Strongly b star(Sb*) - cleavability(splitability)

Ghazeel $\boldsymbol{A}^{a}{ }^{\boldsymbol{a}}$, M. Jallalh ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics Education Faculty - Sirte University , Libya .Email:
${ }^{\text {b }}$ Department of Mathematics Education Faculty - Sirte University, Libya .Email:

ARTICLEINFO

Article history:
Received: 17 /3/2019
Rrevised form: 08 /4/2019
Accepted : 30 /04/2019
Available online: $09 / 06 / 2019$

Keywords:

sb* - pointwise cleavable,
Irresolute - pointwise cleavable

Abstract

A. Poongothai, R. Parimelazhagan[5] introduced some new type of seperation axioms and study some of their basic properties. Some implications between T_{0}, T_{1} and T_{2} axioms are also obtained. In this paper we studied the concept of cleavability over these spaces: ($\mathrm{sb}^{*}-\mathrm{T}_{0}$, $\mathrm{sb}^{*}-\mathrm{T}_{1}, \mathrm{sb}^{*}-\mathrm{T}_{2}$) as following:

1- If \mathcal{P} is a class of topological spaces with certain properties and if X is cleavable over $\boldsymbol{\mathcal { P }}$ then $\mathrm{X} \in \mathcal{P}$

2-If \mathcal{P} is a class of topological spaces with certain properties and if Y is cleavable over $\boldsymbol{\mathcal { P }}$ then $\mathrm{Y} \in \mathcal{P}$

MSC..

1. Introduction

In 1985 Arhangl' Skii [1] introduced different types of cleavability(originally named splitability) as following : A topological space X is said to be cleavable over a class of spaces \mathcal{P} if for $A \subset X$ there exists a continuous mapping $f: X \rightarrow Y \in \mathcal{P}$ such that $f^{-1} f(A)=A, f(X)=Y$. Throughout this paper, X and Y denote the topological spaces (X, τ) and (Y, σ) respectively, Let A be a subset of the space X . The interior and closure of a set A in X are denoted by $\operatorname{int}(A)$ and $\operatorname{cl}(A)$ respectively. The complement of A is denoted by $(\mathrm{X}-A)$ or A^{c}.

[^0]Email addresses:

3-Preliminaries

. In this section, we recall some definitions and results which are needed in this paper

Definition 3.1. [11]

A topological space X is called a T_{0} - space if and only if it satisfies the following axiom of Kolmogorov. (T_{0}) If x and y are distinct points of X , then there exists an open set which contains one of them but not the other.
Definition 3.2. [11]
A topological space X is a T_{1}-space if and only if it satisfies the following seperation axiom of Frechet. (T_{1}) If x and y are two distinct points of X , then there exists two open sets, one containing x but not y and the other containing y but not x .

Definition 3.3. [11]

A topological space X is said to be a T_{2} - space or hausdorff space if and only if for every pair of distinct points x, y of X , there exists two disjoint open sets one containing x and the other containing y.
Definition 3.4 [8]
A subset (X, τ) is said to be Sb^{*}-closed set if $\operatorname{cl}(\operatorname{int}(A) \subseteq \mathrm{U}$, whenever $A \subseteq \mathrm{U}$ and U is b -open in X . The complements of closed sets Sb^{*}-closed set is Sb^{*} - open sets . The family of all sb^{*}-open sets of a space X is denoted by $\mathrm{sb} * \mathrm{O}(\mathrm{X})$. Theorem:3.1[5]

Let X be a topological space and A be a subset of X . Then A is Sb^{*} open iff A contains a Sb^{*} open neighbourhood of each of its points.

Definition3.5. [6]

A subset A of a topological space (X, τ) is called b-open set if $A \subseteq(\operatorname{cl}(\operatorname{int}(A)) \cup \operatorname{int}(\operatorname{cl}(A)))$. The complement of a b-open set is said to be b-closed. The family of all b-open subsets of a space X is denoted by $\mathrm{BO}(\mathrm{X})$

Definition3.6 [11]

A map $f: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be Continuous function if $f^{-1}(\mathrm{~V})$ is closed in X for every closed set V in Y .

