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ABSTRACT 

This paper studies the bifurcations in dynamics of a family of semi-triangular 

maps }:)sin()({ IRxxxSS ==  . We will prove that this family has a series of 

Saddle-node bifurcations and a period doubling bifurcation. Also, we show that for 

some value of the parameter the functions  S will be chaotic. 
Keywords: Bifurcation, Chaotic, Semi-Triangular Maps. 
  

 شبه ثلاثية سلسلة من تشعب العقدة والسلوك الفوضوي لعائلة من خرائط 
 سلمى مصلح فارس عمار جميل

الموصل جامعة ، كلية علوم الحاسوب والرياضيات  

21/06/2011تاريخ قبول البحث:                                    05/05/2011تاريخ استلام البحث:   
 الملخص

})()sin(:{ب في ديناميكية عائلة من الدوال شبه المثلثية عيتناول هذا البحث التش IRxxxSS ==  .
وتشعب تفرعات مضاعفة   عقدة السرجيةوسوف يتم إثبات أن هذه ألعائله من الدوال تمتلك سلسله من تشعب ال

 تكون فوضوية.   Sفان الدالة     الرتبة. وكذلك  سيتم تبيان انه عند قيم محددة من المعلمة
 تشعب، فوضى، دوال شبة مثلية. ة: الكلمات المفتاحي

1. Introduction 

The term "bifurcation" refers to significant changes in the set of fixed or periodic 

points or other sets of dynamics interest. In fact, in dynamical systems, the object of 

bifurcation theorem is to study the changes that maps undergo as parameters changes. 

There are several types of bifurcations like saddle – node bifurcation ,period doubling 

bifurcation pitch fork bifurcation, and others.    
Our goal in this paper ,is to study how and  when the periodic points of the 

family of maps }:)sin()({ IRxxxSS ==  change, i.e. the bifurcation that this 

family undergoes. 
We will prove that our family has a series of saddle node bifurcations which is 

route to chaos. Also, we will show that this family has a period doubling bifurcation 

when the parameter meets the value 327295.1 . 

Finally, we show that this family has a chaotic behavior on IR   when the 

parameter is 2 . 
2. Definitions 

Let f  be any function .Then,  

1. A point x  is called fixed point of the function f  if xxf =)( ,[1] . 
2. A point x   is called periodic point if INn such that xxf n =)( .And we say that x  

of period n .Note that the fixed point is a periodic point of period 1,[1] . 
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3. A point x  is called critical point if 0)(' =xf  .The critical point x  is called 

degenerate if 0)('' xf .And x  is called non-degenerate if 0)('' =xf ,[1] . 

4. A periodic point x  is called hyperbolic if 1)(' xf ,and the number )(' xf  is the 

multiplier. 

The periodic point x  is called the attracting fixed point (sink)  If  1)(' xf . And x  

is called repelling (source) if 1)(' xf ,[1] . 

5 . Saddle-node bifurcation 

Let  IRf  :  be a family of mappings we say that f  has saddle-node 

bifurcation  if  for some IR , say, 0 = ,the following satisfied : 

1. For 0   ,then f  has no fixed point. 

2. For 
0 = , then f has one fixed point. 

3. For 0   , then f  has two fixed points; one of them attracting and the other is 

repelling,[1] . 

6. Period doubling bifurcation  

We say that the family  IRf  :  has a period doubling bifurcation  if this 

bifurcation involves a change from an attracting (or repelling ) to repelling (or 

attracting) periodic points of period two when  passes through 0 ,[1] .  

7. Let J  be an interval ,and suppose that  JJf →:  .Then, f  has sensitive 

dependence on initial conditions at x , or just sensitive dependence at x  if there is 

an 0  such that for each 0  , there is a y  in J  and a positive integer n  such 

that  

− yx    and     ( ) ( ) − xfxf nn  
 If f  has sensitive dependence on initial condition at each x  in J ,we say that f  

has sensitive dependence on initial conditions on J , or that  f  has sensitive 

dependence on J ,[2] . 

