Math Page 38 - 45

Noori .F/Al-ham .S

Some Properties of Topology Fuzzy Modular Space

Noori F. Al-Mayahi¹

and Al-ham S. Nief²

Department of Mathematics College of Computer Science

and Information Technology

University of AL -Qadisiyah ,Diwanyah -Iraq

E-mail: nafm60@yahoo.com

Recived : 27\1\2019

Revised : 12 \ 2 \ 2019

Accepted : 14\3\2019

Available online : 24 /4/2019

Abstract:

In the present paper, the authors have introduced and studied fuzzy modular space, they have investigated some properties of this space in the open and closed balls. Also the authors discussed the convex set and the locally convex in fuzzy modular space. The result obtained are correct and the methods used are interesting.

M.S.C: 03E72, 46A80.

Keywords: fuzzy set , modular space , fuzzy modular space.

1.Introduction

The concept of fuzzy sets was introduced by

Zadeh [5] in 1965 and there after several authors

applied it to different branches of pure and applied

mathematics. The concept of modular space was

introduction by S.S. Abed, K .A .Abdul Sada in

2017. The concept of fuzzy modular space was

introduced by Young Shen and Wei Chen [7] in

2013.

Definition(1.1) [4]

A fuzzy set A in X (or a fuzzy subset in X)

is a function from X into I = [0,1] that is $A \in I^x$

 $A \in I^x$.

De Definition(1.2)[6] Let *X* be a linear space.

over *F*. A function $M: X \to [0, \infty]$ is called modular if:

1.
$$M(x) = 0 \iff x = 0$$
,
2. $M(\alpha x) = M(x)$ for $\alpha \in F$ with $|\alpha| = 1$
for all $\alpha \in F$.
3. $M(\alpha x + \beta y) \le M(x) + M(y)$
iff $\alpha, \beta \ge 0$, for all $x \in X$.

Definition (1.3)[2]

A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$

is called a continuous t-norm if it satisfies the following

- 1. * is commutative and associative .
- 2. * is continuous.
- 2. $a * b \le c * d$ whenever $a \le c$, $b \le d$ and

 $a, b, c, d \in [0,1].$

Three common examples of the continuous

t –norm are

a *_M b = min [a,b].
 a *_p b = a.b.
 a *₁ b = Max {a + b - 1,0}.

Lemma (1.4):[2]

If the *t*-norm * is continuous ,then

1. for every $\gamma_1, \gamma_2 \in (0,1)$ with $\gamma_1 > \gamma_2$, there exist $\gamma_3 \in (0,1)$ such that $\gamma_1 * \gamma_3 \ge \gamma_2$.

2. for every $\gamma_4 \in (0,1)$, there exist $\gamma_5 \in (0,1)$

such that $\gamma_5 * \gamma_5 \ge \gamma_4$.

Definition (1.5): [7]

A fuzzy modular space is an ordered triple $(X, \mu, *)$ such that *X* is a vector space, * is continuous t- norm and μ is a fuzzy set on $X \times (0, \infty)$ satisfying the following condition ,for all $x, y \in X$ and $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$: 1. $\mu(x, t) > 0$.

2. $\mu(x, t) = 1$ for all t > 0 if and only if x = 0.

3. $\mu(x,t) = \mu(-x,t)$.

4. $\mu(\alpha x + \beta y, s + t) \ge \mu(x, s) * \mu(y, t) .$

5. $\mu(x,.): (0,\infty) \to (0,1]$ is continuous.

Generally, if $(X, \mu, *)$ is fuzzy modular space,

we say that $(\mu, *)$ is a fuzzy modular on X.

