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Abstract:

In this article, the approxmated solutions of ordinary differential equations of fractional 

order using Haar wavelet and B-spline bases are introduced. The algorithm of collection 

method is updated using two basis. Several initial value problems has been solved to show the 

applicability and efficacy of the Haar wavelet and B-spline basis. An application of Lane-Eman 

equation has been introduced and studied. The approximated results have clearly shown the 

advantage and the efficiency of the modified method in terms of accuracy and computational 

time. 
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1.Introduction."

Differential equations (DEs) have an important 

value in many applications relating to various fields 

such as engineering , physics, chemistry, biology 

and economics, however many mathematical models 

of physical systems are given as DE first-, second-

or higher-order. Two types of DEs

which depends on the domain of definition of DE 

we classified them as complex Des (CDEs) and real 

DEs (RDEs) each of them classified as follows

firstly: Ordinary differential equations (ODEs) 

which have the branches: delay differential 

equations (DDEs), fractional differential equations

(FrDEs), fuzzy differential equations (FDEs).

Secondly: Partial differential equations (PDEs), 

which have the branches: DDEs, FrDEs and FDEs. 

Thirdly: Stochastic differential equations which 

have the branches: DDEs, FrDEs, FDEs. Johy[12]. 

The ODEs of first- or second order have many 

applications in branches of mechanical engineering, 

electrical, civil, chemical and others. The subject of 

PDEs has a long history with an active 

contemporary phase. An early phase with a separate 

focus on string vibrations and heat law through solid 

bodies. A stimulated of great importance for 

mathematical analysis to all manner of 

mathematical, physical and technical problems 

continues. Such stimulated is a wider concept of 

functions and integration and the direct relevance of 

PDEs.

In this paper, Haar wavelet functions used to 

approximate the solutions of typical ODEs or of 

fractional-order. Haar wavelets can be written as a 

family of functions constructed from transformation 

and dilation of a single function. Haar wavelet 

transform method is powerful  numerical method to 

use it in solving DEs. Haar wavelet function and its 

properties are studied and used in solving of the 

DEs. The useful properties of Haar wavelet 

transform are studied in solving the DEs. The 

solutions of them are approximated by the 

summation of constant multiples of the Haar 

functions. The other terms of the DE usually found 

out using some properties of integrating and 

differentiating . Many researches studied Haar 

wavelets like Berwal et al. [3] studied the solution of 

DEs based on Haar operational matrix, Sahoo[23]

studied the solution of DEs using Haar wavelet 

collocation method, Shi et al. (2007) studied the 

numerical solution of DEs by using Haar wavelets, 

Chang &Piau.[4] used Haar wavelet matrices 

designation in numerical solution of ODEs, Chen [5]

used Haar wavelet approach to ODEs, Li & Hu [16]

solved the fractional Riccati DEs using Haar 

wavelet while Mechee&Senu[17] studied the 

fractional DEs of Lane-Emden type numerically by 

method of collocation. Shah & Abbas [24] used 

Haar wavelet operational matrix method for the 

numerical solution of fractional order DEs, 

Saeed&urRehman[21] used Haar wavelet-quasi 

linearization technique for fractional nonlinear DEs 

and Lepik[14] applied Haar wavelet transform to 

solving IEs and DEs. Weilbeer[29] introduced 

efficient numerical methods for fractional DEs and 

their analytical background. Haar wavelet 

operational matrix and its

application for the approximated solution of 

fractional Bagley Torvik equation has been used by 

Ray [19], while Shiralashetti

et al. [26] used Haar wavelet collocation method for 

the numerical solution of singular initial value 

problems. Kilicman & Al Zhour [13] introduced 

Kronecker operational matrices for fractional 

calculus and some applications, Hosseinpour &

Nazemi [10] solved fractional optimal control 

problems with fixed or free final states by Haar 

wavelet collocation method, Hsiao [11] constructed 

Haar wavelet direct method for solving variational 

problems, Hariharan et al. [8] used Haar wavelet 

method for solving Fisher‟s equation, while Aziz & 

Amin [2] introduced numerical solution of a class of 

DDEs and DPDEs via Haar wavelet. Recently, we 

have studied implementation of different tested

problems DEs which are used as mathematical 

models in many physically applied science and 

important fields. The approximated solutions of DEs 

have been derived using Haar wavelet and B-spline 

basis which shows to be more suitable to 

approximate the solutions of DE.