8. Let J  be a bounded interval, and JJf →:  continuously differentiable on J .Fix 

x  in J , and let ( )x  be defined by  

( )  ( ) ( )xf
n

x n '
ln

1
=  

 provided that the limit exists .In this case, ( )x  is the Lyapunov exponent of f  at 

x . If ( )x  is independent of x  wherever ( )x  is defined, then the common value 

of ( )x  is denoted by  , and is the Lyapunov exponent of f ,[2] . 

9. A function f  is chaotic if it satisfies, at least, one of the following :  

 i. f  has a positive Lyapunov exponent at each point in its domain that is not 

eventually periodic. 

 Or 

 ii. f  has a sensitive dependence on initial conditions on its domain , [2] . 

3. Properties and the fixed points of the family S : 

 Let }:)sin()({ IRxxxSS ==  .First, we study the properties of 

IRS  , .   
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3.1: Critical Points of S : 

Taking the derivative of S  with respect to x  ,we get 

( ) ( ) ( )( )xxxxS cossin' +=  
( ) 0' =xS , then ( ) ( ) 0cossin =+ xxx  

This implies that ( ) ( ) 0cossin =+ xxx .Therefore, the critical points of S  are 

00 =x , 208.21 =x  which is a maximum for S and 913.42 =x which is a minimum for 

S and all of them lie in the interval [0, 2] . 
 

 The following proposition gives the fixed points of the function in the family 

}:)sin()({ IRxxxSS ==  : 
3.2: Proposition  

 Let ( ) 0,0),sin( = xxxxS  ,then the fixed points for this family of 

functions are 0=x  , ( )/1sin 1−=x ,and =x  ( )/1sin 1−−  , 0 ,  2,0x  

Proof  

Let px  be a fixed point for this family, thus 

 ( )
ppp xxx =sin  and ( ) 0sin =− ppp xxx , then  

( ) 0)1sin( =−pp xx  .Therefore, either 0=px  , 0  or  ( ) 01sin =−px  and this 

implies that ( )/1sin 1−=px   is fixed point 1  

Since ( ) sinsin =px ( px− ) /1= ,then ( ) /1sin 1−=− px  

Therefore, =px  ( )/1sin 1−−   is a fixed point      1  

Hence, the fixed points of S in  2,0  are 00 = px  , ( )/1sin 1−=px  , 

=px  ( ) 1/1sin 1 − −    . 

3.3: Remark   

The fixed point 0=x is attracting fixed point 0 . 

Proof  

Taking the derivative of the function ( ) ( )xxxS sin = with respect to x .Then, 

( ) ( ) ( )( )xxxxS cossin' += .  

Put   0=x  

( ) ( ) ( )( )0cos*00sin*0' += S  

          ( )00* +=   

          10 = . 

Thus, the fixed point 0=x is attracting fixed point  0 . 

The following theorem gives  the number of fixed points and their natures of S . 

3.4: Theorem  

 Let ( ) ( )xxxS sin = , Then : 

1. If 1  , then ( )xS  has only the  attracting  fixed point 0,0 = x . 



 Salma M. Faris & Ammar A.M. Jameel 
 

 

 66 

2. If 1= , then ( )xS  has infinite number of fixed points and all of them are not 

hyperbolic .(one fixed point in each interval ( n2 , ( )12 +n ) , ...,3,2,1,0=n ) 
3. If 1 ,then the number of fixed points in 2. are doubled  

4. The general forms of the fixed points for S  are  

( ) nx n 2/1sin 1

1 += −             ..,.........3,2,1,0=n  

( )122 += nx n  ( )/1sin 1−−      ..,.........3,2,1,0=n  

on the interval [ ( ) 12,2 +nn ]  for  ,.........3,2,1,0=n  

5. The fixed points nx1  are attracting in the interval ( )( )( )0,/1sincos*/2 1  −− and 

repelling out of this interval .The fixed points nx2 are attracting in the interval 

( )( )( ) /1sincos*/2,0 1− and repelling out of this interval .  

