

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Strongly b star(Sb*) - cleavability(splitability)

Ghazeel A^a, M. Jallalh^b

a Department of Mathematics Education Faculty - Sirte University , Libya .Email:

^b Department of Mathematics Education Faculty - Sirte University , Libya .Email:

. Poongothai, R. Parimelazhagan[5] introduced some new type of seperation axioms and tudy some of their basic properties. Some implications between T_0 , T_1 and T_2 axioms are also btained. In this paper we studied the concept of cleavability over these spaces: (sb*-T ₀ , b*-T ₁ , sb*-T ₂) as following:
- If \mathcal{P} is a class of topological spaces with certain properties and if X is cleavable over \mathcal{P} then $\in \mathcal{P}$
- If \boldsymbol{p} is a class of topological spaces with cortain properties and if V is cleavable over \boldsymbol{p} then
$\in \mathcal{P}$
ISC

1. Introduction

In 1985 Arhangl' Skii [1] introduced different types of cleavability(originally named splitability) as following : A topological space *X* is said to be cleavable over a class of spaces \mathcal{P} if for $A \subset X$ there exists a continuous mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(A) = A$, f(X)=Y. Throughout this paper, X and Y denote the topological spaces (X, τ) and (Y, σ) respectively, Let *A* be a subset of the space X. The interior and closure of a set *A* in X are denoted by int(*A*) and cl(*A*) respectively. The complement of *A* is denoted by (X-A) or A^c .

Email addresses:

Corresponding author : Ghazeel A

Communicated by Qusuay Hatim Egaar

3-Preliminaries

. In this section, we recall some definitions and results which are needed in this paper

Definition 3.1. [11]

A topological space X is called a T_0 - space if and only if it satisfies the following axiom of Kolmogorov. (T_0) If x and y are distinct points of X, then there exists an open set which contains one of them but not the other. **Definition 3.2.** [11]

A topological space X is a T_1 -space if and only if it satisfies the following seperation axiom of Frechet. (T_1) If x and y are two distinct points of X, then there exists two open sets, one containing x but not y and the other containing y but not x. **Definition 3.3.** [11]

A topological space X is said to be a T_2 - space or hausdorff space if

and only if for every pair of distinct points x, y of X, there exists two disjoint open sets one containing x and the other containing y.

Definition3.4 [8]

A subset (X, τ) is said to be Sb*-closed set if $cl(int(A) \subseteq U$, whenever $A \subseteq U$ and U is b-open in X. The complements of closed sets Sb*-closed set is Sb*- open sets. The family of all sb*-open sets of a space X is denoted by sb*O(X). **Theorem:3.1[5]**

Let X be a topological space and A be a subset of X. Then A is Sb*open iff A contains a Sb* open neighbourhood of each of its points.

Definition3.5. [6]

A subset A of a topological space (X, τ) is called b-open set if $A \subseteq (cl(int(A)) \cup int(cl(A)))$. The complement of a b-open set is said to be b-closed. The family of all b-open subsets of a space X is denoted by BO(X) **Definition3.6** [11]

A map $f: X \to Y$ is said to be Continuous function if $f^{-1}(V)$ is closed in X for every closed set V in Y. **Definition 3.7**

A map $f: X \rightarrow Y$ is said to be Sb*-open map if the image of every open set in X is Sb*-open in Y.

Definition 3.8. [9]

Let X and Y be topological spaces. A map $f: X \to Y$ is called strongly b* - continuous (sb*- continuous) if the inverse image of every open set in Y is sb* - open in X.

Definition 3.9 [3]

Let X and Y be topological spaces. A map $f: X \to Y$ is called strongly b* -closed (briefly sb* - closed) map if the image of every closed set in X is sb*- closed in Y.

Definition 3.10

Let X and Y be topological spaces. A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be sb^* - Irresolute if the inverse image of every sb^* - closed(respectively sb^* - open) set in Y is sb^* - closed (respectively sb^* - open) set in X. **4-** sb^* - cleavability

Definition 4.1

A topological spaces X is said to be sb*- pointwise cleavable over a class of spaces \mathcal{P} . if for every point $x \in X$ there exists a sb*- continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(x) = \{x\}$. **Definition 4.2**

A topological spaces X is said to be sb* Irresolute - pointwise cleavable over a class of spaces \mathcal{P} . if for every point $x \in X$ there exists a sb* - Irresolute - continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(x) = \{x\}$.