Moreover, the triple $(X,\mu,*)$ is called β -hom-

ogeneous if every $x \in X$, t > 0 and $\lambda \in \mathbb{R} \setminus \{0\}$

$$\mu(\lambda x, t) = \mu\left(x, \frac{t}{|\lambda|^{\beta}}\right), \text{ where } \beta \in (0,1].$$

Example (1.6):[7]

Let *X* be a vector space and let ρ be a modular on *X*. Take t-norm $a * b = a *_M b$. For every $t \in (0, \infty)$ define $\mu(x, t) = t/(t + p(x))$

Noori .F/Al-ham .S for all $x \in X$. Then $(X, \mu, *)$ is a fuzzy modular 1. 0. space. 2. 1 if and only if x = y. Remark (1.7): [7] 3. M(y, x, t). Note the above conclusion still holds even if The t-norm is replaced by $a * b = a *_p b$ and $M(y, z, t) \le M(x, z, t + s).$ $a * b = a *_L b$, respectively. 5. $M(x, y, \cdot): (0, \infty) \to (0, 1]$ is continuous. Example (1.8): [7] **Theorem** (1.11): Every fuzzy modular space is fuzzy metric Let $X = \mathbb{R}$, take t-norm $a * b = a *_M b$. For every $x, y \in X$ and $t \in (0, \infty)$, we define space. take $\alpha = \sqrt{2}/2, \beta = 1 - \frac{\sqrt{2}}{2}, x \neq y$, and **Proof**: If we $x, y \in Z$, then we know Let $(X, \mu, *)$ be a fuzzy modular space , defined $\alpha x + \beta y \in \mathbb{R} \setminus Z$. Thus, for all t, s > 0, $M: X \times X \times (0, \infty) \rightarrow [0,1]$ as follows: we have $\mu(\alpha x + \beta y, t + s) = 1/4$. $M(x, y, t) = \mu(x - y, t) \quad \forall x, y \in X$ But 1. Let $x, y \in X$ $\overset{\text{Obviously}}{\Longrightarrow} x - y \in X \Longrightarrow \mu(x - y, t) > 0 \Longrightarrow M(x, y, t) > 0$ $\mu(x,t) *_{\mathrm{M}} \mu(y,s) = \min\{\mu(x,t), \mu(y,s)\} = 1/2.$ $(\mu,*_{M})$ is not a fuzzy modular on X 2. uppose $M(x - y, t) = 1 \Leftrightarrow 1 = M(x, y, t)$ Example (1.9)[7] $= \mu(x - y, t) \Leftrightarrow x - y = 0 \Leftrightarrow x = y$ Let $X = \mathbb{R}, \rho$ is amodular on X, which is defined by $\rho(x) = |x|^{\beta}$, where $\beta \in (0,1]$. Take t-norm 3. Let $x, y \in X$ and t > 0 $M(x, y, t) = \mu(x - y, t) = \mu(y - x, t)$ $a * b = a *_{p} b$. for every $t \in (0, \infty)$, we define 4. $\mu(x,t) = \frac{1}{e^{\rho(x)/t}}$ 4. Let $x, y, z \in X$ and s, t > 0for all $x \in X$. Then $(X, \mu, *)$ is β -homogenous $M(x, y, t) * \mu(y, z, t) = \mu(x - y, t) * \mu(y - z, s)$ $\leq \mu((x-y) + (y-z), t+s) = \mu(x-z, t+s)$ fuzzy modular space. = M(x, z, t + s)**Definition** (1.10): [1] $5.M(x, y, \cdot) = \mu(x - y, \cdot): (0, \infty) \rightarrow [0, 1]$ is continuous. A fuzzy metric space is an ordered triple (X, M, *)4 such that X is a nonempty set ,* is a continuous t-Then (X, M, *) is fuzzy metric space. norm ,and *M* is a fuzzy set on $X \times X \times (0, \infty)$ Theorem (1.12): [7]

satisfying the following conditions :

