a ring which is not local and $|\mathrm{Z}(\mathrm{R})|^{*}=7$, then the following graph can be realized as $\Gamma(\mathrm{R})$

Figure (1)

Figure (2)

Figure (3),

Proof:

By Lemma 2.6, $\mathrm{R} \cong \mathrm{Z}_{4} \times \mathrm{Z}_{3}$ or $\mathrm{Z}_{2}[\mathrm{X}] /\left(\mathrm{X}^{2}\right) \mathrm{x} \mathrm{Z}_{3}$ or $\mathrm{Z}_{2} \times \mathrm{Z}_{7}$ or $\mathrm{F}_{4} \mathrm{X} \mathrm{Z}_{5}$. In Figure (1), can be realized as $\Gamma\left(\mathrm{Z}_{4} \times \mathrm{Z}_{3}\right)$ or $\Gamma\left(\mathrm{Z}_{2}[\mathrm{X}] /\left(\mathrm{X}^{2}\right) \mathrm{xZ}_{3}\right)$, Figure (2) can be realized as $\Gamma\left(\mathrm{Z}_{2} \mathrm{XZ}_{7}\right)$ and Figure (3) can be realized as $\Gamma\left(\mathrm{F}_{4} \times \mathrm{Z}_{5}\right)$.
3. Rings with $\left|\mathbf{Z}(\mathbf{R})^{*}\right|=8$

The main aim of this section is to find all possible zero divisor graphs of 8 vertices and rings which correspond to them.

We shall start this section with following lemmas which play a central role in the sequel.

Lemma 3.1 :

Let R be a ring with $|\mathrm{Z}(\mathrm{R})|^{*}=8$, then R is local or R is isomorphic to a product of two local rings.

Proof:

Since $\left|Z(R)^{*}\right|=8$, then R is finite and hence, $R \cong R_{1} \times R_{2} x \ldots x R_{n}$ where R_{i}, $\mathrm{i}=1,2, \ldots, \mathrm{n}$ are local rings.

If $n \geq 4$, then by [5, Lemma 4.7], $\mid Z(R)^{*} \geq 14$; this is a contradiction.

Now, consider $\mathrm{n}=3$, if R_{i} local but not field for some $1 \leq \mathrm{i} \leq 3$, then by Corollary 2.4, $\left|\mathrm{Z}(\mathrm{R})^{*}\right| \geq 13$ which is a contradiction. So R_{i} is a field for all $1 \leq i \leq 3$. Then, by Corollary 2.3
$\left|\mathrm{Z}\left(\mathrm{R}_{1} \times \mathrm{R}_{2} \times \mathrm{R}_{3}\right)^{*}\right|=\left|\mathrm{R}_{1}\right|\left|\mathrm{R}_{2}\right|+\left|\mathrm{R}_{1}\right|\left|\mathrm{R}_{3}\right|+\left|\mathrm{R}_{2}\right|\left|\mathrm{R}_{3}\right|-\left|\mathrm{R}_{1}\right|-\left|\mathrm{R}_{2}\right|-\left|\mathrm{R}_{3}\right|=8$. If $\left|\mathrm{R}_{1}\right|=\left|\mathrm{R}_{2}\right|=2$ then and $\left|R_{3}\right|=8 / 3$ which is a contradiction. If $\left|R_{i}\right| \geq 3$ for some i, then by [5, Lemma 4.5], $\left|Z(R)^{*}\right| \geq 9$ which is a contradiction. Therefore, $\mathrm{n}=1$ or 2 .

Lemma 3.2 :

Let R be a ring which is not local and $|\mathrm{Z}(\mathrm{R})|^{*}=8$, then $\mathrm{R} \cong \mathrm{F}_{1} \mathrm{xF} \mathrm{F}_{2}$, where F_{1} and F_{2} are fields

Proof:

Since R not local, then by Lemma 3.1 $R \cong R_{1} \times R_{2}$, where R_{1}, R_{2} are local rings. If R_{1} and R_{2} local, but not field, then by [5, Corollary 4.4], $\left|Z(R)^{*}\right| \geq 11$ which is a contradiction.

