Math Page 27 - 35

Raad .A/Karim .F

On B^{*}c– open set and its properties

Raad Aziz Hussan Al – Abdulla

Karim Fadhil Al – Omri

Department of Mathematics College computer science and Information Technology University of AL- Qadisiyah

Recived : 17\7\2018

Revised : 26\7\2018

Accepted : 7\10\2018

Available online : 21 /10/2018

DOI: 10.29304/jqcm.2019.11.1.447

Abstract:

In this paper we introduced a new set is said B^*c - open set where we studied and identified its properties and find the relation with other sets and our concluded a new class of the function called B^*c - cont. function, B^*c - open function, B^*c - closed function.

Key words:

 $B^{*}c$ – open set, $B^{*}c$ – closed set, $B^{*}c$ – closure, $B^{*}c$ – interior, $B^{*}c$ – continuous.

Mathematics subject classification: 54xx.

1-Introduction:

The topological idea from study this set is generalization the properties and using its to prove many of the theorems. In [1]Abd El-Monsef M.E., El.Deeb S.N. Mahmoud R.A Introduced set of class β - open, β - closed which are considered as in put to study the set of class B^*c – open, B^*c – closed and we introduced the interior and the closure as property of B^*c – open set, B^*c – closed set. In [4] Najasted O (1965) and [5] Andrijecivic D (1986) introduced a study about the set α –open, α -closed, B - open with the set β - open set and through it, we introduced proof many of proposition as the set B^*c – open set with α –closed it can lead to set β - open set. In [6] Ryszard Engelking introduced the function as concept to β - continuous, B^*c – continuous, β – open function, B^*c – open function, β - closed function, B^*c - closed function and find the relation among them.

2. On B^*c – open sets **Definition (2.1) [1]**

Let X be a top. sp. Then a sub set A of X is called to be

i) a β - open set if $A \subseteq \overline{A}^o$. ii) a β - closed set if $A \supseteq \overline{A^o}^o$

The all β - open (resp. β - closed) set sub sets of a space X will be as always symbolizes that $\beta o(x)$ (resp. $\beta c(x)$).

Example (2.2):

Let $X = \{a, b, c, d\}$ with topology

 $t = \{ \emptyset, X, \{a\}, \{a, b\}, \{a, c, d\}.$ Then the clases of β - open set and β closed set are:

 $\beta o(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, c$ b, d, {a, c, d}.

 $\beta c(X) = \{\emptyset, X, \{b\}, \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{c, d\}, \{b, d\}, \{c, d$ c, d}.

Remark (2.3):

Let X be a top. Sp. If $\overline{A} = X$, then A is β open set.

Remark (2.4):

If A β - open set in X, then A^C is β - closed set in X.

Proposition (2.5):

Let X be a top. Sp. Then:

i) Every open set is β - open set in X.

ii) Every closed set is β - closed set in X. Proof :

i) Let A be open set, then $A = A^{\circ}$. Since $A \subseteq \overline{A}$, then

 $A = A^{\circ} \subseteq \overline{A}^{\circ}$, there for $A \subseteq \overline{\overline{A}^{\circ}}$, hence A is β - open set inX.

Raad .A/Karim .F

ii) Let A be closed set, then A^{C} open set, then $A^{C} \beta$ open set in X by (i), then A β - closed set in X. The converse of above proposition is not true in

general.

Example (2.6):

Let $X = \{1, 2, 3\}, t = \{\emptyset, X, \{1\}, \{2,3\}\}.$ $\beta o(X) = \{ \emptyset, X, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\} \}.$ $\beta C(X) = \beta o(X).$

Note that $A = \{3\}$ is β - open (resp. β closed) set, but not open (resp. closed) set.

Theorem (2.7):

Let X be atop. Sp. Then the following statement are holds:

i) The union family of β - open sets is β - open set.

ii) The intersection family of β - closed sets is β closed set.

Proof:

i) Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a family of β -open set in

X, then
$$A_{\alpha} \subseteq \overline{A_{\alpha}}^{o}$$
, then

$$\bigcup_{\alpha \in \Lambda} A_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} \overline{\overline{A}_{\alpha}} = \overline{\bigcup_{\alpha \in \Lambda} \overline{A}_{\alpha}} \subseteq \overline{\left[\bigcup_{\alpha \in \Lambda} \overline{\overline{A}_{\alpha}}\right]^{o}} = \overline{\bigcup_{\alpha \in \Lambda} \overline{A}_{\alpha}}$$

, hence
$$\bigcup_{\alpha \in \Lambda} A_{\alpha} \text{ is } \beta \text{-open set }.$$

ii) Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a family of β -closed set

in X, then $\{A_{\alpha}^{c}: \alpha \in \Lambda\}$ be β -open set in X, then

 $\{\bigcup_{\alpha \in \Lambda} A^{c}_{\alpha} : \alpha \in \Lambda \} \beta$ - open sets .But

$$\left[\bigcap_{\alpha\in\Lambda}A_{\alpha}\right]^{c} = \bigcup_{\alpha\in\Lambda}A_{\alpha}^{c}, \text{ then } \left[\bigcap_{\alpha\in\Lambda}A_{\alpha}\right]^{c}_{\beta}.$$

open sets in X. There for $\prod_{\alpha \in \Lambda} A_{\alpha} \beta$ -closed set in Х.

Remark (2.8):

i) [1] the intersection of any two β - open sets is not β - open set in general.

ii) The union of any two β - closed sets is not β closed set in general.