If $(X, \mu, *)$ is a fuzzy modular space,

Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.2 Year 2019

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 - 3504

	Noori .F/Al-ham .S
then $\mu(x, .)$ is nondecreasing for all $x \in X$.	Let $(X, \mu, *)$ be a fuzzy modular space . A subset
Definition (1.13): [7]	$A ext{ of } X$ is said to be open set, if for all
Let $(X, \mu, *)$ be a fuzzy modular space .we define $x \in A \exists r \in (0,1), t \in (0,\infty)$ such that $B(x, r, t) \subset A$	
the open ball $B(x, r, t)$ and the closed ball	Theorem (1.16): [7] Let $(X,\mu,*)$ be a β -homogenous fuzzy modular
$B[x, r, t]$ with center $x \in X$ and radius	
0 < r < 1 as follows: For $t > 0$	space . Every μ .ball $B(x, r, t)$ in $(X, \mu, *)$ is a μ -open
$B(x,r,t) = \{y \in X : \mu(x - y, t) > 1 - r\}$ open balls	set.
$B[x,r,t] = \{y \in X : \mu(x-y,t) \ge 1-r\} \text{ closed balls}$	Theorem (1.17):
	The intersection number of open sets in fuzzy
Theorem (1:14) If $(x, \mu, *)$ is a β - homogenous fuzzy modular	modular space is open sets
space then $B(x, r, t) \subset B(x, r, \frac{t}{2})$.	Proof:
Proof:	Let $(X,\mu,*)$ be a fuzzy modular space and let
Let $B(r, r, t)$ and $B(r, r, t)$ be open balls with	{ $G_i: i=1,2,m$ } be a finite collection of open
the same center $x \in X$ and $t > 0$ with the	set in the fuzzy modular space. Let
radius $0 < r_{c} < 1$ and $0 < r_{c} < 1$, respectively	$H=\cap \left\{ G_{i}\;,i=1,2,\ldots,m\right\}$
Then we either have :	To prove That H is an open set
$B(x, r, t) \subset B(x, r_0, t)$ or $B(x, r_0, t) \subset B(x, r, t)$	let $x \in H \Longrightarrow x \in G_i$ $\forall_i = 1, 2, \dots m$
Let $x \in X$ and $t > 0$ consider the open hall	Since G_i open set : $\forall_i \implies \exists r_i \in (0,1)$ and
B(x, r, t) and $B(x, r, t)$ with $0 < r < 1$	$t_i > 0 > \exists B(x, r_i, t_i) \subset G_i$
$0 < r_0 < 1$ If $r_1 = r_0$ then the Theorem holds	Let $t_k = \max\{t_1, t_2,, t_n\}$ and
Next we assume that $r_t \neq r_b$, we may	$r_k = \min\{r_1, r_2, \dots, r_n\}$
Assume without loss of generality that	$\Longrightarrow B(x, r_k, t_k) \subset G_i$
$0 < r_1 < r_2 < 1$	$\Rightarrow B(x,r_k,t_k) \subset \cap G_i \Rightarrow B(x,r_k,t_k) \subset H$
Now let $y \in B(x, r, t) \Rightarrow \mu(x - y, t) < r_1 < r_2$	Then H is open set
Hence $v \in B(r, r, t)$ This shows that	Theorem (1.18) The union of an arbitrary
$B(r, r, t) \subset B(r, r, t)$ By assuming that	collection of open set in fuzzy modular
$0 < r_{c} < r_{c} < 1$ we can similarly to show	space are open sets
$B(r, r_{1}, t) \subset B(r, r_{1}, t)$	Proof:
Definition (1.15).	Let $(X, \mu, *)$ be a fuzzy modular space and
$\mathbf{D}_{\mathbf{I}} = \mathbf{I}_{\mathbf{I}} $	

let { γ_{λ} : $\lambda \in \Lambda$ } be an arbitrary collection of open sets in *X* . Let $G=\cup \{\gamma_{\lambda}: \lambda \in A\}$ We must to prove G is open Let $X \in G \implies X \in \gamma_{\lambda}$ for some $\lambda \in \Lambda$ Since γ_{λ} is open set \Rightarrow there exist $r \in (0,1)$ such that $B(x,r,t) \subset$ γλ Since $\gamma_{\lambda} \subset G \Longrightarrow$ Then $B(x, r, t) \subset G$ \Rightarrow G is open set. **Theorem** (1.19): Let $(X, \mu, *)$ be a fuzzy modular space if C and D are open sets in a vector space X then C + D is open set in X. Proof: Let $x \in X$ and $a \in C$, since A is open set then there exist $r \in (0,1)$ such that

 $B(a,r,t) \subset \mathcal{C} \; ,$

then $B(a,r,t) + x \subset C + x$

 $\Longrightarrow B(a+x,r,t) \subset C+x \Longrightarrow C+x$

is open set in X for all $x \in X$

Since $C + D = \cup \{C + d: d \in D\}$

Then C + D is open set in X.

Theorem (1.20):

Every single set in fuzzy modular space is closed

set.