Definition 3.7

A map $f: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be Sb^{*}-open map if the image of every open set in X is Sb^{*}-open in Y .

Definition 3.8. [9]

Let X and Y be topological spaces. A map $f: \mathrm{X} \rightarrow \mathrm{Y}$ is called strongly b^{*} - continuous (sb^{*} - continuous) if the inverse image of every open set in Y is sb^{*} - open in X .

Definition 3.9 [3]

Let X and Y be topological spaces. A map $f: \mathrm{X} \rightarrow \mathrm{Y}$ is called strongly b^{*}-closed (briefly sb* - closed) map if the image of every closed set in X is sb*- closed in Y .

Definition 3.10

Let X and Y be topological spaces. A map $f:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is said to be sb* - Irresolute if the inverse image of every sb* - closed(respectively sb* - open) set in Y is sb* - closed (respectively sb* - open) set in X.
4- sb* - cleavability

Definition 4.1

A topological spaces X is said to be sb*- pointwise cleavable over a class of spaces \mathcal{P}. if for every point $x \in X$ there exists a sb* ${ }^{*}$ continuous mapping $f: X \rightarrow Y \in \mathcal{P}$, such that $f^{-1} f(x)=\{x\}$.

Definition 4.2

A topological spaces X is said to be sb* Irresolute - pointwise cleavable over a class of spaces \mathcal{P}. if for every point $x \in X$ there exists a sb* - Irresolute - continuous mapping $f: X \rightarrow Y \in \mathcal{P}$, such that

$$
f^{-1} f(x)=\{x\} .
$$

Definition 4.3

By a sb*- -open(closed) pointwise cleavable, we mean that the
sb^{*}-(Irresolute) continuous function f : $X \rightarrow Y \in \mathcal{P}$ is an bijective and open(closed) respectively

Definition 4.4.[5]

A topological space X is said to be sb*- T_{0} if for every pair of distinct points x and y of X, there exists a sb*-open set G such that $x \in G$ and $y \notin G$ or $y \in G$ and $x \notin G$.

Proposition 4.1

Let X be a sb* - irresolute pointwise cleavable over a class of $\mathrm{sb}^{*}-\mathrm{T}_{0}$ spaces \mathcal{P}, then $\mathrm{X} \in \mathcal{P}$.

Proof:

Let $x \in X$, then there exists $\mathrm{sb}^{*} \mathrm{~T}_{0^{-}}$space Y and sb^{*} irresolute a continuous mapping $f: X \rightarrow Y \in \mathcal{P}$, such that f^{-} ${ }^{1} f(x)=\{x\}$. This implies that for every $y \in \mathrm{X}$ with $x \neq \mathrm{y}$, we have $f(x) \neq f(y)$ since Y is a sb* T_{0}-space, so there exists a sb *-open set G in Y contains one of the two points but not the other. let $f(x) \in G, f(y) \notin G$, then $f^{-1} f(x) \in f^{-1}(G)$, $f^{-1} f(y) \notin f^{-1}(G)$. This implies that $x \in f^{-1}(\mathrm{G})$ and $y \notin f^{-1}(\mathrm{G})$, since f is a sb*irresolute a continuous, so $f^{-1}(\mathrm{G})$ is a sb^{*}-open set in X. Therefore X is a sb* T_{0} - space .

Theorem 4.1.[5]

Every subspace of a sb* ${ }^{*}-T_{0}$. space is $\mathrm{sb}^{*}-T_{0}$.