Definition 4.3

By a sb*- -open(closed) pointwise cleavable ,we mean that the sb^* -(Irresolute) continuous function $f: X \rightarrow Y \in \mathcal{P}$ is an bijective and open(closed) respectively **Definition 4.4.[5]**

A topological space X is said to be sb*- T_0 if for every pair of distinct points x and y of X, there exists a sb*-open set G such that x \in G and y \notin G or y \in G and x \notin G.

Proposition 4.1

Let X be a sb* - irresolute pointwise cleavable over a class of sb*-T₀ spaces \mathcal{P} , then X $\in \mathcal{P}$.

Proof:

Let $x \in X$, then there exists sb^*T_0 - space Y and sb^* irresolute a continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(x) = \{x\}$. This implies that for every $y \in X$ with $x \neq y$, we have $f(x) \neq f(y)$ since Y is a sb^*T_0 -space, so there exists a sb^* -open set G in Y contains one of the two points but not the other. let $f(x) \in G$, $f(y) \notin G$, then $f^{-1}f(x) \in f^{-1}(G)$, $f^{-1}f(y) \notin f^{-1}(G)$. This implies that $x \in f^{-1}(G)$ and $y \notin f^{-1}(G)$, since f is a sb^* irresolute a continuous, so $f^{-1}(G)$ is a sb^* -open set in X. Therefore X is a sb^*T_0 - space.

Theorem 4.1.[5]

Every subspace of a sb^*-T_0 . space is sb^*-T_0 .

Proof:

Let (Y, t^*) be a subspace of a space X where t^* is the relative topology of τ on Y. Let y_1, y_2 be two distinct points of Y, as $Y \subseteq X$, y_1 and y_2 are distinct points of X and there exists a sb*-open set G such that $y_1 \in G$ but $y_2 \notin G$ since X is sb*- T_0 . Then $G \cap Y$ is a sb*-open set in (Y, t^*) which contains y_1 but does not contain y_2 . Hence (Y, t^*) is a sb*- T_0 space

Proposition 4.2

Let X be a sb* T_0 -space is a sb* - irresolute pointwise cleavable over

a class spaces \mathcal{P} , then $Y \in \mathcal{P}$.

Proof:

Let $y \in Y$, then there exists an sb*-irresolute continuous mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f\{f^{-1}(y)\}=f^{-1}(y)$, This implies that for every $x \in Y$ with $y \neq x$, we have $f^{-1}(x) \neq f^{-1}(y)$

since X is a sb*- T_0 -space, so there exists a sb*-open sets U contains one of the two points but not the other. Let $f^{-1}(y) \in U$ and $f^{-1}(x) \notin U$, then $ff^{-1}(y) \in f(U)$ and $ff^{-1}(x) \notin f(U)$. This implies that $y \in f(U)$ and $x \notin f(U)$. Therefore Y is sb*- T_0 -space, then $Y \in \mathcal{P}$.

Definition 4.5.[5] A space X is said to be $sb^* - T_1$ if for every pair of distinct points x and y in X, there exist sb^* - open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.

Proposition 4.3

Let **X** be a sb* - irresolute pointwise cleavable over a class of sb*-T₁ spaces \mathcal{P} , then $X \in \mathcal{P}$. **Proof:**

Let $x \in X$, then there exists a sb * -T₁-space Y and a sb* - irresolute- continuous mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}$. This implies mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}$. This implies that for every $y \in X$ with $x \neq y$, we have $f(x) \neq f(y)$. Since Y is sb*-T₁space, so there exist two sb*-- open sets U and V such that $f(x) \in U$, $f(y) \notin U$ and $f(y) \in V$, $f(x) \notin V$, then $f^{-1}f(x) \in f^{-1}(U)$, $f^{-1}f(y) \notin f^{-1}(U)$ and $f^{-1}f(y) \in f^{-1}f(V)$, $f^{-1}f(x) \notin f^{-1}(V)$. This implies that $x \in f^{-1}(U)$, $y \notin f^{-1}(U)$ are sb*- open sub sets in X. Then $X \in \mathcal{P}$