Example (2.9): Let $X = \{1, 2, 3\}, t = \{\emptyset, X, \{1\}, \{2\}, \}$ $\{1,2\}\}$. $\beta o(X) = \{ \emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{2,3\} \}.$ $\beta c(X) = \{ \emptyset, X, \{1\}, \{2\}, \{3\}, \{1,3\}, \{2,3\} \}.$

i) Let $A = \{1,3\}, B = \{2,3\}$ are β - open sets, but $A \cap$ $B = \{3\}$ not β - open in X.

ii) Let $A = \{1\}$, $B = \{2\}$ are β - closed sets, but $A \cup B$ = $\{1,2\}$ not β - closed in X.

Proposition (2.10)

Let X be atop. Sp. Then:

i) G is an open set in X iff $\overline{G \cap \overline{A}} = \overline{G \cap A}$ for each $A \subseteq X$. [2]

Proposition (2.11)

Let X be atop. Sp. Then:

i) The intersection a β - open set and open set in X is β - open set.

ii) The union a β - closed set and closed set in X is β - closed set.

Proof:

i) Let A be a β - open set, then $A \subseteq \overline{A}^{o}$ Let B open set. Then

A
$$\cap B \subseteq (\overline{\overline{A}^{\circ}} \cap B)$$
.

$$\subseteq (\overline{\overline{A}^{\circ}} \cap B)$$
.

$$= \overline{(\overline{A}^{\circ} \cap B^{\circ})} \text{ by proposition (2.10).}$$

$$= \overline{(\overline{\overline{A} \cap B)^{\circ}}}.$$

$$\subseteq \overline{(\overline{\overline{A} \cap B)}^{\circ}} \text{ by proposition (2.10)}$$

$$= \overline{\overline{A \cap B}^{\circ}} \text{ by proposition (2.10)}$$
There fore A \cap B is β - open set in X.

ii) Let A be a β - closed set in X, then A^C β - open set in X.

Let B be closed set in X, then B^C open set in X, then by (i) we get $A^{C} \cap B^{C} \beta$ - open set in X, but $(A \cup B)^{C} = (A^{C} \cap B^{C})$, then $(A \cup B)^{C} \beta$ - open set in X, then A \cup B β - closed set in X.

Definition (2.12):

Let X be atop. Sp. and $A \subseteq X$. Then: i) A is α – open if A $\subseteq \overline{A^o}^o$ [4]. ii) A is α – closed if $\overline{A^0}^0 \subseteq A[4]$.

Definition (2.13):

Let X be atop. Sp. X and $A \subseteq X$. Then a β open set A is said a B^*c open set if $\forall x \in A \exists F_x$ closed set $\exists x \in F_x \subseteq A$. A is a B^*c - closed set if A^c is a B^*c – open set X.

The all B^*c – open (resp. B^*c – closed) set sub set of a space X will be as always symbolize B^{*}c O(X) (resp. $B^*cc(X)$).

Example (2.14):

In example (2.9). Note that closed set in X are:

Ø, X, {2,3}, {1,3}, {3}. Then

 $B^* c O(X) = \{ \emptyset, X, \{2,3\}, \{1,3\} \}$

<u>Remark (2.15):</u>

If A B^*c – open set in X, then A^C is B^*c – closed set in X.

Remark (2.16):

From definition (2.13). Note that:

i) Every B^*c – open set is β - open set.

ii) Every B^*c – closed set is β - closed set.

The converse of above Remark is not true in general.

Example (2.17):

Let $X = \{a, b, c\}, t = \{\emptyset, X, \{a\}, \{b, c\}\}.$ $\beta o(X) = \{ \emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\} \}.$ $\beta c(X) = \beta o(X)$

 $B^{*}c O (X) = \{\emptyset, X, \{a\}, \{b, c\} \}.$

 $B^*c C(X) = B^*c O(X)$. Not that $A = \{c\}$ is β - open (resp. β - closed) ser. but not B^*c – open (resp. B^*c – closed) set.

Remark (2.18):

i) The B^*c – open set and open set are in-dependent. ii) The B*c - closed set and closed set are independent.

Example (2.19):

In example (2.9) not that $B^*co(x) = \{\emptyset, X, \}$ $\{1,3\}, \{2,3\}, B^*cc(x) = \{\emptyset, X, \{1\}, \{2\}\}.$ Note that i) $A = \{2,3\} B^*c$ – open set, but not open and B = $\{1\}$ is open, but not B^*c – open. ii) $A = \{2\} B^* c$ - closed set, but not closed and B =

 $\{3\}$ is closed set, but not B^*c – closed.

Proposition (2.20):

Let X be atop. Sp. and A \subseteq X. If A α – closed. Then A β - open in X iff A B^{*}c – open. **Proof:**

Suppose that A a β -open set in X, then A \subseteq $\overline{\overline{A}^{o}}$. Let $x \in A \subseteq \overline{\overline{A}^{o}}$. Since $x \in \overline{\overline{A}^{o}}$ and $A \quad \alpha =$ closed set, then $\overline{\overline{A}^o} \subseteq A$. Thus $x \in \overline{\overline{A}^o} \subseteq A$, $\exists \overline{\overline{A}^o}$ closed set $\exists x \in \overline{A}^{\circ} \subseteq A$. Then A B^{*}c – open set. Conversely

Suppose that A B^*c – open set, then by definition (2.13), we get A β - open.

Corollary (2.21):

If A open set and α – closed, then A B^{*}c – open.

Proof:

By proposition (2.5) (i) and proposition (2.20).

Proposition (2.22):

Let X be atop. Sp. and A \subseteq X. If A α – open. Then A β - closed iff A B^{*}c – closed. **Proof:**

Let A be β - closed, then A^C β - open. Since A α – open, then $A^{C} \alpha$ – closed, then by proposition (2. 20), we get $A^{C} B^{*}c$ – open set. There fore A β closed set.

Corollary (2.23):

If A closed set and α – open, then A B^{*}c – closed.