Proof:

Let $\left(Y, t^{*}\right)$ be a subspace of a space X where t^{*} is the relative topology of τ on Y. Let y_{1}, y_{2} be two distinct points of Y, as $Y \subseteq X, y_{1}$ and y_{2} are distinct points of X and there exists a sb*-open set G such that $y_{1} \in \mathrm{G}$ but $y_{2} \notin \mathrm{G}$ since X is sb*-T. Then $\mathrm{G} \cap \mathrm{Y}$ is a sb*-open set in $\left(Y, t^{*}\right)$ which contains y_{1} but does not contain y_{2}. Hence $\left(Y, t^{*}\right)$ is a sb* T_{0} space

Proposition 4.2

Let X be a sb* T_{0}-space is a sb* - irresolute pointwise cleavable over
a class spaces \mathcal{P}, then $\boldsymbol{Y} \in \mathcal{P}$.

Proof:

Let $y \in Y$, then there exists an sb*-irresolute continuous mapping $\quad f: X \rightarrow Y \in \mathcal{P}$ such that $f^{-1} f\left\{f^{-1}(y)\right\}=f^{-1}(y)$, This implies that for every $x \in Y$ with $\mathrm{y} \neq x$, we have $f^{-1}(x) \neq f^{-1}(\mathrm{y})$
since X is a sb*- T_{0}-space, so there exists a sb*-open sets U contains one of the two points but not the other .Let $f^{-1}(\mathrm{y}) \in U$ and $f^{-1}(x) \notin U$, then $\quad f f^{-1}(\mathrm{y}) \in f(U)$ and $f f^{-1}(x) \notin f(U)$. This implies that $\mathrm{y} \in f(U)$ and $x \notin f(U)$.Therefore Y is sb* * - T_{0}-space, then $Y \in \mathcal{P}$.
Definition 4.5.[5] A space X is said to be $\mathrm{sb}^{*}-T_{1}$ if for every pair of distinct points x and y in X , there exist sb* - open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.

Proposition 4.3

Let \boldsymbol{X} be a sb* - irresolute pointwise cleavable over a class of $\mathrm{sb}^{*}-\mathrm{T}_{1}$ spaces \mathcal{P}, then $\mathrm{X} \in \mathcal{P}$.

Proof:

Let $x \in X$, then there exists a sb $*-\mathrm{T}_{1}$-space Y and a sb* - irresolute- continuous mapping $f: X \rightarrow Y \in \mathcal{P}$ such that $f^{-1} f(x)$ $=\{x\}, f^{-1} f(x)=\{x\}$. This implies mapping $f: X \rightarrow Y \in \mathcal{P}$ such that $f^{-1} f(x)=\{x\}, \quad f^{-1} f(x)=\{x\}$. This implies that for every $\mathrm{y} \in X$ with $x \neq y$, we have $f(x) \neq f(\mathrm{y})$. Since Y is sb*- T_{1} space, so there exist two sb*-- open sets U and V such that $f(x) \in U, f(y) \notin U$ and $f(\mathrm{y}) \in V, f(x) \notin V$, then $\quad f^{-1} f(x) \in f^{-1}(U), \quad f^{-1} f(\mathrm{y}) \notin f^{-1}(U)$ and $f^{-1} f(\mathrm{y}) \in f^{-1} f(V)$, $f^{-1} f(x) \notin f^{-1}(V)$. This implies that $x \in f^{-1}(U), \mathrm{y} \notin f^{-1}(U) \quad$ and $\mathrm{y} \in f^{-1}(V), \quad x \notin f^{1-}(\mathrm{V})$.By a sb* - irresolute - continuity of $f, \quad f^{-1}(U), f^{-1}(V)$ are sb*- open sub sets in X. Then $X \in \mathcal{P}$

Proposition 4.4

Let \boldsymbol{X} be a sb* - pointwise cleavable over a class of T_{1} - spaces \mathcal{P}, then X is $\mathrm{sb}^{*}{ }^{-} \mathrm{T}_{1}$ - space

Proof:

Let $x \in X$, then there exists a T_{1-} space Y and a sb*- continuous mapping $f: X \rightarrow Y \in \mathcal{P}$ such that $f^{-1} f(x)=\{x\}, f^{-1} f$ $(x)=\{x\}$.This implies mapping $f: X \rightarrow Y \in \mathcal{P}$ such that $f^{-1} f(x)=\{x\}, f^{-1} f(x)=\{x\}$. This implies that for every $x^{*} \in X$ with $x \neq x^{*}$, we have $f(x) \neq f\left(x^{*}\right)$. Since Y is T_{1}-space, so there exist two open sets G and H such that $\quad f(x) \in G$, $f\left(x^{*}\right) \notin G$ and $f\left(x^{*}\right) \in H, f(x) \notin H$, then $f^{-1} f(x) \in f^{-1}(G), \quad f^{-1} f\left(x^{*}\right) \notin f^{-1}(G)$ and $f^{-1} f\left(x^{*}\right) \in f^{-1} f(H), \quad f^{-1} f(x) \notin f^{-}$ ${ }^{1}(H)$. This implies that $x \in f^{-1}(H), x^{*} \notin f^{-1}(G)$ and $x^{*} \in f^{-1}(H), \quad x \notin f^{1-}(\mathrm{H})$.By a sb* - continuity of f then f^{-1} $(G), f^{-1}(H)$ are sb* ${ }^{*}$ open sub sets in X. Thus X is $\mathrm{sb}^{*}-\mathrm{T}_{1}$ - space, then $\mathrm{X} \in \mathcal{P}$

Proposition 4.5

Let X be sb* T_{1}-space is an sb* - open pointwise cleavable over a class of spaces \mathcal{P}, then $\boldsymbol{Y} \in \mathcal{P}$.

Proof:

Let $\mathbf{y} \in \boldsymbol{Y}$, then there exists a sb* T_{1}-space \boldsymbol{X} and sb* - open continuous
mapping $\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{Y} \in \mathcal{P}$, such that $\boldsymbol{f} \boldsymbol{f}^{-1}\left\{\boldsymbol{f}^{-1}(\boldsymbol{y})\right\}=\boldsymbol{f}^{-1}(\boldsymbol{y})$. This implies that for every $\boldsymbol{x} \in \boldsymbol{Y}$ with $\mathrm{y} \neq \boldsymbol{x}$, we have $\boldsymbol{f}^{-1}(\boldsymbol{y}) \neq$ $\boldsymbol{f}^{-1}(\boldsymbol{x})$. Since \boldsymbol{X} is \quad sb* \boldsymbol{T}_{1}-space, so there exist two sb* -open sets \boldsymbol{V} and \boldsymbol{W} such that $\quad \boldsymbol{f}^{-1}(\boldsymbol{y}) \in \boldsymbol{V}, \boldsymbol{f}^{-1}(\boldsymbol{x}) \notin \boldsymbol{V}$ and $\boldsymbol{f}^{-1}(\boldsymbol{x}) \in \boldsymbol{W}, \boldsymbol{f}^{-1}(\boldsymbol{y}) \notin \boldsymbol{W}$. Then $\boldsymbol{f} \boldsymbol{f}^{-1}(\boldsymbol{y}) \in \boldsymbol{f}(\boldsymbol{V}) \quad, \boldsymbol{f} \boldsymbol{f}^{-1}(\boldsymbol{x}) \notin \boldsymbol{f}(\boldsymbol{V})$ and $\boldsymbol{f} \boldsymbol{f}^{-1}(\boldsymbol{x}) \in \boldsymbol{f}(\boldsymbol{W}), \boldsymbol{f} \boldsymbol{f}^{-1}(\boldsymbol{y}) \notin \boldsymbol{f}(\boldsymbol{W})$. This implies that $\mathrm{y} \in \boldsymbol{f}(\boldsymbol{V}), \boldsymbol{x} \notin \boldsymbol{f}(\boldsymbol{V})$ and $\boldsymbol{x} \in \boldsymbol{f}(\mathrm{W}), \mathrm{y} \notin \boldsymbol{f}(\mathrm{W})$, since \boldsymbol{f} is a sb* open, so $\boldsymbol{f}(\boldsymbol{V}), \boldsymbol{f}(\boldsymbol{W})$ are open sb* sets of \boldsymbol{Y}. Therefore $\boldsymbol{Y} \in \mathcal{P}$.