Proof 

1. From  proposition (3.1) , ( )S has the fixed points  
0=x , ( )/1sin 1−=x  and  =x  ( )/1sin 1−− . Now 0=x  is attracting fixed point 

(remark 3.2) 

Moreover , 1  implies 1/1  .This means that ( )/1sin 1−=x  and 

=x  ( )/1sin 1−−  are not defined, thus 0=x is the unique fixed point for 1 , 

(see Figure 1), below: 
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Figure 1: The graph of ( ) ( ) 1,sin =  xxxS  

2. Let 1=  
Then, ( )1sin 1−=x = ( )1sin 1−−  

Thus, =x  2/ n2+    ,........3,2,1,0, =n  

Hence, the function has infinite number of fixed points. 

 

To study the types of these points : 

Taking the derivative of ( )xS ,  we get ( ) ( ) ( )( )xxxxS cossin' += . 

Now 

 ('

1S (/2)+ n2 )= sin  (( 2/ ) n2+ )+(( 2/ )+ n2 ) sin* (( 2/ ) n2+ ) 

                    =1+(( 2/ ) n2+ ) 0*  
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                    =1+0 

                   =1 

                   =1 

Thus, the fixed points =x (/2) n2+    , =n ,3,2,1,0 ,……..             

 are not hyperbolic fixed points , (see Figure 2). 
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Figure 2:The graph of ( ) ( ) 1,sin ==  xxxS  

3. Let 1 ,thus ( ) 1/1   Therefore ( ) 2//1sin 1  = −x . 

Assume that =x  −2/  is a fixed point ,then 

( )( ) ( ( ) ) ( )( )( ) ( )( ) −=−−=− 2/2/sin2/2/S  

 Thus, ( )( ) 12/sin =− . 

Since sin(/2-)=sin((/2+) for each  2/ then ( )( ) 12/sin =+  ,then 

( )( ) ( )( ) ( ( ) ) +=++ 2/2/sin2/  . 

Thus,  ( )( ) ( )  +=+ 2/2/S , 

Then ( )  +2/  is fixed point , 

Therefore, ( )  +2/  is fixed point iff ( )  −2/  is fixed point , hence the number of 

fixed points is doubled (see  Figure3). 
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Figure(3):The graph of ( ) ( ) 1,sin =  xxxS  

4. Let x   be a fixed point for S .Then   

( )/1sin 1−=x  , and 
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 ( ) /1sin =x , then  

( nx 2sin +  )  ,......3,2,1,0,/1 == n  

Thus, nx 2+  ( )/1sin 1−= . Hence 

( ) nx n 2/1sin 1

1 += −             …(1) 

But, ( )/1sin 1−=x  is also implies that    

(sin  ) /1=− x                       (     since sin(-)=sin()    ) 

Then, (sin n2  +  ) /1=− x . Hence, 

( )( )  /112sin =−+ xn , thus 

( n2 1+ ) ( )/1sin 1−=− x , therefore 

=nx2 ( n2 1+ ) ( )/1sin 1−−             …(2) 

Hence,(1)and (2) give the general form of the fixed point of S . 

5. Now to study the nature of the fixed points of S  

Let x  be attracting fixed points .This  implies that  

( ) 1' xS  , 

 ( ) ( ) 1cossin1 +− xxx  ,             

( ) 1cos11 +− xx , 

( ) 0cos2 − xx , 

 ( ) 0cos/2 − xx . 

Now we have two cases  : 

Case 1: If  the fixed point  of the form nx1 is 

 ( ) nx 2/1sin 1 += −   

Hence, ( )( ) 0/1sincos/2 1 − − x  .                