Proof:

By proposition (2.5) (ii) and (2.22)

Proposition (2.24):

Let X be atop. Sp. X. Then

i) The union family of B^*c – open set is B^*c - open set.

ii) The intersection family B^*c – closed set is B^*c – closed set.

Proof:

i) Let { $A_{\alpha} : \alpha \in \Lambda$ } be a family of B^*c – open sets, then { $A_{\alpha} : \alpha \in \Lambda$ } is β - open sets, then $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is β - open set by lemma (2.7) (i). Let $x \in$ $\bigcup_{\alpha \in \Lambda} A_{\alpha}$, then $x \in A_{\alpha}$ for some $\alpha \in \Lambda$. Since A_{α} B c- open set $\forall \alpha \in \Lambda$, then $\exists F$ closed set in $x \ni x$ $\in F \subseteq A_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} A$. Then for $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is B^*c open set.

ii) Let { $A_{\alpha} : \alpha \in \Lambda$ } be a family of $B^{*}c$ – closed sets, then { $A_{\alpha}^{c} : \alpha \in \Lambda$ } is a family of $B^{*}c$ - open sets, then $\bigcup_{\alpha \in \Lambda} A_{\alpha}^{c}$ is $B^{*}c$ - open sets by (i), them [$\bigcup_{\alpha \in \Lambda} A_{\alpha}^{c}$] $B^{*}c$ – closed. But $\bigcap_{\alpha \in \Lambda} A_{\alpha}^{c}$]^c, then $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is $B^{*}c$ – closed in X.

Remark (2.25):

i) Not every intersection of two B^*c – open set is B^*c – open set.

ii) Not every union of two B^*c – closed set is B^*c – closed set.

Example (2.26):

In example (2.9)

 $B^*c O (X) = \{ \emptyset, X, \{2,3\}, \{1,3\} \}.$ $B^*c C (X) = \{ \emptyset, X, \{1\}, \{2\} \}.$ Not that:

i) Let $A = \{1,3\}$, $B = \{2,3\}$ are B^*c – open set, but $A \cap B = \{3\}$ not B^*c – open set in X.

ii) Let $A = \{1\}$, $B = \{2\}$ are B^*c – closed set, but $A \cup B = \{1,2\}$ not B^*c – closed set in X.

Definition (2.27):

Let A subset of top. Sp. Then A is called: i) Clopen set if A closed and open.[6] ii) β - Clopen set if A β - closed and β - open. iii) B^{*}c - Clopen set if A B^{*}c - closed and B^{*}c -

open.

Proposition (2.28):[4]

Let X be atop. Sp. and $A \subseteq X$. Then i) Every closed set is α – closed set.

ii) Every open set is α – open set.

Proposition (2.29):

Let X be atop. Sp. Then:

i) The union B^*c – open set and clopen set is B^*c – open.

ii) The intersection B^*c - closed set and clopen set is B^*c - closed.

Proof:

i) Let A B^{*}c – open set, then A^C B^{*}c- closed. Let B clopen, then B^C clopen, then B^C closed and open. Since B^C closed, then B^C β - closed. Since B^C open, then B^C α – open by proposition (2.28) (ii), then B^C B^{*}c – closed, then A^C \cap B^C B^{*}c – closed by proposition (2.22) (ii), then (A^C \cap B^C)^C B^{*}c – open. But $A \cup B = (A^C \cap B^C)^C$, there for $A \cup B B^*c$ – open set in X.

ii) Let A B^{*}c – closed, then A^C B^{*}c – open. Let B clopen, then B^C clopen, then by (i), we get A^C \cup B^C B^{*}c – open, then (A^C \cup B^C)^C B^{*}c – closed. But A \cap B = (A^C \cup B^C)^C, then A \cap B B^{*}c – closed.

Proposition (2.30):

Let X be atop. Sp. Then:

i) The intersection B^{*}c – open set and clopen is B^{*}c – open set.

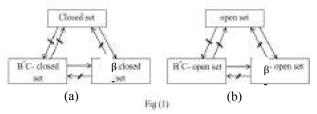
ii) The union B^*c - closed set and clopen set is B^*c -closed.

Proof:

i) Let A be B^*c – open set and B clopen, then B open and closed, then A β - open set and B open, then A \cap B is β - open set by (2.11)(i). Let $x \in A \cap$ B, then $x \in A$ and $x \in B$, then $\exists F$ closed set in $x \ni x$ $\in F \subseteq A$. Since $F \cap B$ is closed set in x, then $x \in F$ $\cap B \subseteq A \cap B$, hence $A \cap B B^*c$ – open.

ii) Let A B^{*}c – closed set, then A^C B^{*}c- open. Let B clopen in X, then B^C clopen, then by (i) we get A^C \cap B^C B^{*}c- open in X, then (A^C \cup B^C)^C B^{*}c – closed. But A \cup B = (A^C \cap B^C)^C, then A \cup B B^{*}c – closed in X.

The following diagram shows the relation among types of open, closed sets.



Definition (2.31):

 $\label{eq:Let F: X \to Y be a function and A \subseteq X.}$ Then:

i) F is called continuous function [6]. If ∀A open subset of Y, then F⁻¹ (A) is open subset of X.
ii) F is called β- continuous function. If ∀A open

subset of Y, then $F^{-1}(A)$ is β - open subset of X.[1] iii) F is called B^{*}c-continuous function. If $\forall A$ open subset of Y, then $F^{-1}(A)$ is B^{*}c - open subset of X.

Proposition (2.32):

Let $F: X \to Y$ be a function and $A \subseteq X$. Then:

i) Every cont. function is a β - cont.

ii) Every B^*c -cont. function is a β - cont.

