
Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.11(3) 2019 , pp Stat.1–11 
 
 
 
 
 
 
 
 
 
 
 
 

Corresponding author Mohammed A. Mohammed  

Email addresses: dw.moh2@atu.edu.iq 

Communicated by Qusuay Hatim Egaar 

Robust logistic regression in the presence of high leverage 
points 

Mohammed A. Mohammed 

Department of Accounting Techniques Al-Dewanyia Technical Institute - Al-Furat Al-awsat Technical University. 

 Email : dw.moh2@atu.edu.iq  
 

A R T I C L E  I N F O 

Article history: 

Received: 01 /04/2019 

Rrevised form: 17 /04/2019 

Accepted : 23 /04/2019 

Available online: 30 /05/2019 
 

Keywords: 

Logistic regression model, MVE, 
RMD, SGD and HLPs  

 

A B S T R A C T 

In this article we conceder the logistic regression model with high leverage points. For the 
logistic regression model with a binary response, we suggested a new robust approach called 
robust logistic regression (RLR) based on the robust mahalanobis distance (RMD) which 
depends on the minimum volume ellipsoid (MVE) estimators. The RMD is computed by using 
the algorithm of stochastic gradient descent (SGD). In order to assist the new suggested 
approach we compare it with some existing method such as maximum likelihood estimator 
and robust M-estimator in logistic regression model. The simulation study points that the RLR 
has supreme performances throw some measurement comparison.  

 

 

 

1.  Introduction"" 
 

Many types of outlying data can occur in the logistic regression model (LRM). Outliers can 

appear in the Y- direction, X- direction or in both directions. This study focuses in the case of outliers 

in the X-direction which called high leverage points (HLPs). It is important to distinguish between 

two types of leverage points, good leverage points (GLPs) and bad leverage points (BLPs) (see; [1], 

[10]). GLPs in logistic regression appear when outcomes equal to one     ) with large value of x’s 

or when the outcome equal to zero       with small value x’s and vice versa for BLPs [14]. GLPs 

have no effect in the estimators and it may improve the solution, whereas, BLPs have high affect in 

the estimators and it may lead to misclassification ([14], [17]). The maximum likelihood estimator 

(ML- estimator) is commonly used to estimate the LRM by using Newton Raphson numerical method. 
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Unfortunately, the ML estimator is sensitive to outliers and HLPs and it can easily influenced by 

outlying observations (see; [12], [13]).  

In literature, there is a massive number of works to robustness of the ML estimators in the LRM. Most 

of researchers attempt to accomplish robustness by down weighting unusual values (see; [1], [2], [3], 

[7] and [12] and [16]). Pregibon (1982) proposed new robust fitting methods which taper the 

standard likelihood to decrease an effect of outliers [13]. Kordzakhia et al. (2001) suggested a 

resistant method by minimize the mean-squared deviance for the worst extreme observations [11].  

Hobza et al. (2008) suggested a new approach by taken a robust median estimator in LRM [9]. Bianco 

and Yohai suggested a new class of robust M-estimates for the LRM. They illustrate that these 

estimates are consistent and asymptotically normal [4].   

Another method for estimate the ML estimator is the stochastic gradient descent (SGD). The 

SGD is an iterative and efficient numerical optimization approach ([5], [15]). It tries to find such a 

minimum x by using information from the first derivative of function. SGD is almost never as fast as 

Newton Raphson method but it is much more robust ([5], [14]). Moreover, it does not require that 

the second derivative as Newton Raphson [5]. In many cases, SGD is so robust even that it is not a 

hard requirement. In addition, gradient descent typically has a much larger region of convergence 

than Newton Raphson.  

This article is setting as follows: the logistic regression model is briefly explained in Section 2. 

In Section 3, the robust logistic regression methods and the proposed method are given. The 

simulation study is introduced in Section 4. The results of simulation experiments are discussed in 

Section 5. Finally, in Section 6, the conclusions are explained.    

2. Logistic Regression Model 

The Logistic Regression model (LRM) is firstly developed by the statistician David Cox in 1958 

to solve the problems which were not directly suited for linear regression model [7]. LRM is 

considered a special case of linear regression model when the response is a binary variable (False/ 

true, Yes/ No, 0/1, Male/Female… etc.), whereas, a set of explanatory variables can be a discrete 

(categorical, nominal or ordinal), or continuous [12]. For the following multiple linear regression 

model [4]:  

https://en.wikipedia.org/wiki/David_Cox_(statistician)
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where                ,           

Let    be a binary response variable (0/1), where a 1 represent a success and 0 represent a failure 

[18]. Hence,    is distributed as Bernoulli distribution with          and     (  )          . 