If R_{1} field and R_{2} local not field, then $\left|\mathrm{m}_{1}\right|=1$. if $\left|\mathrm{m}_{2}\right|=\mathrm{p}$ is prime number, then by [5,Lemma 4.8], $\left|R_{2}\right|=p^{2}$ and applied [5,Lemma 4.2], we have $p^{2}+k p-9=0$ where $k=\left|R_{2}\right|-$ 1 , so that $p=\frac{-k+\sqrt{k^{2}+36}}{2} \ldots \ldots$ (3), since p is prime, then we have a contradiction. If $\left|m_{1}\right|$ not prime then $\left|m_{1}\right| \geq 4$ and since $\left|\mathrm{R}_{2}\right| \geq 2$, then $\left|\mathrm{R}_{1}\right|=9-\left|\mathrm{m}_{1}\right|\left(\left|\mathrm{R}_{2}\right|-1\right) \leq 9-4(2-1)=5$ which is a contradiction. Therefore, R_{1} and R_{2} are fields. Hence, $R \cong F_{1} x F_{2}$, where F_{1} and F_{2} are fields.

Lemma 3.3 :

Let R be a ring which is not local and $|\mathrm{Z}(\mathrm{R})|^{*}=8$, then $\mathrm{R} \cong \mathrm{Z}_{2} \mathrm{xF} \mathrm{F}_{8}$ or $\mathrm{Z}_{3} \mathrm{XZ}_{7}$ or $\mathrm{Z}_{5} \mathrm{x} \mathrm{Z}_{5}$.
Proof:
By Lemma3.2 $\mathrm{R} \simeq \mathrm{F}_{1} \times \mathrm{F}_{2}$, where $\mathrm{F}_{1}, \mathrm{~F}_{2}$ are fields, we have $\left|\mathrm{F}_{1}\right|+\left|\mathrm{F}_{2}\right|-2=8$ which implies that $\left|\mathrm{F}_{1}\right|+\left|\mathrm{F}_{2}\right|=10$, so that $\left|\mathrm{F}_{1}\right|=2,\left|\mathrm{~F}_{2}\right|=8$ or $\left|\mathrm{F}_{1}\right|=3,\left|\mathrm{~F}_{2}\right|=7$ or $\left|\mathrm{F}_{1}\right|=5,\left|\mathrm{~F}_{2}\right|=5$. Therefore, $\mathrm{R} \cong \mathrm{Z}_{2} \mathrm{xF}_{8}$ or $\mathrm{Z}_{3} \mathrm{xZ}_{7}$ or $\mathrm{Z}_{5} \mathrm{xZ} \mathrm{Z}_{5}$.

Now, we are in a position to give the main result of this section

Theorem 3.4 :

Let R be a ring which is not local and $\left|\mathrm{Z}(\mathrm{R})^{*}\right|=8$, then the following graph can be realized as $\Gamma(\mathrm{R})$.

Figure (1)

Figure (2)

Figure (3),

Proof:

By Lemma 3.3, then $\mathrm{R} \cong \mathrm{Z}_{2} \mathrm{xF} \mathrm{F}_{8}$ or $\mathrm{Z}_{3} \mathrm{XZ}_{7}$ or $\mathrm{Z}_{5} \mathrm{x} \mathrm{Z}_{5}$. In Figure (1), can be realized as $\Gamma\left(\mathrm{Z}_{2} \mathrm{xF}_{8}\right)$. Figure (2), can be realized as $\Gamma\left(\mathrm{Z}_{3} \times \mathrm{Z}_{7}\right)$. Figure (3), can be realized as $\Gamma\left(\mathrm{Z}_{5} \mathrm{x} \mathrm{Z}_{5}\right)$.

REFERENCES

[1] D.D. Andersen and P. S. Livingston, (1999), "The zero divisor graph of a commutative ring". Journal of Algebra 217, pp. 434-447
[2] A. Badawi, (2004), "Abstract Algebra Manual: Problems and Solutions 2nd Edition problems and solutions", Nova Science Publishe
[3] I. Beck , (1988), "Coloring of commutative ring". Journal of Algebra 116, pp. 208-226.
[4] G. Carbas and D. Williams, (2000), " Rings of Order p5.I Nonlocal Rings ", Journal of Algebra 231(2), pp. 677-690.
[5] J. T. Wang, (2005), "Zero Divisor of Commutative Rings", M.Sc. Thesis the University of National Chung Cheng, Taiwan.