Proof:

Let $F: X \rightarrow Y$ be a function

i) Let F cont. and Let A be open in Y. Since F is cont. function , then F^{-1} (A) is open in X, then F^{-1} (A) is a β - open in X. Hence F is a β - cont.

ii) Let F B^{*}c -cont. and Let A be open in Y. Since F B^{*}c -cont. function then F⁻¹ (A) B^{*}c – open in X, then F⁻¹ (A) β - open in X, hence F is a β - cont.

The converse of above proposition is not true in general.

Example (2.33)

Let F: X \rightarrow Y be a function and let X = {1, 2, 3} t = ((0, X, (1), (2, 2)))

 $t = \{\emptyset, X, \{1\}, \{2,3\}\}.$ $\beta o(X) = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}.$ $B^{*}c o (X) = \{\emptyset, X, \{1\}, \{2,3\}\}.$ $Y = \{a, b, c\}, t = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}.$ $\beta o(Y) = \{\emptyset, Y, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}.$ $B^{*}c o (Y) = \{\emptyset, Y, \{a, c\}, \{b, c\}\}.$ Define F(1) = a, F(2) = b, F(3) = C.Note that F is β - cont. But i) F not cont. Since A = \{b\} open in Y, but F^{-1}(A) not open in X. ii) F not B^{*}c - cont. Since A = \{b\} open in Y, but F^{-1}(A) = 0

 $^{1}(A)$ not B^{*}c- open in X.

Remark (2.34):

The continuous function and B^{*}ccontinuous are independent in general.

Example (2.35):

Let F: X \rightarrow Y be a function Let X = {1, 2, 3}, t = {Ø, X, {1}, {2}, {1,2}, {1,3}}, $\beta_0(x) = t.$ B^{*}co (x) = {Ø, X, {2}, {1,3}}. Y = {a, b, c}, t = {Ø, Y, {a}, {b}, {a, b}}. $\beta_0(Y) = {Ø, Y, {a}, {b}, {a, b}, {a, c}, {b, c}}.$ B^{*}co (Y) = {Ø, Y, {a, c}, {b, c}}. Define F(1) = a, F(2) = b, F(3) = C.

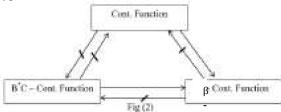
Note that F is cont. function, but not B^*c - cont. function. Since $A=\{a\}$ open in Y, but $F^{-1}(A)$ not B^*c - open in X.

Example (2.36)

Let F: X \rightarrow Y be a function and Let X = {1, 2, 3}. t = { \emptyset , X, {1}, {3}, {1,3}}, $\beta o(X) = {\emptyset, X, {1}, {3}, {1,2}, {1,3}, {2,3}}.$ B^{*} c o (X) = { \emptyset , X, {1,2}, {2,3} }. Y = {a, b, c}, f = { \emptyset , Y, {a, b} }.

Define F(1) = a, F(2) = b, F(3) = C. Note that F is B^{*}c - cont. Since A = {a, b} is open in Y, but F⁻¹(A) not open in X.

The following diagram shows the relation among type of the continuous function.



<u>3- The Closure:</u> Definition (3.1): [1]

The intersection of all β - closed set of atop. Sp. X which is containing A is called a β - closure of A and denoted by \overline{A}^{β} .

i. $e \overline{A}^{\beta} = \bigcap \{ F: A \subseteq F, F \text{ is } \beta \text{- closed in } X \}.$

Definition (3.2):

The intersection of all B^*c - closed set of atop. Sp. X which is containing A is said a B^*c - closure of A and denoted by \overline{A}^{B^*C} .

i. $e \overline{A}^{B^*C} = \bigcap \{ F: A \subseteq F, F \text{ is } B^*c \text{ - closed in } X \}.$

Lemma (3.3):

Let X be atop. Sp. and $A \subseteq X$. Then

i) $X \in \overline{A}^{\beta}$ iff $\forall \beta$ - open set G and $x \in G \ni G \cap A \neq \emptyset$ [1].

ii) $X \in \overline{A}^{B^*C}$ iff $\forall B^*c$ - open set G and $x \in G \ni G \cap A \neq \emptyset$.

Proof:

ii) Let $x \notin \overline{A}^{B^*C}$, then $x \notin \cap F \ni F$ is B^*c – closed set and $A \subseteq F$, then $x \in [\cap F]^C \ni [\cap F]^C$ is B^*c – open containing x. Hence

 $[\cap F]^{C} \cap \overline{A} \subseteq [\cap F]^{C} \cap [\cap F] = \emptyset.$

Conversely

Suppose that $\exists a B^{*}c - open set G \ni x \in G and A \cap G = \emptyset$, then $A \subseteq G^{c} \ni G^{c}$ is $B^{*}c - closed set$, hence $x \notin \overline{A}^{B^{*}C}$

Remark (3.4):

Let X be a topological space and A \subseteq X. Then

i) \overline{A}^{β} is β - closed set and \overline{A}^{B^*C} is B^*c – closed set.

ii) \overline{A}^{β} (resp. \overline{A}^{B^*C}) is the smallest β - closed (resp. B^*c - closed) set containing A.

iii) $A \subseteq \overline{A}^{\beta}$ also $A \subseteq \overline{A}^{B^*C}$. $\forall A \subseteq X$.

Proof: Clear.

Proposition (3.5):

Let X be a top. Sp. X and $A \subseteq X$. Then:

i) A β - closed set iff A = \overline{A}^{β} [1].

ii) A B^{*}c – closed set iff A = \overline{A}^{B^*C} .

