Prevalence of Plasmid-Mediated Quinolone Resistance Genes (qnr) in Clinical Isolates of K. pneumoniae in Najaf

Zainab Jaber Hadi¹; Samer Abdulsahib Mahammad Hassein²; Ali Muhsin Almohana³ (College of Medicine / Kufa university^{1,2,&3})

الخلاصة:

المقدمة: ان الهدف من الدراسة هو التحري عن وجود جينات المقاومة للكونيلون المحمولة على البلاز ميدات في بكتري الكلبسيلا الرئوية المعزولة من العينات السريرية في مستشفيات النجف.

طرائق العمل: تم تشخيص بكتريا الكلبسيلا الرئوية بواسطة الاختبارات المظهرية والكيموحيوية التقليدية و فحص API 20E و استخدمة تقنية سلسلة تفاعل انزيم البلمرة PCR لتحري عن جينات qnr.

النتائج : تم تشخيص 109عزلة على انها كلبسيلا رئوية من اصل 1590عينة سريرية مختلفة تم جمعها، وقد كشفت الدراسة ان هنالك 74 عزلة اظهرت انحسار في المقاومة للكونيلين، بينت نتائج اختبار الحساسية لعزلات الكلبسيلا الرئوية ان هنالك 38 عزلة من نوع المتعددة المقاومة MDR وتم اكتشاف 32 عزلة من نوع واسعة المقاومة XDR و 4 عزلة من نوع PDR. اظهرت النتائج تقنية سلسلة تفاعل انزيم البلمرة PCR لتحري عن جينات qnr في 74 عزلة ان هنالك 20 (27%) عزلة حاملة لجينات qnr ومن بين هذه العزلات وجد ان هنالك 17 (23%) عزلة تحتوي على جينات من نوع qnr و2(2.2%) عزلة تحتوي على جينات qnr و1(1.4%) عزلة تحتوي على جينات qnr.

الخلاصة: الدراسة إلى ان عزلات الكلبسيلا الرئوية التي تحتوي على جينات المقاومة البلازميدية في الوقت الحاضر تنتشر على نحو واسع في مستشفيات النجف.

Abstract:

Introduction: The main purpose of this study was to investigating the presence of qnr-genes among clinical isolates of *K. pneumoniae* recovered from Najaf hospitals.

Material and methods: A total of 1590 clinical specimens were obtained from three main hospitals. The *Klebsiella* spp. were identified by traditional biochemical tests, and confirmed by API 20E system. Theisolates that exhibited reduce susceptibility to quinolones were examined for the presence of PMQR *qnr* (*qnrA*, *qnrB*, and *qnrS qnrC*, and qunD).

Results: The *qnr* genes were detected in 20 (63.5%) isolates *qnrB*, *qnrA* and *qnrS* were identified in 17 (23%), 2 (2.7%) and 1 (1.4%) respectively.

Conclusion: *K. pneumoniae* isolates harboring PMQR are currently widely distributed in Najaf hospitals.

Key words: Plasmid-Mediated Quinolone Resistance Genes PMQR, qnr

Introduction:

Klebsiella pneumoniae is a prominent nosocomial pathogen mainly responsible for bacteraemia, urinary tract, respiratory tract, and wound infections. Most *K. pneumoniae* are hospital associated with a high fatality rate if incorrectly treated. Isolates from hospitals often display antibiotic resistance phenotypes (1), Resistance isolates may also spread into the community settings (2).

Quinolones is group of antimicrobial compounds that are commonly used for the treatment of many bacterial infections. However, several studies have highlighted that, in recent years, resistance to quinolones has increased globally, particularly in members of the *Enterobacteriaceae* such as *Klebsiella* (3; 4; 5). Although quinolone resistance is predominantly caused by chromosomal mutations, it may also result from a plasmid encoded (6). The recent discovery and rapid dissemination of plasmid-mediated quinolone resistance (PMQR) genes has further highlighted the problem of quinolone (7).