Proposition 4.4

Let **X** be a sb* - pointwise cleavable over a class of T_1 - spaces \mathcal{P} , then X is sb*- T_1 - space **Proof:**

Let $x \in X$, then there exists a T_1 - space Y and a sb*- continuous mapping $f:X \to Y \in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}$, $f^{-1}f(x) = \{x\}$. This implies mapping $f:X \to Y \in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}$, $f^{-1}f(x) = \{x\}$. This implies that for every $x^* \in X$ with $x \neq x^*$, we have $f(x) \neq f(x^*)$. Since Y is T_1 -space, so there exist two open sets G and H such that $f(x) \in G$, $f(x^*) \notin G$ and $f(x^*) \in H$, $f(x) \notin H$, then $f^{-1}f(x) \in f^{-1}(G)$, $f^{-1}f(x^*) \notin f^{-1}(G)$ and $f^{-1}f(x^*) \in f^{-1}f(H)$, $f^{-1}f(x) \notin f^{-1}(H)$. This implies that $x \in f^{-1}(H)$, $x^* \notin f^{-1}(G)$ and $x^* \in f^{-1}(H)$, $x \notin f^{-1}(H)$. By a sb* - continuity of f then $f^{-1}(G)$, $f^{-1}(H)$ are sb*- open sub sets in X. Thus X is sb*- T_1 -space, then $X \in \mathcal{P}$

Proposition 4.5

Let X be sb* T_1 -space is an sb* - open pointwise cleavable over a class of spaces \mathcal{P} , then $Y \in \mathcal{P}$. **Proof:**

Let $\mathbf{y} \in \mathbf{Y}$, then there exists a sb* T₁-space \mathbf{X} and sb* - open continuous

mapping $f : X \to Y \in \mathcal{P}$, such that $ff^{-1}\{f^{-1}(y)\} = f^{-1}(y)$. This implies that for every $x \in Y$ with $y \neq x$, we have $f^{-1}(y) \neq f^{-1}(x)$. Since X is $sb^* T_1$ -space, so there exist two sb^* -open sets V and W such that $f^{-1}(y) \in V, f^{-1}(x) \notin V$ and $f^{-1}(x) \in W, f^{-1}(y) \notin W$. Then $ff^{-1}(y) \in f(V)$, $ff^{-1}(x) \notin f(V)$ and $ff^{-1}(x) \in f(W), ff^{-1}(y) \notin f(W)$. This implies that $y \in f(V)$, $x \notin f(V)$ and $x \in f(W)$, $y \notin f(W)$, since f is a sb^* open, so f(V), f(W) are open sb^* sets of Y. Therefore $Y \in \mathcal{P}$.

Definition 4.6[5].

A space X is said to be sb^*-T_2 if for every pair of distinct points x and y in X, there are disjoint sb^*- open sets U and V in X containing x and y respectively

Theorem 4.2.[5] Every sb*- T₂ space is sb*- T₁.

Proof:

Let X be a sb*- T_2 space. Let x and y be two distinct points in X. Since X is sb*- T_2 , there exist disjoint sb*-open sets U and V such that $x \in U$ and $y \in V$. Since U and V are disjoint, $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is sb*- T_1 .

Proposition 4.6

Let X be sb*- T_2 - space is a sb* - open pointwise cleavable over a class of spaces \mathcal{P} , then $Y \in \mathcal{P}$.