<u>Proof:</u>

ii) Let A be B^*c – closed set

Let $X \notin A$, then $X \in A^{C}$, then $\exists B^{*}c - open$ set $A^{C} \ni A^{C} \cap A = \emptyset$, then $X \notin \overline{A}^{B^{*}C}$, then $\overline{A}^{B^{*}C} \subseteq$ A. Since $A \subseteq \overline{A}^{B^{*}C}$ by Remark (3.4) (iii). Hence $A = \overline{A}^{B^{*}C}$.

Conversely

Let $A = \overline{A}^{B^*C}$. Since $\overline{A}^{B^*C} B^*c$ – closed set in X and $A = \overline{A}^{B^*C}$, then $A B^*c$ – closed set.

Proposition (3.6):

Let X be a top. Sp. X and $A \subseteq X$. Then:

i) $\overline{\overline{A}^{\beta}}^{\beta} = \overline{A}^{\beta}$ [1].

ii) If $A \subseteq B$, then $\overline{A}^{\beta} \subseteq \overline{B}^{\beta}$.

Proof:

ii) Let $A \subseteq B$. Since $B \subseteq \overline{B}^{\beta}$ by Remark (3.4) (iii), then $A \subseteq \overline{B}^{\beta}$.

Since \overline{B}^{β} is β - closed in X and \overline{A}^{β} is the smallest β - closed set containing A. There for $\overline{A}^{\beta} \subseteq \overline{B}^{\beta}$.

Proposition (3.7):

Let \overline{X} be a top. Sp. X and $A \subseteq X$. Then

i) $\overline{\overline{A}^{B^*c}}^{B^*c} = \overline{A}^{B^*C}$.

ii) If $A \subseteq B$, then $\overline{A}^{B^*C} \subseteq \overline{B}^{B^*C}$.

Proof:

i) Since \overline{A}^{B^*C} is B^*c – closed, then by proposition (3.5) (ii), we get the result.

ii) Let $A \subseteq B$. Since $B \subseteq \overline{B}^{\beta}$ by Remark (3.4) (iii), then $A \subseteq \overline{B}^{B^*C}$.

Since \overline{B}^{B^*C} is B^*c – closed and \overline{A}^{B^*C} is the smallest B^*c – closed containing A. Then fore $\overline{A}^{B^*C} \subseteq \overline{B}^{B^*C}$.

Proposition (3.8)

Let $F: X \rightarrow Y$ be function. Then the following statements are equivalent.

i) F is β - continuous.

ii) $F^{-1}(B)$ is β - closed in X \forall B is closed set in Y. iii) $F(\overline{A}^{\beta}) \subseteq \overline{F(A)} \forall A \subseteq X.$

iv) $\overline{F^{-1}(B)}^{\beta} \subseteq F^{-1}(\overline{B}) \forall B \subseteq Y.$ Proof: - (ii)

(i) —

Let B be closed set in Y, then Y-B is open set in Y, then F^{-1} (Y–B) is a β - open in X by (i), then $X - F^{-1}(B)$ is a β - open in X. Then $F^{-1}(B)$ is a β - closed in X.

(ii) — — (iii)

Let $A \subseteq X$, then $F(A) \subseteq Y$, then $\overline{F(A)}$ is closed set in Y, then $F^{-1}(\overline{F(A)})$ is a β - closed set in X by (ii). Since $F(A) \subseteq \overline{F(A)}$, Then $A \subseteq F^{-1}(\overline{F(A)})$, then $\overline{A}^{\beta} \subseteq F^{-1}(\overline{F(A)})$, there fore $F(\overline{A}^{\beta}) \subseteq \overline{F(A)}$. (iii) _____ (iv)

Let $B \subseteq Y$, then $F^{-1}(B) \subseteq X$, then $F[\overline{F^{-1}(B)}]^{\beta} \subseteq F[\overline{F^{-1}(B)}]$ by (iii), then F $\overline{[F^{-1}(B)]}^{\overline{\beta}} \subseteq \overline{(B)}, \text{ then } \overline{F^{-1}(B)}^{\overline{\beta}} \subseteq F^{-1}(\overline{B}).$ (iv) _____ (i)

Let B be open set in Y, then Y - B is closed set in Y. Then

 $\overline{F^{-1}(Y-B)}^{\beta} \subseteq F^{-1}(\overline{Y-B}) = F^{-1}(Y-B).$ Since F^{-1} $(Y - B) = X - F^{-1}(B)$ is a β - closed set in X, then F^{-1} (B) is a β - open set in X.

There fore F is a β - continuous.

Proposition (3.9)

Let $F: X \rightarrow Y$ be a function. Then the following statements are equivalent.

i) F is BC- continuous.

- (ii)

ii) $F^{-1}(B)$ is B^*c - closed in X \forall B is closed set in Y. iii) $F(\overline{A}^{B^*C}) \subseteq \overline{F(A)} \forall A \subseteq X.$

iv) $\overline{F^{-1}(B)}^{B^*c} \subseteq F^{-1}(\overline{B}) \forall B \subseteq Y.$

Proof: (i) _____

Let B be closed set in Y, then Y-B is open set in Y, then $F^{-1}(Y-B)$ is a B^*c - open in X by (i), then $X - F^{-1}(B)$ is a B^*c - open in X.