Then, all the fixed points that have the form nx1  will be attracting on the interval  

( )( ) )0,/1sincos/2( 1  −− , and repelling out of this interval . 
Case 2: If x is of the form nx2 .Then, 

 ( )( ))/1sincos/(20 1  −−− x .                              

Thus, all fixed points which have the form nx2  will be attracting  on the interval 

( )( ))/1sincos/2,0( 1  −  and repelling out of this interval. 

 From (Case1) and (Case2), we conclude that if the fixed point of the  form nx1  is 

attracting ,then the fixed point of the form nx2  is surely repelling and vise versa . 

4. Bifurcation Analysis and Chaotic Behavior for the Semi-Triangular Family S  

4.1:Theorem  

If  ( ) ( ) 0,0,sin == xxxxSS   then, this family has a saddle node 

bifurcation at 1= . 

Proof 

  According to the theorem 3.3 S  has no fixed point when 1 ,and S  has one 

fixed point when 1=  . 

By the same theorem for 1  ,two fixed points were born at each interval ,one 

is attracting and the other is repelling ;this is exactly a saddle-node bifurcation . 
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The following theorem studies the period doubling bifurcation of the family S : 

4.2: Theorem   

Let ( ) ( ) 0,0,sin = xxxxS   be a family of maps ,then this family has 

period doubling bifurcation at 327295.1 . 

Proof 

Our earlier experiments showed that the value 327295.1  is a bifurcation 

value. If 327295.1 , then the family has attracting fixed point and has one periodic 

point of period 2 in the interval [0,2] (see Figure 4). 

If 327295.1  ,Then the family has not hyperbolic fixed point and has one periodic 

point of period 2 in the interval [0,2]  (see Figure 5). 

If  327295.1 ,then the family has a repelling fixed point and has two attracting 

periodic points of period 2 in the interval [0,2]  (see Figure 6).Thus, 327295.1  is a 

period doubling bifurcation value for the functions in S . 

 

  
A: S has only one attracting fixed point in 

the interval ( )2,0 , 327295.1  

B: S  has a periodic point of period 2 in the 

interval ( ) 327295.1,2,0   

Figure 4 

 

 

  
A: S  has not hyperbolic fixed point in the 

interval ( )2,0 , 327295.1  

B: S  has one periodic point of period 2 in 

the interval ( )2,0 , 327295.1  

Figure 5 
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A: S  has repelling fixed point in the 

interval ( )2,0 , 327295.1  

B: S  has two attracting periodic point of 

period 2 in the 

interval ( )2,0 , 327295.1  

Figure 6 

4.3:Theorem  

Functions of the family S  are sensitive  dependence on initial condition in the 

interval }0:{ xx  for all 1 . 

Proof 

First: In the interval 








2
,0


  

Let 0 , the theorem can be divided into two parts: 

1.  Let 









2
,0


x  

Choose += xy  such that   is small positive number and x  ,  

Now  =− yx           

Notice that ( ) xx sinsin +   

Then ( ) ( ) ( ) xxxx sinsin  +++  

And by multiplying both sides by   the following is obtained  

( ) ( ) xxxxx sinsinsin  +++  

Therefore  

( ) ( )

0

sin

sinsinsin





−++



 xxxxx

 

By taking the absolute value of both sides the following is obtained 

( ) ( )  sinsinsin −++ xxxx              

Then  sin)()( − xSyS          

Now choose  sin= , 1=n , and that proves S  is sensitive dependence on initial 

condition in the interval 








2
,0


. 

2.  Let 
2


=x  

Choose −= xy  such that   is small positive number and y  ,  
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Now  =− yx           

Notice that ( )− xx sinsin  

Then ( ) ( ) ( ) −−− xxxx sinsin  

Multiplying both sides by   the following is obtained  

( ) ( ) ( ) −−− xxxx sinsin  

( ) ( ) −−− xxxxx sinsinsin  

Therefore  

( ) ( )

0

sin

sinsinsin





−−−



 xxxxx

 

By taking the absolute value of both sides the following is obtained 

( ) ( )  sinsinsin −−− xxxx              

Then  sin)()( − xSyS          

Now choose  sin= , 1=n , and that proves S  is sensitive dependence on initial 

condition in the interval 
2


=x . 