Proof:

Let *X* be a fuzzy modular space

Let $B = \{x\}$ be a set in X, to prove B is closed set Let $y \in A^c \Longrightarrow y \neq X$

Noori .F/Al-ham .S $\mu(y - x, t) > 0$ (since X is fuzzy modular space) $X \notin B(y, r, t) = \{a \in X : \mu(a - y, t) > 1 - r\}$ $B \cap B(y,r,t) = \emptyset \Longrightarrow B(y,r,t) \subseteq A^c$ Then $y \in B(y, r, t) \subseteq B^c \implies y$ is interior point Then B^c is open set Then B is closed set. **Corollary** (1.21) Every finite set in fuzzy modular space is closed set. **Definition** (1.22): A subset U of X is said to be a neighborhood of $x \in X$ in $(X, \mu, *)$ if there exist $r \in (0, 1)$ and $t \in (0, \infty)$ such that $B(x, r, t) \subset U$. **Definition** (1.23):[2] A subset A of a vector space X over F is called convex set if $\alpha A + (1 - \alpha)A \subset A$ for all $0 \le \alpha \le 1$. **Theorem** (1.24): Every open and closed balls in fuzzy modular space are convex sets. **Proof**: Let $y_1, y_2 \in B(x, r, t)$ such that $r \in (0, 1), t > 0$, $\mu(x - y_1, t) > 1 - r$ and $\mu(x - y_2, t) > 1 - r$.

Now , we have to prove $\alpha y_1 + (1 - \alpha)y_2 \in B(x, r, t)$

$$\mu(x - (\alpha y_1 + (1 - \alpha)y_2, t))$$

= $\mu(x - \alpha y_1 + (1 - \alpha)x - (1 - \alpha)y_2, t)$
= $\mu(\alpha(x - y_1), t) + \mu((1 - \alpha)(x - y_2), t)$
= $\mu(x - y_1, t) * \mu(x - y_2, t)$
> $1 - r * 1 - r - r$

= 1 - r

Noori .F/Al-ham .S

Then $B(x,r,t)$ is convex set.	Then $B(x, \frac{1}{n}, t)$ contains $x_n \in A$ and
similary, we can prove $B[x, r, t]$ is c	$\underset{x_n \to x}{\operatorname{convex set.}} \operatorname{since} \lim_{n \to \infty} \mu(x_n - x, t) = 1$
Theorem (1.25):	Conversely :Suppose the condition is tru
Let X be a vector space . if A is	convex set in A
fuzzy modular space then \overline{A} is convex set in A and $x_n \to x$ then $x \in A$	
proof :	If $x \in A$
Let $x, y \in \overline{A}, 0 \le \lambda \le 1 \Longrightarrow \exists a, b$	$\in A$ such Let G be an open set con
that $\mu(x-a) < r, \mu(x-b) < r$	$X \Longrightarrow \exists r > 0, B(x, r, t)$
Since A is convex $\Rightarrow \alpha a + (1 - \alpha)b \in A$	Since $\{x_n\}$ in A such that
$\alpha x + (1-\alpha)y - (\alpha a + (1-\alpha)b)$	$\Rightarrow \mu(x_n - x, t) > 1 -$
$= \alpha(x-a) + (1-\alpha)(y-b)$	Then $x_n \in G \Longrightarrow$
$\mu \big(\alpha x + (1-\alpha)y - (\alpha a + (1-\alpha)b) \big)$	Then $x \in \overline{A}$.
$\leq \alpha \mu(x-a) + (1-\alpha)\mu(y-b)$	Definition (1.27):
$< \alpha r + (1 - \alpha)r = r$	A fuzzy modular space
$\Rightarrow \alpha x + (1 - \alpha)y \in \overline{A} \Rightarrow \overline{A}$ is convex set.	called a locally convex
Lemma (1.26):	base β at 0 in X such that
Let $(X, \mu, *)$ be a fuzzy modular space and $A \subset X$,	of β are convex sets.
if for any $x \in \overline{A}$, then there exist a sequence	Example (1.28) :
$\{x_n\}$ in A such that $\lim_{n\to\infty} \mu(x_n, x, t) = 1$	Every fuzzy modular
for all $t > 0$.	Solution : Let $(X, \mu, *)$ be
Proof:	space Let $\beta = \{B(r, 0, t)\}$
Suppose $x \in \overline{A}$	where $B(r, 0, t) = \{x \in$
Since $\overline{A} = A \cup A$ $\Rightarrow x \in A$ and $x \in A$	Let G be an open set in X ,
If $x \in A$, the $\{x, x, \dots \dots\} \to x$	of open balls , so $0 \in B(r)$
If $x \in A$ and $x \notin A \Longrightarrow \forall n \in Z^+$, $r = \frac{1}{n}$,	some $r > 0$, then β is alocal base at 0 in.
$B(x,r,t) - \{x\} \cap A \neq \emptyset$	Since every open ball is
$x_n \in B(x, r, t) \cap A \Longrightarrow x_n \in A \in A$	then $B(x, 0, t)$ is convex s
$\Rightarrow u(r - rt) > 1 - \frac{1}{2}$	then β is a convex local
$\rightarrow \mu(x_n - x, t) > 1 - \frac{1}{n}$	Therefore (<i>X</i> , μ ,*) is local