Hence $F^{-1}(B)$ is a B^*c - closed in X. (ii) — — (iii)

Let $A \subseteq X$, then $F(A) \subseteq Y$, then $\overline{F(A)}$ is closed set in Y, then $F^{-1}(\overline{F(A)})$ is a BC- closed set in X by (ii). Since $F(A) \subseteq \overline{F(A)}$, Then $A \subseteq F^{-1}(\overline{F(A)})$, then $\overline{A^{B^*C}} \subseteq F^{-1}(\overline{F(A)})$, hence $F(\overline{A^{B^*C}}) \subseteq \overline{F(A)}$. (iii) _____ (iv) Let $B \subseteq Y$, then $F^{-1}(Y) \subseteq X$, then $\overline{F[F^{-1}\left(B\right)]}^{B^{*}c} \subseteq F[\overline{F^{-1}(B)}], \text{ then } \overline{F[F^{-1}\left(B\right)]}^{B^{*}c} \subseteq$ \overline{B} , then $\overline{F^{-1}(B)}^{B^*c} \subseteq F^{-1}(\overline{B})$. (iv) _____ (i)

Let B be open set in Y, then Y - B is closed set in Y. Then

 $\overline{\mathbf{F}^{-1} (\mathbf{Y} - \mathbf{B})}^{\mathbf{B}^* c} \subseteq \mathbf{F}^{-1} (\overline{\mathbf{Y} - \mathbf{B}}) = \mathbf{F}^{-1} (\mathbf{Y} - \mathbf{B}), \text{ then } \mathbf{F}^{-1}$ $(Y - B) = X - F^{-1}(B)$ is a BC- closed set in X. F^{-1} (B) is a BC- open set in X.

There fore F is a B^*c - continuous.

Definition (3.10):

Let F: X \rightarrow Y be function and A \subseteq X. Then:

i) F is called open (resp. closed) [6]. If \forall A open (resp. closed), subset of X, then F(A) is open (resp. closed) subset of Y.

ii) F is called β - open (resp. β - closed). If \forall A open (resp. closed), subset of X, then F(A) is β - open (resp. β - closed) subset of Y.

iii) F is called B^*c - open (resp. B^*c - closed). If $\forall A$ open (resp. closed), subset of X, then F(A) is B^*c open (resp. B^*c - closed) subset of Y.

Proposition (3.11):

Let F: X \rightarrow Y be a function and A \subseteq X. Then:

i) Every open function is β - open.

ii) Every closed function is β - closed.

iii) Every B^*c – open function is β - open.

iv) Every B^*c – closed function is β - closed.

Proof:

i) Let $F: X \rightarrow Y$ be a function.

Suppose that F open function and let A open in X. Since F open, then F(A) open in Y, then F(A) β open in Y. Thus F is β - open.

ii) Similarly part (i).

iii) Suppose F is B^*c - open function and let A open in X. Since $F B^*c$ - open, then $F(A) B^*c$ - open in Y, then $F(A) \beta$ - open in Y. Thus F is β - open.

iv) Similarly part (iii).

The Converse above proposition is not true in general.

Example (3.12):

In example (2.34)

- Closed set in X are: Ø, X, {2,3}, {1}.
- Closed set in Y are: \emptyset , Y: \emptyset , X, {b, c}, {a,c}, {c}.
- $\beta c(Y) = \{ \emptyset, Y, \{b, c\}, \{a, c\}, \{c\}, \{b\}, \{a\} \}.$

 $B^{*}c(Y) = \{\emptyset, Y, \{b\}, \{a\}\}.$

Not that:

i) F β - open, but not open since A = {2, 3} open in X, but F(A) not open in Y.

ii) F β - closed, but not closed. Since A = {1} closed set in X, but F(A) not closed set in Y.

iii) F β - open, but not B^{*}c - open. Since A = {1} open in X, but F(A) not B^*c – open set in Y.

iv) F β - closed, but not B^{*}c – closed. Since A = {2, 3} is closed in X, but F(A) not B^*c – closed in Y.

Remark (3.13):

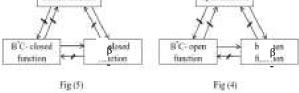
i) The open function and B^*c – open function are independent.

ii) The closed function and B^*c – open function are independent.

We can showing that with two the following examples.

Example (3.14):

i) Let $F: X \rightarrow Y$ be function and let $X = \{a, b, c\}$ $\{b, c\}\}.$ $B^{*}co(X) = \{\emptyset, X\}.$ $Y = \{1, 2, 3\}, f = \{\emptyset, Y, \{2\}, \{3\}, \{2, 3\}, \{1, 2\}\}.$ $\beta o(\mathbf{Y}) = \{ \emptyset, \mathbf{Y}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\} \}.$ $B^{*}co(Y) = \{\emptyset, Y, \{3\}, \{1, 2\}\}.$ Define F(a) = 1, F(b) = 2, F(c) = 3. ii) Let F: $X \rightarrow Y$ be a function and let $X = \{a, b, c\}$ $\{a, c\}, \{b, c\}\}.$ $B^{*}co(X) = \{\emptyset, X\}.$ $Y = \{1, 2, 3\}, t = \{\emptyset, Y, \{1\}, \{3\}, \{1, 3\}\}.$ $\beta o(Y) = \{ \emptyset, Y, \{1\}, \{3\}, \{1, 3\}, \{2, 3\} \}, B^* co(Y)$ $= \{ \emptyset, Y, \{2, 3\} \}.$ Define F(a) = 1, F(b) = 2, F(c) = 3. In example (i). Note that: 1) F β -open, but not B^{*}c – open. Since A = {b} open in X, but F(A) not B^*c – open set in Y. 2) F b^{*}-closed, but not B^{*}c-closed. Since A= $\{a\}$ closed set in X, but F(A) not B^*c -closed in Y. In example (ii). Note that: 1) F B^{*}c – open, but not open. Since A = {b, c} open in X, but F(A) not open set in Y. 2) F B^{*}c – closed, but not closed. Since A = $\{a\}$ closed in X, but F(A) not closed in Y. Closed function open function



4- The interior: **Definition (4.1):**[1]

The union of all β - open set of atop. Sp. X contained in A is called β - interior of A and denoted A^{oβ}. i.e