Proof:

Let $y_1 \in Y$, then there exists a sb*- T_2 - space X and a sb* open

continuous mapping $f: X \rightarrow Y \in \mathcal{P}$ such that $f^{-1}f(f^{-1}(y)) = f^{-1}(y)$. This

implies that for every $y_2 \in Y$, with $y_1 \neq y_2$, we have $f^{-1}(y_1) \neq f^{-1}(y_2)$, so there exist x_1, x_2 in X, such that $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$ with $x_1 \neq x_2$, Since X is sb^{*}- T_2 , so there exist two sb^{*} open sets G, H

Such that $f^{-1}(y_1) \in G$, $f^{-1}(y_2) \in H$ and $G \bigcap H = \emptyset$, then

 $ff^{-1}(y_1) \in f(G), ff^{-1}(y_2) \in f(H)$. Since f is sb^* open, then f(G), f(H) are sb^* open sets of Y and $y_1 \in f(G), y_2 \in f(H)$ and $f(G) \bigcap f(H) = f(G \bigcap H) = f(\emptyset) = \emptyset$. Then $Y \in \mathcal{P}$.

Proposition 4.7

Let X be sb* - open pointwise cleavable over a class of sb*- T_2 -spaces \mathcal{P} , then $X \in \mathcal{P}$ **Proof:**

Let $x \in X$, then there exists a sb*- T_2 space Y and a sb*- continuous mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}$. This implies that for every $y \in Y$ with $x \neq y$, we have $f(x) \neq f(y)$. Since Y is sb*- T_2 , so

there exist two sb* open sets U and V such that $f(x) \in U$, $f(y) \in V$ and $U \bigcap V = \emptyset$, then $f^{-1}f(x) \in f^{-1}(U)$, $f^{-1}(V) \in f^{-1}(V)$, this implies that $x \in f^{-1}(U)$, $y \in f^{-1}(V)$, since f is sb*- continuous , so $f^{-1}(U)$, $f^{-1}(V)$ are sb* open sets of X and $f^{-1}(U) \bigcap f^{-1}(V) = f^{-1}(U \bigcap V) = f^{-1}(\emptyset) = \emptyset$. thus $X \in \mathcal{P}$.

5-conclusion:

In this paper we have studied and proved these cases:

1) If \mathcal{P} is a class of $(sb^* - T_0, sb^* - T_1)$ spaces with certain properties and if X is a sb^* - irresolute pointwise cleavable over \mathcal{P} , then $X \in \mathcal{P}$, also if \mathcal{P} is a class of $(sb^* - T_0, sb^* - T_1)$ spaces with certain properties and if Y is a sb^* - irresolute pointwise cleavable over \mathcal{P} , then $Y \in \mathcal{P}$.

2) If \mathcal{P} is a class of $(sb^* - T_1 \cdot sb^* - T_2)$ spaces with certain properties and if X is point wise sb^* - cleavable over \mathcal{P} , then $X \in \mathcal{P}$, also If \mathcal{P} is a class of $sb^* - T_1$ spaces with certain properties and if X is a sb^* - irresolute pointwise cleavable over \mathcal{P} , then $X \in \mathcal{P}$.

3) If \mathcal{P} is a class of $(sb^*-T_1 \cdot sb^*-T_2)$ spaces with certain properties and if Y is point wise sb * cleavable over \mathcal{P} , then $Y \in \mathcal{P}$.

References

[1] Arhangel'skii, A.V and Cammaroto, F, On different types of cleavability of topological spaces, pointwise, closed, open and pseudo open, Journal of Australian Math, Soc(1992).

[2] A. Poongothai and R. Parimelazhagan, sb* - closed sets in topological spaces, Int. Journal of Math.Analysis, 6, 47(2012), 2325-2333.

[3] A. Poongothai and R. Parimelazhagan, Strongly b* - continuous functions in Topological spaces, International Journal of Computer Applications, Volume 58, No.14(2012), 08 - 11.

[4] A. Poongothai and R. Parimelazhagan, sb* - irresolute maps and homeomorphisms in Topological spaces, Wulfenia Journal, Vol 20, No. 4(2013). 164 A

[5] A. Poongothai and R. Parimelazhagan , sb* - Separation axioms, International Journal of Mathematics and Soft Computing

[6] D. Andrijevic, On b-open sets, Mat. Vesink, 48(1996), 59 - 64.

[7] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1)(1986),24-32.

sb* - Separation axioms 163.