Unlike of linear regression model, it clearly to see the variance of LRM could be potentially different 

for each value of (  ) [1]. Moreover, in LRM, we are only dealing with the probability of outcome of 

response variable, success (  ) and failure (   ). The   should be satisfying the following 

conditions: 

1-       it always must be positive, and 

2-      it always must be less than or equal to1 

The LRM can be also expressed as: 

      (  )     {
  

    

} 

                                         
                                

where 

          (    |     ) 

                                           
          (  

  )      3 

where   is an         explanatory variables and   is a         of regression coefficients and 

the letter T refers to transpose. From Equation (2), it is clearly to see the values of    falls within the 

interval (      ). The   describes the relationship between    and     .When      there is a 

positive relationship between            and the curve will increase toward     as x increase as 

shown in Figure (1.a). Figure (1.b) shows that when       the relationship between           is 

negative and the curve will increase toward      as x decrease  The ML estimator is widely used to 

estimate the parameter of the model. The must of algorithms apply the Newton-Raphson approach to 

solve the ML estimator ([12], [13]). The ML estimator is identified by the following objective function  

       ∑[     ]

 

   

           

where                            
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The iterative reweighted least squares (IRLS) for ML estimator are defined as [3]: 

 ̂                          

where    ̂ (   ̂ ) is a diagonal matrix and        

Pregibon (1982) suggested a new robust approach by modify the objective function of ML estimator 

to be more resistant for outlying data in the LRM by minimize the following function [13]  

∑                 6 

where   is a bounded, differentiable and a decreasing function given as 

                               {
  (

  

  
)                

      
 

 
                        

}           7 

where, c is a positive number [4]. 

 

Figure (1.a): relationship between 

            when            

             Figure (1.b): relationship between 

                           when               

                    

3.  Robust logistic regression method 

 Many works have been done to robustness the ML estimator in the binary logistic regression 

(see; [3], [6], [13], [17] and [18]). In this work we suggested a new robust logistic regression (RLR) 

based on robust ML estimator by using robust Mahalanobis distance (RMD). The RMD is computed 

by using the algorithm of stochastic gradient descent (SGD). The RMD depends on the reweighted 
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minimum volume ellipsoid (MVE) estimator. The MVE approach is suggested by Rousseeuw and Van 

zameron in 1999 which known as a high robust approach for multivariate location and shape 

parameters [14]. The MVE estimator is based on the smallest volume ellipsoid that covers h out of n 

observations. It is known as low bias and an affine equivariant, high breakdown robust estimator of 

multivariate location and shape. When we estimate the coefficients of LRM, HLPs should have large 

values of mahalanobis distances (MD), given as (see; [1], [14] and [17]): 

   
       ̂   ̂      ̂)          8 

where,  ̂ is a vector of sample mean,  ̂ is a sample variance- covariance matrix. To determine the cut-

off point value for the MD, we usually assume that     and    , because MD are invariant under 

affine transformation [4]. The classical tolerance ellipsoid is given by; 

    √  
              9 

The 97.5% quantile of the    distributed with d degree of freedom therefor, about 97.5% of 

observations belong to the ellipsoid. The classical MD is highly influenced by the presence of HLPs 

due to it depend on the classical estimates of location and covariance matrix [14]. In order to 

robustness the MD to be more resistant for HLPs, we consider robust estimators based on the MVE 

for mean and variance- covariance matrix. Then, the robust mahalanobis distance (RMD) is defined 

as following ([1], [4])  

    
       ̂    

  ̂   
      ̂   )     10 

where  ̂    and  ̂    are robust locations and shape estimates of the MVE, respectively. 

Assume J is a set of h points where, {| ̂ |  | ̂ | for all subsets K,    }, h=p+1, p is the number of 

explanatory variables,  then (see; [1], [4] and [13]); 

 ̂    [∑      ]                  11 

 ̂    [∑      ̂    
      ̂       ]     12 

By following weighted Bianco and Yohai (WBY) which defined as [4]: 
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 ̂   
      ∑        

       
           13 

where      is the function of the Bianco and Yohai (BY) estimator and the    is weighted function 

computed as following [4]:  

   {
                             

 

                                            
}        14 

The HLPs are determined by using RMD and the estimation subset is identified by MVE. Filzmoser et 

al. [2005] proposed a robust threshold based on the MVE robust estimator, adaptively from the data 

[8]. The procedure of MVE threshold is by finding the maximum positive between the theoretical 

distribution of chi-square and the empirical distribution of robust distance. Figure 2 demonstrate 

plots the 0.975 tolerance ellipse of the bivariate data set x. The ellipse is defined by those data points 

whose distance is equal to the square root of the 0.975 chi square quantile with 2 degrees of freedom. 

The robust ellipse is more resistant than classical ellipse for outliers in both types of datasets 

(Hawkins Brado Kass dataset and telephone dataset [2]). 