 $A^{o\beta} = \bigcup \{ U : U \subseteq A \text{ and } \bigcup \beta \text{- open set in } X \}.$

Definition (4.2):

The union of all B^*c - open set of atop. Sp. X contained in A is called B^*c - interior of A and denoted A^{oB^*c} .

i.e

 $A^{oB^*c} = \bigcup \{ U : U \subseteq A \text{ and } U \text{ BC- open set in } X \}.$

Proposition (4.3):

Let X be atop. Sp. and $A \subseteq X$. Then: i) $X \in A^{o\beta}$ iff $\exists G \beta$ - open in $X \ni x \in G \subseteq A$. [1] ii) $X \in A^{oB^*C}$ iff $\exists G B^*c$ -open in $X \ni x \in G \subseteq A$. **Proof:** ii) Let $X \in A^{oB^*C}$ Since $A^{oB^*C} = \bigcup \{ G : G \subseteq A, G \text{ is } B^*c \text{ - open set in} \}$ X }. Then $z \in \bigcup \{G: G \subseteq A, G \text{ is } B^*c \text{ - open set in } X\}$. Then $\exists G B^* c$ – open in $X \ni X \in G \subseteq A$. Conversely Let $X \in G \subseteq A$ and G is B^*c – open in $x \in$ $G \subseteq A$. Then $X \in U \{ G : G \subseteq A, G \text{ is } B^*c \text{ - open set in } X \}.$ There fore $X \in A^{oB^*C}$. **Remark (4.4):**

Let x be atop. Sp. and $A \subseteq X$. Then: i) $A^{o\beta}$ is β - open set and A^{oB^*C} is B^*c - open set. ii) $A^{o\beta}$ (resp. A^{oB^*C}) is the largest β - open (resp. B^*c - open) set contained A. iii) $A^{\alpha\beta} \subseteq A$ also $A \subseteq A^{\alpha B^*C}$.

Proof:

Clear.

Lemma (4.5): [1]

Let X be atop. Sp. and $A \subseteq X$. Then

i) $[A^{o\beta}]^{C} = \overline{A^{C}}^{\beta}$

ii) $[\overline{A}^{\beta}]^{C} = A^{C^{o\beta}}$

Remark (4.6):

i) $[A^{oB^*C}]^C = \overline{A^C}^{B^*C}$ ii) $[\overline{A}^{B^*C}]^C = A^{C^{oB^*C}}$

Proposition (4.7):

Let X be atop. Sp. and $A \subseteq X$. Then: i) A β - open set iff A = A^{o β}.[1] ii) i) A B^{*}c - open set iff A = A^{oB^*C} .

Proof:

ii) Let A B^{*}c – open set, then $A^{C} B^{*}c$ – closed set, then by Remark (3.4) (iii), we have $A^{C} = \overline{A^{C}}^{B^{*}C}$. Since $\overline{A^{C}}^{B^{*}C} = [A^{oB^{*}C}]^{C}$ by Remark (4.6) (ii), then $A^{C} = [A^{oB^{*}C}]^{C}$, hence $A = A^{oB^{*}C}$. Converselv Supposedly that $A = A^{oB^*C}$. Since A^{oB^*C} is B^*c – open set and $A = A^{oB^*C}$, then $B^{*}c$ – open set.

Proposition (4.8):

Let X be atop. Sp. and A, $B \subseteq X$. Then i) $[A^{\alpha\beta}]^{\alpha\beta} = A^{\alpha\beta} [1].$ ii) If $A \subseteq B$, then $\overline{A^{\circ\beta}} \subseteq B^{\circ\beta}$. Proof:

ii) Let $A \subseteq B$. Since $A^{\circ\beta} \subseteq A \subseteq B$, then $A^{\circ\beta} \subseteq B$. Since $B^{o\beta}$ is the largest β - open set contained B, them $A^{o\beta} \subseteq B^{o\beta}$.

Proposition (4.9):

Let X be atop. Sp. and A, $B \subseteq X$. Then i) $[A^{oB^*C}]^{oB^*C} = A^{oB^*C}$. ii) If $A \subseteq B$, then $A^{oB^*C} \subseteq B^{oB^*C}$. **Proof:**

i) Since A^{oB^*C} is BC- open set, then $A^{oB^*C} \subseteq B$. Since B^{oB^*C} is the largest B^*c – open set contained B, then $A^{oB^*C} \subseteq B^{oB^*C}$.

Proposition (4.10):

Let $F: X \rightarrow Y$ be function. Then the following statement are equivalent. i) F β - open function. ii) F (A°) \subseteq [F(A)]^o^{β} \forall A \subseteq X. iii) $[F^{-1}(A)]^{\circ} \subseteq F^{-1}(A^{\circ\beta}) \forall A \subseteq Y.$ **Proof:** i) ----- ii) Let $A \subseteq X$. Since A° open in X, then $F(A^\circ)$ β- open in Y by (i). Then $F(A^\circ) = [F(A^\circ)]^{\circ\beta} ⊆$ $[F(A)]^{\circ\beta}$. Hence $F(A^{\circ}) \subseteq [F(A)]^{\circ\beta}$. ii) ----- (iii)

Let $A \subseteq Y$, then $F^{-1}(A) \subseteq X$, then $F[(F^{-1}(A) \subseteq X)]$ $[(A^{\circ}))^{\circ}] \subseteq [F(F^{-1}(A))]^{\circ\beta}$ by (ii). Then $F[(F^{-1}(A))^{\circ}] \subseteq$ $A^{\circ\beta}$. Then $[F^{-1}(A)]^{\circ} \subseteq F^{-1}(A^{\circ\beta})$. iii) ----- (i)

Let A open in X, then $A = A^\circ$. Let F (A) \subseteq Y, then

 $[F^{-1}(F(A))]^{\circ} \subseteq F^{-1}[(F(A))^{\circ\beta}], by (iii).$ Then $A = A^{\circ}$ \subseteq F⁻¹[(F (A))^{oβ}], then F(A) \subseteq [F(A)]^{oβ}. But $[F(A)]^{\circ\beta} \subseteq F(A)$, then $F(A) = [F(A)]^{\circ\beta}$. Hence F (A) β - open in Y, there fore F β - open function.