Conversely :Suppose the condition is true ,to $x_n^{\text{set.in}} A \text{ and } x_n \to x \text{ then } x \in A$ If $x \in A$ Let G be an open set contain $X \Longrightarrow \exists r > 0, B(x, r, t) \subseteq G$ Since $\{x_n\}$ in A such that $x_n \to x$ as $n \to \infty$ $\Rightarrow \mu(x_n - x, t) > 1 - r$ Then $x_n \in G \Longrightarrow G - \{x\} \cap A \neq \emptyset$ Then $x \in \overline{A}$. **Definition** (1.27): A fuzzy modular space $(X, \mu, *)$ is called a locally convex if there is a local base β at 0 in X such that every member of β are convex sets. Example (1.28): Every fuzzy modular space is locally convex **Solution**: Let ($X, \mu, *$) be afuzzy modular space Let $\beta = \{B(r, 0, t): r > 0\},\$ where $B(r, 0, t) = \{x \in X : \mu(x, t) > 1 - r\},\$ Let G be an open set in X, then G is the union of open balls, so $0 \in B(r, 0, t) \subset G$ for some r > 0, then β is alocal base at 0 in X Since every open ball is convex set, then B(x, 0, t) is convex set for all r > 0, then β is a convex local base at 0 in X

Therefore $(X, \mu, *)$ is locally convex space.

Noori .F/Al-ham .S

An Introduction to Fuzzy Logic and Fuzzy Sets ,New York:Physica-Verlag ,(2002).

References:

References

References :

[1] S.S.A bed, , K.A. Abdul Sada," An

Extension of Brosowski - Meinaraus Theorem in

Modular Spaces" ,Inter. J. of Math .Anal . Hikari

Ltd., 11,18,877-882, (2017).

[2] B. Schweize and A. Sklar, "Statistical metric spaces," Pacific Journal of Mathematics, Vol.10, pp.313-334,(1960).

[3] E. Kreyszing , Introductory functional analysis with application , John Wiley and Sons , Inc .,(1978) .

[4] J. B. James and Esfandiar Eslami,

[5] A .George and P .Veeramani ," Fuzzy Set and Systems , vol.64,no.3, pp.395-399,(1994).
[6] S.Yonghong and Wei Chen ," On Fuzzy

Modular Spaces," School of Mathematics,

Beijing 100081, China , (2013) .

[7] L.A. Zadeh Fuzzy Sets, Info[1] A. George

and P.Veeramani, "On some result in fuzzy

metric rmation and control ,8:338-353,(1965).

Noori .F/Al-ham .S

بعض خصائص فضاء الوحدات الضبابي التبولوجي

نوري فرحان المياحي أ

الهام صفاء نايف `

قسم الرياضيات/كلية علوم الحاسوب وتكنولوجيا المعلومات

جامعة القادسية/العراق

المستخلص:

في هذا البحث ، عرفنا فضاء الوحدات الضبابي التبولوجي والمفاهيم المتعلقة به مثل الكرات المفتوحة والمغلقة ،المجموعة المحدبة ،التحدب المحلي ،المجموعة المفتوحة والمغلقة وبرهنا بعض النتائج المتعلقة بهذا الفضاء .