2 Preliminary

2.1 Haar Wavelet Functions

Haar functions have been used since 1910, when

they were introduced by Hungarian mathematician

(Haar (1910)). The orthogonal set of Haar function 

is defined as square waves with value of �� in some 

interval and zero elsewhere. Then, �����  �  �

during the whole interval � � � � �. The second 

curve ����� is the fundamental square wave

function which also spans the whole interval [0;1]. 
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All the other subsequent curve are generated from 

����� with two operation translation and dilation,

����� is obtained from ����� with dilation, i.e., 

����� is compressed from the whole interval [0;1] to 

half interval ���
�

�
- to generate ����� , ����� is the 

same as ����� but shifted to the right direction 

by 
�

�
. Similarly, ����� is compressed from the half 

interval to a quarter interval to generate ����� . The 

function ����� is translated to the right by 
�

�
, 

�

�
, 

�

�
, 

to generate ����� , ����� and ����� respectively. 

In general, we have the following:

����� � ������ �
�

��
�,where � � �� � �� � � � , 

� � � � �� .                                      (1)

This orthogonal basis is a reminiscent of the 

Walsh basis, in which each Walsh function contains 

many wavelets to fill the interval [0,1] completely, 

and to form a global basis. While each Haar function 

contains just one wavelet during some subinterval of 

time, and remains zero elsewhere the Haar set form 

a local basis. All the Haar wavelets are orthogonal to 

each other:

� ��

�

�

���������� � ������ � �
���� � � � � ����

�  �            � � �
���

However, the functions give a very good transform 

basis. To obtain a good time resolution for high 

frequency transients and good frequency resolution 

for low frequency components, Marled (1982) first 

introduced the idea of wavelets as a family of 

functions constructed from translations and dilations 

of a single function called mother wavelet and 

defined by

������� �
�

����
� �

� � �

�
*  � � � � � � � �    ���

where is scaling parameter measures degree of 

compression and b is the translation parameter 

determines time location of wavelet.

Definition 2.1. (Haar functions )[13]

The Haar wavelet functions defined as follows on 

[0, ].

����� �
�

√�
      �   � � � � �                                  ���

����� �
�

√�

{
�
�

�
��� � � � �

�

�

���   
�

�
 � � � � 

�                 � �� �

            ���

����� �
�

√�

{
�
�

�
�

����
� � �

��
� � �

� �
�
�

��
�

���� �   
� �

�
�

��
� � � �

�

��
� 

�                                   � �� �

���

For � � ������ � � � � �� � � ��and � � �� � � �

�.

We say that ����� is mother function and

����� � �
�

������� � ��                                     ���

For � � ������ � � � � � 

Note that:

������� ������ � ∫ ������ �������
�

�
(8)

                            � 8

�

�
   � � � �

� �         � � �
(9)

To approximate the function ���� using Haar 

functions consider

���� � � ����

���

���

��� 

� �����������
�

�

� � �� � �����
�

�

��

���

���

������       ���� 

� �� � ��
�������                                          ����

�

�

Where

�� �
∫ ���� �������

�

�

∫ ��
������  

�

�

 

�
�

�
� �����������

�

�

          

2.2 Spline Functions

The spline functions are used in applications of 

numerical analysis due to they  have a wide class of 

smoothness. One of these applications is data 

interpolation. The data structure may be either one-

dimensional or multi-dimensional. In the 

interpolation, spline functions  are normally 

determined as the minimizers of suitable measures 

of roughness subject to the interpolation constraints. 

Smoothness splines may be show as generalizations 

of interpolation splines where the functions are

determined to minimize a weighted linear 

combination of the average squared approximation 

error over observed data. 
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The spline functions are constructed to be finite 

dimensional in the applications. Here, we have focus 

on one-dimensional, polynomial B-splines and use 

the term B-spline in this restricted sense. The base

���� � � ������ ������ � � ������

is called B- spline base of order n if the basis 

functions satisfy ����� � ����� � � ���� � �

���� � � �

First of all, we will partition [0,1] by choosing a 

positive integer and defining � �
�

���
.This 

produces the equally-spaced nodes �� �  ��, for each 

� � ���� � � � �  �. Then, we have defined the basis 

functions����������
���on the interval [0,1].