Five major *qnr*- PMQR genes with the potential for horizontal transfer opened a novel era in resistance to quinolones have only recently been discovered. The first PMQR discovered, qnrA in 1998, and later the qnrB, qnrS, qnrC and qnrD were detected, which confer quinolone resistance binding by to DNA gyrase and topoisomerase IV and protect them from quinolones by unknown mechanism (8, 9). The aim of this study was to investigate the occurrence and diversity of *qnr*-genes in clinical isolates of K. pneumoniae in Najaf hospitals.

Material and methods Collection of Specimens

AL-Qadisiyah Medical Journal

A cross section study was conducted in three main hospitals in Najaf from November 2012 to June 2013. Clinical specimens were collected from patients attended and/or admitting to these hospitals. The clinical specimens including burn swab, sputum, wound exudate, seminal fluid, throat swabs and urine.

Identification of Klebsiella spp.

Suspected *Klebsiella* colonies were isolated and identified through conventional biochemical tests according to standard **Antibiotic Susceptibility Testing**

Antibiotic susceptibility testing of *Klebsiella* spp. isolates was performed by the Kirby-Bauer disk diffusion method. The selection of antibiotic disks (listed in table 3) was performed according to the guidelines recommended by the CLSI (2013). *E. coli* ATCC 25922 was used as the reference strain for quality control of the antibiotics tested. All susceptibility results were interpreted according to the standard values provided by CLSI (2013).

Screening for the *qnr* genes

The isolates exhibited reduce susceptibility to quinolones were screened by multiplex PCR for *qnrA*, *qnrB*, *qnrS* and monplex PCR for *qnrC*, *qunD*, with the **Table (1): Primers (Bioneer)** method described by MacFaddin (10) and Hart (11). *Klebsiella* isolates were identified at the species by using the API 20E.

Screening Test for Quinolones Resistance

Based on CLSI (12) recommendations, disk diffusion test were performed to detected quinolones resistance in all *Klebsiella* spp. isolates by using nalidixic acid (10µg/disk) and ciprofloxacin (5µg/disk). *E. coli* ATCC 25922 was used as control strain

primers shown in Table (1) using a DNA template prepared according to the Chang and Jiany (14) method. PCR amplification was performed using 10µ Master mix 2X, 0.5µl Primer forward (10µM), 0.5 µl Primer reverse (10µM), 5 µl DNA template(10-250ng), PCR grade water Up to 20µl. PCR conditions were as shown in Table (2) in a T3000 thermocycler (biometra). Amplicons were separated by electrophoresis in 1.5 % (w/v) agarose gel, stained with ethidium bromid. The positive results were distinguished when the DNA band base pairs of sample equal to the target product size. Finally, the gel was photographed using Biometra gel documentation system.

Туре	Primer	Primer Gene Oligo sequence		Product	Deference
	name	name		(bp)	Reference
QnrA	qnrA	F	5-ATTTCTCACGCCAGGATTTG-3	- 516	14
		R	5-GATCGGCAAAGGTTAGGTCA-3	510	
QnrB	qnrB	F	5-GATCGTGAAAGCCAGAAAGG-3	469	
		R	5-ACGATGCCTGGTAGTTGTCC-3	409	
QnrS	qnrS	F	5-ACGACATTCGTCAACTGCAA-3	417	
	R 5-TAAATTGGCACCCTGTAGGC-3		417		
QnrC	qnrC	F	5-GGGTTGTACATTTATTGAATC-3	- 447	15
		R	5-TCCACTTTACGAGGTTCT-3	447	
QnrD	qnrD	F	5-CGAGATCAATTTACGGGGAATA-3	- 644	16
	R 5-AACAAGCTGAAGCGCCTG-3		5-AACAAGCTGAAGCGCCTG-3	044	

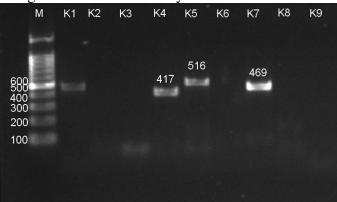
Only 74 *K. pneumoniae* isolates exhibited resistant or intermediate resistant to at least one quinolone tested were chosen for further studies. The results of antimicrobial susceptibility testing of 74 *K. pneumoniae* isolates are presented in Table (3).