Proposition (4.11):

Let $F: X \rightarrow Y$ be function. Then the following statement are equivalent. i) $F B^* c$ – open function. ii) $F(A^{\circ}) \subseteq [F(A)]^{oB^*C} \forall A \subseteq X.$ iii) $[F^{-1}(A)]^{\circ} \subseteq F^{-1}(A^{\circ B^*C}) \forall A \subseteq Y.$

Proof: i) ----- ii)

Let $A \subseteq X$. Since A° open in X, then $F(A^\circ)$ B^*c - open in Y by (i). Then $F(A^\circ) = [F(A^\circ)]^{oB^*C} \subseteq$ $[F(A)]^{oB^*C}$. Hence $F(A^\circ) \subseteq [F(A)]^{oB^*C}$. ii) ----- (iii) Let $A \subseteq Y$, then $F^{-1}(A) \subseteq X$, then $F[(F^{-1}(A) \subseteq X)]$

 $[(A^{\circ}))^{\circ}] \subseteq [F(F^{-1}(A))]^{\circ B^{*}C}$ by (ii). Then F $[(F^{-1}(A))^{\circ}]$ $\subseteq A^{\circ B^*C}$, hence $[F^{-1}(A)]^\circ \subseteq F^{-1}(A^{\circ B^*C})$. iii) ----- (i)

Let A open in X, then $A = A^{\circ}$. Let F (A) \subseteq Y, then

 $[F^{-1}(F(A))]^{\circ} \subseteq F^{-1}[(F(A))^{\circ B^{*}C}], by (iii).$ Then A = $A^{\circ} \subseteq F^{-1}[(F(A))^{\circ B^{*}C}]$, then $F(A) \subseteq [F(A)]^{\circ B^{*}C}$. But $[F(A)]^{oB^*C} \subseteq F(A)$, then $F(A) = [F(A)]^{oB^*C}$. Hence F (A) BC- open in Y, there fore F Bc- open function.

Proposition (4.10):

A function F: X \rightarrow Y is a β - closed iff $\overline{F(A)}^{\beta} \subseteq F(\overline{A}) \forall A \subseteq X.$

Proof:

Suppose F is a β - closed. Let $A \subseteq X$, then \overline{A} closed in X, then F (\overline{A}) is a β - closed in Y.

Then $\overline{F(A)}^{\beta} \subseteq \overline{F(\overline{A})}^{\beta} = F(\overline{A}).$

Conversely

Let A be closed in X, then $A = \overline{A}$ Since $\overline{F(A)}^{\beta} \subseteq F(\overline{A}) = F(A)$, then $\overline{F(A)}^{\beta} \subseteq F(A)$. But F $(A) \subseteq \overline{F(A)}^{\beta}$, then F $(A) = \overline{F(A)}^{\beta}$. There fore F(A) is a β - closed set in Y. Hence F is a β - closed.

Proposition (4.11):

A function F: $X \rightarrow Y$ is a B^{*}c- closed iff $\overline{F(A)}^{B^*c} \subseteq F(\overline{A}) \forall A \subseteq X.$ Proof:

Suppose that F is a B^*c - closed.

Let $A \subseteq X$, then \overline{A} closed set in X, then F (\overline{A}) is a B^*c - closed in Y.

Then $\overline{F(A)}^{B^*C} \subseteq \overline{F(\overline{A})}^{B^*C} = F(\overline{A}).$

Conversely

Let A be closed in X, then $A = \overline{A}$ Since $\overline{F(A)}^{B^*C} \subseteq F(\overline{A}) = F(A)$, then $\overline{F(A)}^{B^*C} \subseteq F(A)$. But $F(A) \subseteq \overline{F(A)}^{B^*C}$, then $F(A) = \overline{F(A)}^{B^*C}$. There fore F(A) is a B^*c - closed set in Y. Hence F is a B^*c closed.

References

[1] Abd El - Monsef M. E., El - Deeb S. N. Mahmoud R. A., " β - open sets and β - continuous function" Bulletin of the Faculte of science, Assiut university, 12, pp. 77 - 90, 1983. [2] L.A. Steen and J.A. Seebach, "Counter Examples in Topology" Springer - Verlag, New York Inc., 1978.

[3] W. J. Pervin, "Foundation Of General Topology" Academic Press, New York, 1964. [4] Najastad O (1965) " On Some Classes Of Nearly Open Sets". Pacific J Math 15: 961 – 970. [5] Andijevic D (1986) Semipre Open Sets. Math. Vesink 38:24 – 32. [6] Ryszard Engelking General Topology 1988.

حول خصائص المجموعة B*c- open set

رعد عزيز العبد الله كريم فاضل العمري

قسم الرياضيات كلية علوم الحاسوب وتكنلوجيا المعلومات جامعة القادسية

المستخلص:

في هذا البحث قدمنا صنف جديد من المجموعات يسمى B*c- open set تم در استه والتعرف على خواص وايجاد العلاقات مع المجموعات الاخرى ودراسة صنف جديد من الدوال يسمى B*c- open ، B*c- continuous وايجاد العلاقات مع المجموعات من خلال . B*c- closed function ، function. النظريات التي تم الحصول عليها باستخدام المجموعة من النمط B^{*}c- open.