2.2.1 Linear Spline

The simplest spline is a piecewise polynomial 

function, with each polynomial having a single 

variable .The spline S takes values from an interval 

[ , ] and maps them to � where � �  ��� �- �

� Since S is piecewise defined, choose k 

subintervals to partition [ , ]. The simplest choice 

of spline functions basis involves piecewise-linear 

polynomials. The first step is to form a partition of 

[0,1] by choosing points ��� ��� � � ��� Let �� �

���� � ��,for each � � ���� � � �.We have defined

the basis functions � ������ ������ � � ������.

Linear spline is linear polynomial ( ) which satisfy 

( )� ��� � � �To construct linear spline base in 

which satisfy the boundary conditions  ����� �

�����for � ���� � � � �We have constructed the 

following component linear spline functions:

����� �

{
��
�

��
�

�   �                                  � � � � ���� 

�

����

�� � ����� � ���� � � � ��

�

��

����� � ��  � �� � � � ����

� � ���� � � � ��

����

for each  � � ���� � � � ��We can prove that the 

functions are orthogonal because ����� ���

   ��
���� are nonzero only on ������ ����� such 

that  ���������� � � and ��
������

����=0 if � �

�� � � �� � � ��Consequence ����� � �� � � �.

2.2.2 Quadratic B-Spline

Quadratic B-spline base is quadratic B-Spline 

polynomials ( ) which satisfy ( ) � ��
�� � � �To 

construct quadratic spline base in which satisfy the 

boundary conditions ����� � ����� for i=1,2,… n 

We have constructed the following component 

quadratic spline functions:

����� � �

� � ���� � ��� �    ������ ��-

��                    ���� ����-                   ����

����� � ����        ������ ����-

�         �� ��
Where � � ����� � ��� � ������ � ���

2.2.3 Cubic B-Spline

Many researchers used B-cubic spline in numerical 

analysis. We have defined B cubic spline base as

follows:

����

�
�

�

{
�
�

�
�

��        � � ��
�� � ��� �   � � � � � ��

�� � ��� � ��� � ���� �� � � � �

�� � ��� � ��� � ���� � � � � �

�� � ����         � � � � �
��                   � � �

         ����

Consequence ���� � ��
����� ��� To construct cubic 

spline base in which satisfy the boundary 

conditions����� � ����� for � � ���� � � �� We have 

constructed the following component cubic spline 

functions on the interval ������ ����- as follows [1]:

�����

�
�

�

{
�
�
�
�
�

�
�
�
�
� � .

�

�
/ � �� �

� � �

�
* �        � � �

� �
� � �

�
* � � �

� � �

�
* �        � � �

� �
� � ��

�
* �      � �   � � �

� �
� � ��

�
* � � 4

� � �� � ���

�
5 �        � � �

� �
� � �� � ���

�
* � �� �

� � �� � � � �

�
* �        � � � � �

 ����

2.3 Fractional Derivatives

The fractional integrals have been defined by many 

researches as follows:

The left hand Riemann-Liouville fractional 

derivatives of order � � ��  � � � (N is natural 

numbers set), is given by:

��
� ���� �

�

��� � ��

��

���
�

����

�� � �������
�� ����

�

�

2.3.1 Operational Matrix of the Fractional-Order 

Integration of the Haar Wavelet

Shiralashetti & Deshi [26] had introduced the Haar 

wavelet operational matrix ���  of integration of the

fractional order is given by
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����� �

{
��
�

��
� ��� � � �

�

�
�
� � ���

�
   �

��� � � �
� � ���

�
�
� � �

�
   �

��� � � �
� � �

�
� �   �

��                     �� �

                   ���� 

Where

����� �
�

��� � ��
�� �

�

�
��

����� �
�

��� � ��
4�� �

�

�
*

�

� � �� �
� � ���

�
*

�

5

����� �
�

��� � ��
��� �

�

�
*

�

� � �� �
� � ���

�
*

�

� �� �
� � �

�
*

�

�

2.4 Operational Matrix of the Fractional-Order 

Integration of the B-Spline Bas

2.4.1 Linear Spline

We have introduced the linear B-spline operational 

matrix FSa of integration of the fractional order as 

follows:

��
�

�
��� �

�

��� � ��

{
��
�

��
�

��   � � � � ����

�

����

�� � ��������� ���� � � � ��

�

����

�� � �������� �
�

��

������ � ���� � �� � ������� �� � � � ����

��   ���� � � � �

����

2.4.2 Quadratic B-Spline

We have introduced the quadratic B-spline 

operational matrix ��� of integration of the 

fractionalorder as follows:

��
����

�
�

��� � ��

{
�

�
��� � ������                                                              ����-

��� � ����� � ��� � ������                                ����-

��� � ����� � ��� � ����� � ��� � ������    ����-
��                                                                                   �� �

���� 

2.4.3 Cubic B-Spline
We have introduced the cubic B-spline operational 

matrix FSa of integration of the fractional order as 

follows:

��
���� �

�

��� � ��

{
�
�
�
�

�
�
�
�

��                                                             � � ��
�

�
����           � � � � � ��

�

�
���� � ��� � ����� �                               � � � � � �

�

�
���� � ��� � ����� � ��� � ������    � � � � �

�

�
���� � ��� � ����� � ��� � ����� � ��� � ������    � � � � �

��                                                                                   � � �

���� 

3 Analysis of Collection Method[1]
Define the collocation points �� �  � � ��for 

� �  ������ � � � discretize the functions: 

���� � ������� ������ ������ � � � � ������ 

Suppose

���� � � �������

�

���

Put the approximation of ( ) at the point ��in the 

DE, we get the function coefficient 

matrix �������=������ and  ����
� ��� �  ��

����� The 

matrix of coefficients has the dimension � . Any 

function ( ) which is square integrable in the 

interval (0,1) can be expressed as an infinite sum of 

Haar wavelet. The above series terminates at finite 

terms if ( ) is piecewise constant or can be 

approximated as piecewise constant during each 

subinterval [1].

3.1 The Quadratic B-Spline Base

Consider the quadratic B-spline Base

���� � ������� ������ ������ � � � � ������ 

Suppose   ���� � ∑ ��������
��� The general ODE of 

first-order has the following form:

������ ��� � ��������� � �����   � � � � �� ����

subject to the initial condition is (0) = .

Problem 3.1

����� � ���� � ������ � �������     � � � � ��

subject to the initial condition is ���� � �� The 

coefficients are����� � ����� � �  and  ���� �

������ � ������ Consider the quadratic B-spline 

base, Then, The matrix of coefficients has the 

following formula:

��� � ��
����� � ������
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And  �� � ��� �� � ��� �� for  �� � � ���� � � �� By 

solving the system of coefficients = we will 

obtain the coefficients of approximation where 

c=[.1,.2,-.1,.001,4].

3.2 The Haar Wavelet Base

We introduce the Haar wavelet technique for 

solving general linear first-order ODEs. 

3.2.1 First-Order Linear First-Order ODEs

Consider the following general linear first-order 

ODE:

����� � �������� � ����� � � � � �� ���� � �� (23) 

���� � ��                                                                (24) 

Substituting = in Equation (23) which reduces to

����� � ����������� � ������� � � � �

�� ���� � �� (25)

���� � ��                                                                (26) 

We assume that ����� � ∑ ��������
��� (27)

where �� are Haar coefficients to be determined. 

Integrating Equation (27) with respect to , we get 

the following

���� � � � ∑ ����������
��� (28)      

Substituting Equations (27) and (28) in Equation 

(25), we get the following system of equation:

∑ ��������
��� � ������� � ∑ ���������� � ������

���

(29)

Put � �  �� for � � ���� � �� in Equation (29), we 

get linear system in which the matrix of coefficients 

has the following formula:

��� � �� � ������������� and   �� � ������

for �� � � ���� � � By solving the linear system of 

coefficients �� �  � we obtain the coefficients of 

approximated solution.