Results

The results revealed that only 109 (6.9%) isolates were confirmed as *K. pneumoniae* and 2 (0.1%) isolates were recognized as *K. oxytoca* based upon colonial characteristics and conventional biochemical tests and API 20E system test.

AL-Qadisiyah Medical Journal	Vol.12 No.22
------------------------------	--------------

2016


35(47.3%) were identified as MDR isolates, whereas, 32 (43.2%) isolates was considered as XDR organisms, PDR-producers could be detected among 4(5.4%) the isolates non-susceptibility to all agents in all antimicrobial classes tested.

Susceptibility testing found that 71(95.9%) of the isolates were resistant to at least one antibiotic in ≥ 3 of the 11 antibacterial classes tested in this study, therefore all these isolates were considered as multiple antibiotic resistance. Among which, *K* pneumoniage isolates (n=74)

Table (3): Antibiotic susce	ptibility ex	pressed by K.	pneumoniae isolates	(n = 74)
	priority on		province isolaces	(, . ,

Antibiotic classes	Antibiotic disk	No. (%) of isolates exhibited:		
		Resistance	Intermediate	Susceptible
Quinolones	Nalidixic acid	47 (63.5)	13 (17.6)	14(18.9)
	Ciprofloxacin	51 (68.9)	11 (14.9)	12(16.2)
	Gatifloxacin	19 (25.7)	8 (10.8)	47(63.5)
	Levofloxacin	24 (32.4)	9(12.2)	41(55.4)
	Lomefloxacin	56 (75.7)	8(10.8)	10(13.5)
	Moxifloxacin	49 (66.2)	11(14.8)	15(20.2)
	Norfloxacin	35 (47.3)	4(5.4)	35(47.3)
	Ofloxacin	36 (48.6)	3(4.1)	35(47.3)

The *qnr*-genes were detected in only 20 (27%) of the isolates, of these, 17 (23%) isolates carried *qnrB* (Figure 1), 2 (2.7%) isolates carried *qnrA*, and only1 (14%) isolate carried *qnrS*. Neither *qnrC* nor *qnrD* genes were found in any of the tested isolates.

Figure (1): Ethidium bromide-stained agarose gel of multiplex PCR amplified products from extracted DNA of *Klebsiella pneumoniae* isolates and amplified with three genes primers. The electrophoresis was performed at 70 volt for 2 hr. Lane (M), DNA molecular size marker (100 bp ladder, Qiagen), Lanes (K 4) show positive results with *qnrS* (417 bp), Lanes (K 5) show positive results with *qnrA* (516 bp), Lanes (K7) show positive results with *qnrB* (469 bp).

Discussion

Frequency of *Klebsiella* spp. among Clinical Samples

Frequency of Klebsiella spp. among clinical samples, Klebsiella spp. is increasingly opportunistic important pathogens variety that cause a of communities and hospital-acquired infections (13). Present data found that K. pneumoniae is the most frequently isolated pathogenic Klebsiella spp. (109/111),be can

discriminated confidently between/ against/ in favor of API 20E system which is in agreement with other studies (14,15, 16).

Quinolones Resistance of K. pneumoniae Isolates

Resistance to quinolones by family *Enterobacteriacae* became common and widespread shortly after the introduction to these agents (17). The results revealed that 74 (66.6%) of *K. pneumoniae* isolates had displayed reduced susceptibility

(intermediate, or resistant) to nalidixic acid and/or ciprofloxacin, this results resembles with studies from other countries such as Pakistan and Malaysia reported that 72.2% and 71% of K. pneumoniae were reduced susceptible to ciprofloxacin (18, 19). However, present results are in agreement with previous study in Najaf performed by Al-Sehlawi (15) who found 51.5% and 50% Κ. pneumoniae clinical isolates were resistance to nalidixic acid and ciprofloxacin respectively.

Prevalence of Qnr Genes.