From (1) and (2) it can be obtained the function S  is sensitive dependence on initial 

condition in the interval 








2
,0


. 

Second: In the interval 








2

3
,


   

Let 0 , the theorem can be divided into two parts: 

1.  Let 









2

3
,


x  

Choose += xy  such that   is small positive number and  − x,  

Now  =− yx           

Notice that ( )+ xx sinsin  

Then ( ) ( ) ( ) +++ xxxx sinsin  

Multiplying both sides by   the following is obtained  

( ) ( ) +++ xxxxx sinsinsin  

Therefore  

( ) ( )

0

sin

sinsinsin





−++−



 xxxxx

 

By taking the absolute value of both sides the following is obtained 

( ) ( )  sinsinsin ++− xxxx              

Then  sin)()( − xSyS          

Now choose  sin= , 1=n , and that proves S  is sensitive dependence on initial 

condition in the interval 








2

3
,


 . 
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2.  Let 
2

3
=x  

Choose −= xy  such that   is small positive number and  − x,  

Now  =− yx           

Notice that ( ) xx sinsin −   

Then ( ) ( ) ( ) xxxx sinsin  −−−  

Multiplying both sides by   the following is obtained  

( ) ( ) xxxxx sinsinsin  −−−  

Therefore  

( ) ( )

0

sin

sinsinsin





−−−−



 xxxxx

 

By taking the absolute value of both sides the following is obtained 

( ) ( )  sinsinsin −−− xxxx              

Then  sin)()( − xSyS          

Now choose  sin= , 1=n , and that proves S  is sensitive dependence on initial 

condition in the interval 
2

3
=x . 

From (1) and (2) it can be obtained the function S  is sensitive dependence on initial 

condition in the interval 








2

3
,


 . 

From first and second it can be obtained the function S  is sensitive dependence on 

initial condition in any subinterval, in which the function S  is positive and increasing 

or negative and decreasing, of the interval )2,0(  . 

The intervals within the function S  is positive and increasing or negative and 

decreasing are increasing for all 1 , 1n  by increasing n . 

 

For example if 2=n  and 2= , the function 2

2S  is positive and increasing in the 

following intervals:  

[0, 1.2], [2.44, 2.78], [3.15, 3.45], [4.04, 4.32], [5.1, 5.46], [6.02, 6.12]. 

 

Also, it is negative and decreasing in the following intervals:  

[1.57, 2.05], [3.59, 3.85], [4.71, 4.92], [5.7, 5.85], (see Figure 8). 
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Figure 7: The Graph of Function 2S  in the Interval )2,0(   

 

Figure 8: The Graph of Function 
]2[

2S  in the Interval )2,0(   
 

But if 3=n  and 2= , the function 3

2S  is positive and increasing in the following 

intervals:  

[0, 0.8], [1.28, 1.4], [1.57, 1.75], [2.157, 2.293], [2.44, 2.575], [2.86, 2.95], [3.14, 3.31], 

[3.5, 3.54], [3.595, 3.635], [3.715, 3.755], [3.865, 3.915], [3.995, 4.01], [4.035, 4.13], 

[4.2, 4.235], [4.345, 4.41], [4.517, 4.545], [4.64, 4.663], [4.71, 4.775], [5, 5.05], [5.11, 

5.155], [5.236, 5.265], [5.348, 5.386], [5.485, 5.535],[5.607, 5.623], [5.67, 5.68], [5.7, 

5.719], [5.767, 5.79], [5.87, 5.909], [5.978, 5.992], [6.022, 6.0525], [6.155, 6.19]. 