3.3 Fractional Differential equations with Haar 

Base

We will introduce the Haar wavelet technique for 

solving FrDEs

Problem 3.2. Consider the general fractional-order 

linear DE

�� ��� � ���� � �������� � ����

� � � � ��  � � � � � � �                                 ����

subject to initial conditions ����� � �� for  

� � ������ � � � �-1 where ( ), ( ) and ( ) are given 

functions , ��
� are arbitrary constants and is a 

parameter describing the order of the fractional 

derivative. The general response expression contains 

a parameter describing the order of the fractional 

derivative that can be varied to obtain various 

responses. Substituting � � ��  in Equation (27) 

which reduces to

������ � ������ � ����������� � ������

� � � � ��  � � � � � � �                                 ����

����� � ��

We assume that ������ � ∑ ��������
��� (32)      

If � �
�

�
  �integrating Equation (28) once, we get

���� � �� � ∑ �����

�
��

����
��� (33)      

Substituting Equations (32) and (33) in Equation 

(31), we get

� �������

�

���

� ����� � ����� :�� � � �����
�

��
���

�

���

  ;

� �����

If � �
�

�
  �integrating Equation (28) once, we get

�
�

���� � �� � ∑ �����

�
��

����
��� (34)     

And

���� � �� � ��� � ∑ �����

�
��

����
��� (35)      

Substituting Equations (32) and (35) in Equation 

(31), we get

∑ ��������
��� � ����� � ����� ��� � ��� �

∑ �����

�
��

����
���   * � ����� (36)

Put  � � �� for� � ���� � � �� in Equation (35) in 

case � �
�

�
 �or in Equation (35) in case � �

�

�
  �we 

get the linear system in which the matrix of 

coefficients has the following formula:

��� � ��
����� � ���������������

and

�� � ����� � ������ � ��������

for �� � � ���� � � �� By solving the linear system of 

coefficients, we obtain the coefficients of 

approximated solution ����of Equation (31).

3.4 Fractional Differential equations with B-

Spline Base

We will introduce the B-spline technique for solving 

FrDE (31). Consider the quadratic B-spline base

���� � ������� ������ ������ � � � � ������

Suppose   ���� � ∑ ��������
���

We assume that ������ � ∑ ��������
��� (37)      
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If � �
�

�
  �integrating Equation (37) once, we get

���� � �� � ∑ �����

�
��

����
��� (38)      

Substituting Equations (37) and (38) in Equation 

(31), we get

� �������

�

���

� ����� � ����� :�� � � �����
�

��
���

�

���

  ;

� �����

If � �
�

�
  �integrating Equation (31) once, we get

���� � �� � ��� � ∑ �����

�
��

����
��� (39)      

Substituting Equations (32) and (39) in Equation 

(31), we get

∑ ��������
��� � ����� � ����� ��� � ��� �

∑ �����

�
��

����
���   * � ����� (36)

Put  � � �� for� � ���� � � �� in Equation (39) in 

case � �
�

�
 �or in Equation (35) in case � �

�

�
  �we 

get the linear system in which the matrix of 

coefficients has the following formula:

��� � ��
����� � ���������������

and

�� � ����� � ������ � ��������

for �� � � ���� � � �� By solving the linear system of 

coefficients, we obtain the coefficients of 

approximated solution ����of Equation (31).

4 Lane-Emden Fractional Differential Equation

We generalize the definition of Lane- Emden 

equations up to fractional order as following:

�� ���� �
�

����
�� ���� � ���� �� � ����

� � � � �� � � �� (40)

with the initial condition ����  �  �� �����  �  �

where � � � �  �� � � � �  � and ; are 

constants

and ���� �� is a continuous real-valued function and 

���� ��  �  ����-� The theory of singular boundary 

value problems has become an important area of 

investigation in the past three decades. One of the 

equations describing this type is the Lane-Emden 

equation. Lane-Emden type equations, first 

published by Homer Lane (1870), and further 

explored in detail by Emden [6], represents such 

phenomena and having significant applications, is a 

second-order ODE with an arbitrary index, known 

as the polytropic index, involved in one of its terms. 

The Lane-Emden equation describes a variety of 

phenomena in physics and astrophysics. 

Mechee&Senu[18] imposed the Lane-Emden DE of 

fractional order and the approximate solution is 

obtained by employing the method of power series 

and a numerical solution is established by the least 

squares method

for these equations. Mechee&Senu[17] approximate 

the solution of DE by employing the method of 

power series and the numerical solution is 

established by collection method.