In this study 20 (27%) isolates carried different type of *qnr* genes. In a related study in Morocco the qnr genes were detected in (50%) of ESBL-producing K. pneumoniae isolates (21). High prevalence also detected in study performed by Al-Morzooq et al. (19) who found qnr genes were detected in (65.5%) of K. pneumoniae clinical isolates in Malaysia. In contrast, the low prevalence of qnr genes has been reported in France and Canada. In France, the prevalence of qnr genes was 1.6% (2/125) among ESBLproducing E. coli and Klebsiella spp. isolate (22, 23). Several reports demonstrating that qnr genes alone doing not to confer resistance to fluoroquinolones; however, its presence promotes the selection of additional chromosomally encoded quinolone resistance mechanisms, and qnr genes may facilitate further selection to low-level to high-level resistance to the usage of quinolones (24, 25, 4, 26).

Among of the 20 qnr genes positive isolates, 17 (23%) isolates carried qnrB, 2 (2.7%) qnrA and 1(1.3%) qnrS. The qnrB appear predominant qnr gene identified in this study, the data of this study in agreement with study carried out by Saiful et al. (27) how found that 15/23 (31.9%) isolates were carried qnrB genes. Moreover, another studies in Asian and Southeast Asia, determine the qnrB predominant of qnr gene in K. pneumoniae (28, 29, 5, 30).

The information is not available about the presence of the *qnrA* gene in *K. pneumoniae* clinical isolate in Iraq. In the study reported here, 2 (2.7%) *K. pneumoniae* isolates were

positive for *qnrA* gene. Low prevalence of *qnrA* genes has also been reported in previous study in ESBL-producing *Enterobacteriaceae* in Turkey (31).

The present study revealed that the *qnrS* was detected in only one (1.4%) K. pneumoniae isolate. This result is in accordant with the results being reported on a study in French performed by Cremet et al. (32) in which the qnrS was detected in 5 Enterobacteriaceae (2.7%)isolates. In another similar study carried out by Al-Mrzooq et al. (19) who foun only 2 (4.3%) in K. pneumoniae isolates were positive qnrS gene. Other *anr* types including *anrC*, *anrD*, were not detected in this study. As conclusion there is a high prevalence of plasmid-mediated quinolones resistance genes among K. pneumoniae isolates in Najaf hospitals. Additional studies are necessary to understand the clinical information concerning infections produced by plasmidmediated quinolones resistance positive isolates and risk factors for their acquisition.

Reference

1-Woodford, N.; Reddy, S.; Fagan E.J.; Hill, R.L.; Hopkins, K.L. (2007). Wide geographic spread of diverse acquired AmpC β -lactamases among *Escherichia coli* and *Klebsiella* spp. in the UK and Ireland. J. Antimicrob. Chemother.,**59**: 102–105.

- 2-Seyedpour, S. M.; Eftekhar, F. (2014). Quinolone susceptibility and detection of *qnr* and *aac(6')-ib-cr* genes incommunity Isolates of *Klebsiella pneumoniae*. Jundishapur J.Microbiol., **7**(7):e11136
 - 3-Chau, T.T.; Campbell, J.I.; Galindo, C.M. *et al.* (2007). Antimicrobial drug resistance of *Salmonella enterica* serovar Typhi in Asia and molecular mechanism of reduced susceptibility to the fluoroquinolones. Antimicrob. Agents Chemother. **51**: 4315-4323.
 - 4-Strahilevitz, J.; Engelstein, D.; Adler, A. et al. (2007). Changes in qnr prevalence and fluoroquinolone resistance in clinical isolates of *Klebsiella pneumoniae* and *Enterobacter* spp. collected from 1990 to 2005. Antimicrob Agents Chemother., **51**: 3001–3.
 - 5-Wang, A.; Yang Y.; Lu Q. et al. (2008).Presence of *qnr* gene in *Escherichia coli* and *Klebsiella pneumoniae* resistant to ciprofloxacin isolated from pediatric patients in China, *BMC Infectious Diseases.*, **8**: no. 1, article 68.
 - 6-Poirel, L.; Bonnin, RA.; and Nordmann, P. (2012). Genetic features of the widespread plasmid coding

AL-Qadisiyah Medical Journal

for the carbapenemase OXA-48. Antimicrob Agents Chemother.,**56**: 559–62.