 

          

                    Hawkins, Bradu, Kass data set                                           Telephone dataset 

Figure (2): Tolerance ellipse (97.5%) for Hawkins Bradu Kass and Telephone datasets 

4.   Monte Carlo Simulation Study 

In this section, a Monte Carlo simulation study is applied to assess the performance of the 

proposed RLR method and compare it with some of the existed methods such as ML estimator and 

robust M-estimator in LRM. The LRM is generated by following Croux and Haesbroeck (2003) [6], 
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with two predictors normally distributed,                   and the response variable is defined 

as:  

   {
                

                
}                   15 

We assumed the vector of true parameter is equal to (1, 1.5, 2) with sample size                 . 

The error term    is generated as logistic distribution          . 

To test the robustness of the methods, we contaminated the generated data by different percentage 

high leverage points in the explanatory variables such as                            . The 

high leverage points denoted as   
  are generated according to following formula: 

   
                                16 

Where, we supposed that the value of   is equal to 10 to make a high leverage points in the 

explanatory variables. All of the simulation experiments are run included 1,000 replications for 

convergence. The bias and the mean squared error (MSE) were used to assess the performance of the 

methods. The bias and MSE are respectively defined as [1]: 

     ‖ 
 

 
∑  ̀     ‖                   17 

    ‖ 
 

 
∑  ̀     ‖

 

                18 

where ‖  ‖ is the Euclidean norm [6]. 

 

5.   Results and Interpretation 

Good estimators are having small values of bias and MSE or close to zero. The bias and the 

MSE for the methods of the study are demonstrated in Tables 1-4. Good estimators are having small 

values of bias and MSE or close to zero. From Table 1 with zero percentage of contaminated (clean 

data), we can see the Ml-estimator has relatively good performance in deferent size of samples 

compared with others due to there is no HLPs in the simulated data. Also we can see the M-estimator 

and RLR methods are fairly closed to Ml-estimator. Tables 2-4 show that the ML-estimator is 

destroyed because of the data set has HLPs. The bias and MSE of the ML- estimates were immediately 

affected by 1% percentage of contaminated of simulated data. Moreover, the ML-estimator becomes 
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worst when the percentage of contaminated data increase. The RLR method has the best 

performance through it has the lowest values of bias and MSE.   

 

Table1: MSE and bias values for all estimators with clean data 

n Criteria ML M-estimator RLR 

30 
Bias 0.0862 0.0884 0.0878 

MSE 0.2644 0.2668 0.2651 

50 
Bias 0.0837 0.0860 0.0851 

MSE 0.2620 0.2636 0.2627 

100 
Bias 0.0825 0.0853 0.0838 

MSE 0.2590 0.2614 0.2605 

200 
Bias 0.0811 0.0842 0.0830 

MSE 0.2583 0.2598 0.2592 

 

 

Table2: MSE and bias values for all estimators with 1% HLPs 

n Criteria ML M-estimator RLR 

30 
Bias 0.3385 0.1015 0.0991 

MSE 0.5311 0.2809 0.2798 

50 
Bias 0.3331 0.0988 0.0970 

MSE 0.4889 0.2783 0.2777 

100 
Bias 0.3055 0.0950 0.0935 

MSE 0.3030 0.2763 0.2749 

200 
Bias 0.2985 0.0957 0.0889 

MSE 0.2797 0.2735 0.2724 
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Table3: MSE and bias values for all estimators with 5% HLPs 

n Criteria ML M-estimator RLR 

30 
Bias 2.3277 0.8198 0.8167 

MSE 2.6395 0.8691 0.8674 

50 

Bias 2.2212 0.8176 0.8155 

MSE 2.6335 0.8484 0.8463 

100 

Bias 2.1015 0.8132 0.8117 

MSE 2.6100 0.8460 0.8441 

200 

Bias 1.9089 0.8124 0.8109 

MSE 1.9392 0.8458 0.8432 

 

 

Table4: MSE and bias values for all estimators with 10% HLPs 

n Criteria ML M-estimator RLR 

30 

Bias 6.3277 0.9211 0.9166 

MSE 4.6395 0.9750 0.9674 

50 

Bias 6.0012 0.9181 0.9154 

MSE 4.0335 0.9711 0.9460 

100 

Bias 4.1015 0.9159 0.9117 

MSE 3.6100 0.9683 0.9442 

200 

Bias 3.9089 0.9135 0.9108 

MSE 3.4392 0.9679 0.9432 
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6.   Conclusions 

 In this study we proposed a new robust technique to tackle the problem of presence of high leverage points in 

the logistic regression model. The suggested method depends on the robust mahalanobis distance. The robust 

mahalanobis distance is computed by using MVE based on stochastic gradient descent. The simulation study in 

different size of samples and different percentage of contaminated by high leverage points were used to examine the 

performance of suggested method. The results of simulation experiment show that the proposed method has a 

supreme performance when the logistic regression model contains high leverage points. 
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