 

Also, it is negative and decreasing in the following intervals:  

[0.96, 1.12], [1.9, 2.03], [2.67, 2.77], [3.38, 3.44], [3.655, 3.69], [3.81, 3.837], [3.948, 

3.97], [4.071, 4.092], [4.15, 4.174], [4.296, 4.318], [4.452, 4.485], [4.577, 4.604], [4.83, 

4.91], [5.178, 5.211], [5.29, 5.32], [5.444, 5.465], [5.567, 5.587], [5.64, 5.653], [5.731, 

5.749], [5.83, 5.849], [5.937, 5.955], [6.081, 6.115], (see Figure 9). 
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Figure 9: The Graph of Function 

]3[

2S  in the Interval )2,0(   
 

So the intervals within the function S  is sensitive dependence on initial condition for 

all 1 , 1n  by increasing n . 

If chosen n  is large enough then the interval )2,0(   is covered completely. 

In general, for all the interval  ) )1(2,2 +nn  for ...,2,1=n , it can be obtained that the 

function S  is sensitive dependence on initial condition in }0:{ xx . 

4.4:Theorem  

Let IRIRS →:  be defined by ( ) ( ) 0,sin =  xxxS , then the function 

S  is chaotic on IR . 

Proof 

From theorem 4.3 S  is sensitive dependence on initial conditions on IR  then, 

by definition 8 S  is chaotic on IR. 
 

Now we try to answer the following question : how the family                                                                             

( ) ( ) 0,sin =  xxxS  becomes chaotic . 

We will show that the maping S  route to chaos by a series of saddle-node bifurcations 

.In fact, this is a typical route to chaos . We will show that   2

S  has the same " behavior 

" inside certain box .We conclude that  2

S  has a saddle node bifurcation in this box . 

Experimentally ,we choose the interval ( )9.5,5.4 .Consider the Figures 10,11,12 and 13. 
 

1 2 3 4 5 6

-4

-2

0

2

4

6

  
*,  S  #2 ,  S  

Figure 10 :  The functions S  and 
2

S  have no fixed point 
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*,  S  #2 ,  S  

Figure 12: The functions S  and 
2

S  have two fixed points one of them attracting and another 

repelling 

 

  

2, =S  5.1,2 =S  

Figure 13:  The functions S  and 
2

S  have two repelling fixed points 

 

The graphs of S  and 2

S  have the same patterns around the parameter value 

1* =  and 4158182.1#   respectively. In fact, we have the following cases: 

1.When 
#   then 2

S  has no fixed point . in the interval ( )9.5,5.4 . 

2.When 
#   then 2

S  has only one fixed point  . in the interval ( )9.5,5.4 . 

3.When 
#  , for example 416.1= ,two fixed points for 2

S are born; one of them is 

attracting and the other is repelling .  

4.Morever, for 2= ,the two fixed points in (3) will be repelling , and  

  
*,  =S  #2 ,  S  

Figure 11:  The functions S  and 
2

S  have only one fixed point 

 



 Salma M. Faris & Ammar A.M. Jameel 
 

 

 76 

2

S  has the  same critical points  6172.5,913.4 in the box ( )9.5,5.4  for each   in 

cases 1,2,3 and 4 . 

The above observations show that the behavior of 2

S  in the interval ( )9.5,5.4  is similar 

to that of S  in ( 2,0  .The remarks 1, 2 and 3 above show that 2

S  has a saddle node 

bifurcation in the interval  ( )9.5,5.4  at # = . 

Continuing this process, we have a series of saddle-node bifurcation for S as    

increases . 

Therefore, the bifurcation diagram for S  must be as in Figure 14 . 

The above discussion shows ,experimentally ,that this family encountered with chaotic 

dynamics for certain values of  namely 2= .This is called a saddle node bifurcation 

route to chaos. 

 

 
Figure 14: The bifurcation diagram of IRSS  ,, 2
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