Definition 4.6[5].

A space X is said to be sb*- T_{2} if for every pair of distinct points x and y in X , there are disjoint sb*- open sets U and V in X containing x and y respectively
Theorem 4.2.[5] Every sb*- T_{2} space is sb*- T_{1}.

Proof:

Let X be a sb*- T_{2} space. Let x and y be two distinct points in X . Since X is sb^{*} - T_{2}, there exist disjoint sb^{*}-open sets U and V such that $x \in U$ and $y \in V$. Since U and V are disjoint, $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is sb*- T_{1}.

Proposition 4.6

Let X be $\mathrm{sb}^{*}-T_{2}$ - space is a sb* - open pointwise cleavable over a class of spaces \mathcal{P}, then $\boldsymbol{Y} \in \mathcal{P}$.

Proof:

Let $y_{1} \in Y$, then there exists a sb*- T_{2} - space X and a sb* open
continuous mapping $f: X \rightarrow Y \in \mathcal{P}$ such that $f^{-1} f\left(f^{-1}(y)\right)=f^{-1}(y)$. This
implies that for every $y_{2} \in Y$, with $y_{1} \neq y_{2}$, we have $f^{-1}\left(y_{1}\right) \neq f^{-1}\left(y_{2}\right)$,so there exist x_{1}, x_{2} in X , such that $x_{1}=f^{-1}\left(y_{1}\right)$, $x_{2}=f^{-1}\left(y_{2}\right)$ with $x_{1} \neq x_{2}$, Since X is sb*- T_{2}, so there exist two sb* open sets G, H
Such that $f^{-1}\left(y_{1}\right) \in G, f^{-1}\left(y_{2}\right) \in H$ and $G \bigcap H=\emptyset$, then
$\boldsymbol{f} \boldsymbol{f}^{-1}\left(\boldsymbol{y}_{1}\right) \in \boldsymbol{f}(\boldsymbol{G}), \boldsymbol{f} \boldsymbol{f}^{-1}\left(\boldsymbol{y}_{2}\right) \in \boldsymbol{f}(\boldsymbol{H})$. Since \boldsymbol{f} is sb* open ,
then $\boldsymbol{f}(\boldsymbol{G}), \boldsymbol{f}(\boldsymbol{H})$ are sb* open sets of \boldsymbol{Y} and $\boldsymbol{y}_{\mathbf{1}} \in \boldsymbol{f}(\boldsymbol{G}), \boldsymbol{y}_{2} \in f(\boldsymbol{H})$
and $f(G) \bigcap f(H)=f(G \bigcap H)=f(\varnothing)=\emptyset$. Then $Y \in \mathcal{P}$.