5 Analysis of the Method of Solution Lane-

Emden of Fractional Order

Berwal et al. [3] studied the solution of DEs based 

on Haar operational matrix, Sahoo[23]

studied the solution of DEs using Haar wavelet 

collocation method, Shi et al. [25] studied the

10numerical solution of DEs by using Haar 

wavelets, Chen [5] used Haar wavelet approach 

toODEs, Li & Hu [16] solved the fractional Riccati 

DEs using Haar wavelet while Saeedi et al. [22]

introduced an operational Haar wavelet method for 

solving fractional Volterra integral

equations, Lepik[15] solved fractional integral 

equations by the Haar wavelet method, Saeed

&Rehman[20] used Haar wavelet-quasi linearization 

technique for fractional nonlinear DEs,Lepik[15]

solved the fractional integral equations by the Haar 

wavelet method, Wang et al. [28] used Haar wavelet 

method for solving fractional PDEs numerically. In 

Equation (40), consider >b, ���� �� �
�

����  ���� and 

���� � � However, ������ � ����� �

∑ ��������
��� and

, �� ���� � ������������ � �� ���

� ��������� � �����

���� � ����� ����� � ����

                       � ��� ���� � �

Hence,

����� �
�

����
��������� � �� ��� � ������� � �

� �����

If we consider � �
�

�
and  β �

� 

�
we solve the system 

of equations to obtainthe coefficients 

���� ��� ��� � � ����
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6 Comparison Study Using Numerical Collection 

Method

Collocation method for solving DEs is one of the 

most powerful approximated methods. This

method has its basis upon approximate the solution 

of FrDEs by a series of complete sequence of 

functions, a sequence of linearly independent 

functions which has no non-zero function 

perpendicular to this sequence of functions. In 

general, ( ) is approximated by Mechee&Senu [17]

���� � ∑ ��������
��� (41)  

where ��for � �  ������ � � � are an arbitrary 

constants to be evaluated and ��for � �

 ������ � � �aregiven set of functions. Therefore, the 

problem in Equation (40) of evaluating ( ) is 

approximated by (42) then, is reduced to the 

problem of evaluating the coefficients for . � �

 ������ � � � Let ���� ��� � � ���is a partition to interval 

[0,1] and ��= and� �
�

�
and  �  ������ � � � See 

the comparison of absolute errors of the problem 

using numerical collection method with polynomial 

basis and Haar wavelet basis.

7 Discussion and Conclusion

The numerical solutions of ordinary differential 

equations of fractional order using Haar wavelet

and B-spline bases have been studied. Haar wavelet 

technique is used to approximate the solution of the 

differential equations. The algorithm of collection 

method is updated for using the two basis. An 

application of Lane-Emden has been studied 

numerically. The numerical results have clearly 

shown the advantage and the efficiency of the 

modified method in terms of accuracy and 

computational time.
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ا����د�ت ا������ٌ� ا���ورٌ� �� �ط�ٌ��ت�ى���ث ��ر ن�م 

غ��ن ��د ا��ٌر ا���ٌ�ري      ا����ر ��ٌ� ��ران دي���د ���ب ��ً       �

����� ا��و��،  ��ٌ� ��وم ا����وب وا�رٌ��ٌ�ت ، ا�رٌ��ٌ�ت��م 

ا����خ�ص :

�����د�ت ا������ٌ� ا���ٌ�دٌ� ذات ا�ر�ب ا���رٌ� ����خدام أ��س �وٌ��ت ��ر �د�ت �� �ذا ا���ث ا���ول ا��ددٌ� 

وأ��س �� ���ٌن. طورت طرٌ�� ا��شد ����خدام ا����ٌن. �م �ل ��ض ���ئل ا��ٌم ا���دائٌ� ���ٌن ���ءة �وٌ��ت 

و�وح  ���ءة و�زاٌ� ا�طرٌ�� ��ر وأ��س �� ���ٌن. �د�ت ���د�� �ن ا��ن ودرس ����. أظ�رت ا����ئ� ا��ددٌ� و�

ا���ورة ���د�� وا�و�ت ا�������.
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