- 7-Robicsek, A.; Jacoby, GA.; Hopper, DC. (2006a). The worldwide emergence of plasmid-mediated quinolone resistance. Lancet., **6**: 629-640.
- 8-Xiang, Chen, Weijuan, Pan; Weiqiu, Zhang; Zhiming, Pan; Song, Gao and Xinan, Jiao. (2011), Quinolone resistance in *Escherichia coli* and *Salmonella spp*. isolates from diseased chickens during 1993-2008 in China. African Journal of Microbiology., 5 (19): 3078-3083.
- 9-Kees, V.; Essen-Zandbergen A.; Arie Kant and Dik Mevius. (2011). Characterization of qnrpositive Escherichia coli isolates from foodproducing animals in the Netherlands, Oxford Journals Medicine Journal of Antimicrobial Chemotherapy **67**, Issue1, 239-240.
- 10-MacFaddin, J.F. (2000). Biochemical tests for identification of medical bacteria. 3rd ed. Lippincott Williams and Wilkins, USA.
- 11-Hart, C.A. (2006). *Klebsiella, Citrobacter, Enterobacter, and Serratia* spp. Gillespie S.H. and Hawkey, P.M. Principle and Paractice of Clinical Microbiology. 2nd edd. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex. England
- 12-Clinical and Laboratory Standards Institute. (2013). Performance Standards for Antimicrobial Susceptibility Testing, Clinical and Laboratory Standards Institute document M100- S23, Wayne, Pa, USA.
- 13-Cheng, HR.; Jiang, N. (2006). Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett., **28**:55–59.
- 14-Cattoir, V.; Poirel, L.; Rotimi ,V. and Nordmann, P. (2007). Multiplex PCR for detection of plasmidmediated quinolone resistance qnr genes in ESBLproducing enterobacterial isolates J. of Antimicrobial Chemotherapy., **60**: 394–397
- 15-Wang, Y.; Zhang, R.; Li ,W.; *et al.* (2009). Serious antimicrobial resistance status of pathogens causing hospital-acquired lower respiratory tract infections in North China. J Int Med Res., **37**: 899 – 907.
- 16-Cavaco, LM.; Hasman, H.; Xia, S.; Aarestup, FM. (2009). *qnrD* a novel Gene Conferring Transferable Quinolone Resistance in *Salmonella enterica* Serovar Kentucky and Bovis morbificans Strains of Human Origin Antimicrob Agents Chemother., **53**: 603-608.
- 17-Chiu, S.; Wu, T.; Chuang, Y.; Lin, J.; Fung, C.; Lu, P.; Wang, J.; Wang, L.; Siu, K. and Yeh, K. (2013). National surveillance study on carbapenem Nonsusceptible *Klebsiella pneumoniae* in taiwan: the emergence and rapid dissemination of kpc-2 carbapenemase, Plos One, **8**(7), 1-7
- 18-Al-Muhannak, F.H.N. (2010). Spread of some extended-spectrum beta -lactamases in clinical isolates of Gram-Negative bacilli in Najaf. M.Sc. thesis. College of Medicen. Kufa University.