Proposition 4.7

Let X be sb* - open pointwise cleavable over a class of sb*- T_{2}-spaces \mathcal{P}, then $X \in \mathcal{P}$
Proof:
Let $\boldsymbol{x} \in \boldsymbol{X}$, then there exists a sb*- \boldsymbol{T}_{2} space \boldsymbol{Y} and a sb*- continuous
mapping $\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{Y} \in \mathcal{P}$ such that $\boldsymbol{f}^{-1} \boldsymbol{f}(\boldsymbol{x})=\{\boldsymbol{x}\}$. This implies that for
every $\mathrm{y} \in \boldsymbol{Y}$ with $\boldsymbol{x} \neq \boldsymbol{y}$, we have $\boldsymbol{f}(\boldsymbol{x}) \neq \boldsymbol{f}(\boldsymbol{y})$. Since \boldsymbol{Y} is sb*- \boldsymbol{T}_{2}, so
there exist two sb* open sets \boldsymbol{U} and V such that $\boldsymbol{f}(\boldsymbol{x}) \in \boldsymbol{U}, \boldsymbol{f}(\boldsymbol{y}) \in \boldsymbol{V}$ and $\boldsymbol{U} \bigcap \boldsymbol{V}=\varnothing$, then $\boldsymbol{f}^{-1} \boldsymbol{f}(\boldsymbol{x}) \in \boldsymbol{f}^{-1}(\boldsymbol{U}), \boldsymbol{f}^{-1}$ $\boldsymbol{f}(\boldsymbol{y}) \in \boldsymbol{f}^{-1}(\boldsymbol{V})$, this implies that $\boldsymbol{x} \in \boldsymbol{f}^{-1}(\mathrm{U}), \boldsymbol{y} \in \boldsymbol{f}^{-1}(\mathrm{~V})$, since \boldsymbol{f} is sb*- continuous , so $\boldsymbol{f}^{-1}(\boldsymbol{U}), \boldsymbol{f}^{-1}(\boldsymbol{V}) \quad$ are sb* open sets of \boldsymbol{X} and $\boldsymbol{f}^{-1}(\boldsymbol{U}) \bigcap \boldsymbol{f}^{-1}(\boldsymbol{V})=\boldsymbol{f}^{-1}(\boldsymbol{U} \bigcap \boldsymbol{V})=\boldsymbol{f}^{-1}(\varnothing)=\varnothing$.
thus $\boldsymbol{X} \in \mathcal{P}$.

5-conclusion:

In this paper we have studied and proved these cases:

1) If \mathcal{P} is a class of ($\mathrm{sb}^{*}-T_{0}$, $\mathrm{sb}^{*}-T_{1}$) spaces with certain properties and if X is a sb* - irresolute pointwise cleavable over \mathcal{P}, then $X \in \mathcal{P}$, also if \mathcal{P} is a class of ($\mathrm{sb}^{*}-T_{0^{\star}}$ sb*- T_{1}) spaces with certain properties and if Y is a sb* irresolute pointwise cleavable over \mathcal{P}, then $Y \in \mathcal{P}$.
2) If \mathcal{P} is a class of ($\mathrm{sb}{ }^{*}-T_{1}$ ، $\mathrm{sb}^{*}-T_{2}$) spaces with certain properties and if X is point wise $s b^{*}$ - cleavable over \mathcal{P}, then $X \in \mathcal{P}$, also If \mathcal{P} is a class of $s b^{*}-T_{1}$ spaces with certain properties and if X is a sb* - irresolute pointwise cleavable over \mathcal{P}, then $X \in \mathcal{P}$.
3) If \mathcal{P} is a class of $\left(s b^{*}-T_{1} \cdot s b^{*}-T_{2}\right)$ spaces with certain properties and if Y is point wise $s b *$ cleavable over \mathcal{P}, then Y $\in \mathcal{P}$.

References

[1] Arhangel'skii,A.V and Cammaroto,F ,On different types of cleavability of topological spaces, pointwise, closed ,open and pseudo open, Journal of Australian Math,Soc(1992).
[2] A. Poongothai and R. Parimelazhagan , sb* - closed sets in topological spaces, Int. Journal of Math.Analysis, 6, 47(2012), 2325-2333.
[3] A. Poongothai and R. Parimelazhagan, Strongly b* - continuous functions in Topological spaces, International Journal of Computer Applications, Volume 58, No.14(2012), 08-11.
[4] A. Poongothai and R. Parimelazhagan, sb^{*} - irresolute maps and homeomorphisms in Topological spaces, Wulfenia Journal, Vol 20, No. 4(2013). 164 A
[5] A. Poongothai and R. Parimelazhagan , sb* - Separation axioms, International Journal of Mathematics and Soft Computing
[6] D. Andrijevic, On b-open sets, Mat. Vesink, 48(1996), 59-64.
[7] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1)(1986),24-32.
sb* - Separation axioms 163.

[^0]: Corresponding author : Ghazeel A