- 19-Al-Sehlawi, Z. S. (2011).Occurrence and Characterization of AmpC β-Lactamases in *Klebsiella pneumoniae* Isolated from Some Medical Centers in Najaf. Ph.D. Thesis. College of Science, Babylon University.
- 20-Feglo, P.K.; Acheampong, D.O. and Gbedema, S.Y. (2010). Prevalence and antibiogram of *Klebsiella* species recovered from clinical samples at the Komfo Anokye teaching hospital. Ghana Journal of Clinical Research Letters, **1**: 04-08
- 21-Jacoby, G. A. (2005). Mechanisms of resistance to quinolones. Clin Infect Dis., **41**:S120–S126
- 22-Ali, S.Q.; Zehra, A.; Naqvi, B.S.; Shah, S. and Bushra, R. (2010). Resistance pattern of ciprofloxacin against different pathogens. Oman Medical Journal., **25**:294-298.
- 23-Al-Marzooq, F.; Yusof, M.Y., and Tee Tay, S. (2014). Molecular Analysis of Ciprofloxacin Resistance Mechanisms in Malaysian ESBL-Producing *Klebsiella pneumoniae* Isolates and Development of Mismatch Amplification Mutation Assays (MAMA) for Rapid Detection of *gyrA* and *parC* Mutations. BioMed Research International; Volume, Article ID **601630**, 10 pages.
- 24-Sánchez-Romero, I. ; Asensio, Á.; Oteo, J. *et al.* (2012). Nosocomial outbreak of VIM-1-producing *Klebsiella pneumoniae* isolates of multilocus sequence type 15: molecular basis, Clinical risk factors, and outcome. Antimicrob Agents Chemother. Jan; **56**(1): 420–427.
- 25-Bouchakour, M.; Zerouali, K.; Gros Claude, JD.; Amarouch, H.; El
- Mdaghri, N.; Courvalin, P.; *et al.* (2010). Plasmid-mediated quinolone resistancein expanded spectrum beta-lactamase producing *Enterobacteriaceae* in Morocco. *J Infect Dev Ctries.*,**4**(12):779–803.
- 26-Poirel, L.; Leviandier, C.; Nordmann, P. (2006). Prevalence and genetic analysis of plasmidmediated quinolone resistance determinants QnrA and QnrS in Enterobacteriaceae isolates from a French university hospital. Antimicrob Agents Chemother., **50**: 3992–7
- 27-Poirel, L.; Van De Loo, M.; Mammeri, H. et al. (2005). Association of plasmid-mediated quinolone resistance with extended-spectrum β -lactamase VEB-1. Antimicrob Agents Chemother., **49**: 3091–4
- 28-Jacoby, GA.; Walsh, KE.; Mills, DM. et al. (2006). *qnrB*, another plasmid mediated gene for quinolone resistance. Antimicrob Agents Chemother.,**50**: 1178–82.
- 29-Cattoir, V.; Poirel, L.; Nordmann, P. (2008). Plasmid-mediated quinolone resistance QepA2 from *Escherichia coli* in France. Antimicrob Agents Chemother., Jul 21.
- 30-Saiful, A. S.; Anuar, M. Y.; Yusof, M.; and Tay, S. T. (2013). Prevalence of plasmid-mediated *qnr* determinants and gyrase alteration in *Klebsiella*

pneumoniae isolated from a university teaching hospital in Malaysia, European Review for Medical and Phar- macological Sciences., **17**: no. 13, pp. 1744–1747.

- 31-Liao, C. H.; Hsueh, P. R.; Jacoby, G. A; and Hooper, D. C. (2013). Risk factors and clinical characteristics of patients with *qnr*-positive *Klebsiella pneumoniae* bacteraemia, Journal of Antimicrobial Chemotherapy. **68**: no. 12, pp. 2907–2914.
- 32-Pasom, W.; Chanawong, A.; Lulitanond, A. *et al.*(2013). Plasmid- mediated quinolone resistance genes, *aac(6')-Ib-cr*, *qnrS*, *qnrB*, and *qnrA*, in urinary isolates of *Escherichia coli* and *Klebsiella pneumoniae* at a Teaching Hospital, Thailand, Japanese Journal of Infectious Diseases., **66**:no. 5, pp. 428–432.
- 33-Teo, J.W.; Ng, K.Y.; Lin, R.T. (2009). Detection and genetic characterisation of qnrB in hospital isolates of *Klebsiella pneumoniae* in Singapore. Int J Antimicrob. Agents., **33**: 177–80
- 34-Oktem, I.M.; Gulay, Z.; Bicmen, M. & Gur, D. (2008). qnrA prevalence in extended-spectrum b-lactamase-positive Enterobacteriaceae isolates from Turkey. Jpn J Infect Dis **61**: 13–17
- 35-Crémet, L.; Caroff, N.; Dauvergne, S.; Reynaud, A.; Lepelletier, D. and Corvec, S. (2009). Prevalence of plasmid-mediated quinolone resistance determinants in ESBL *Enterobacteriaceae* clinical isolates over a 1-year period in a French hospital. Elsevier Masson SAS. PATBIO-2757; No of Pages 6.