University Of AL-Qadisiyah

Available online at www.qu.edu.iq/journalcm

 JOURNAL OF AL=QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS
Some Results on Symmetric Reverse $\boldsymbol{* - n}$-Derivations

Anwar Khaleel Faraj ${ }^{\text {a }}$, Ruqaya Saadi Hashem ${ }^{\text {b }}$
a Department of Applied Sciences , University of Technology, Baghdad, Iraq. Email : anwar_78_2004@yahoo.com
${ }^{\text {b }}$ Department of Applied Sciences , University of Technology, Baghdad, Iraq. Email : ruqaya.saadi94@gmail.com

ARTICLEINFO

Article history:

Received: 01/04/2019
Rrevised form: 18 /04/2019
Accepted : 23 /04/2019
Available online: 30 /05/2019

Keywords:

Prime ring, *-n-derivation, Reverse
*-n-derivation, Commuting mapping, Centralizing mapping, Permuting mapping.

Email addresses: ruqaya.saadi94@gmail.com

ABSTRACT

In this paper, the commuting and centralizing of symmetric reverse $*-n$-derivation on Lie ideal are studied and the commutativity of prime $*$-ring with the concept of symmetric reverse $*-n$-derivations are proved under certain conditions.

MSC: 13N15
\qquad

1. Introduction

Throughout this paper \mathcal{R} will represent an associative ring with center $\mathcal{Z}(\mathcal{R})$. For any $v, \gamma \in \mathcal{R}$, the commutator $v \gamma-\gamma v$ was denoted by [v, γ] and the anti-commutator $v \circ \gamma$ was denoted by $v \gamma+\gamma v$ [8]. A ring \mathcal{R} is said to be n-torsion free if $n a=0$ with $a \in \mathcal{R}$ then $a=0$, where n is nonzero integer [7]. Recall that a ring \mathcal{R} is said to be prime if $a \mathcal{R} b=0$ implies that either $a=0$ or $b=0$ for all $a, b \in \mathcal{R}$ [12] and it is semiprime if $a \mathcal{R} a=0$ implies that $a=0$ for all $a \in \mathcal{R}$ [7]. An additive mapping $\xi: \mathcal{R} \rightarrow \mathcal{R}$ is called a derivation if $\xi(v \gamma)=\xi(v) \gamma+v \xi(\gamma)$ for all $v, \gamma \in \mathcal{R}$ [11]. In [2] were introduced the concept of reverse derivations; an additive mapping $\xi: \mathcal{R} \rightarrow \mathcal{R}$ is called a reverse derivation if $\xi(v \gamma)=\xi(\gamma) v+\gamma \xi(v)$ for all $v, \gamma \in \mathcal{R}$. A map \mathcal{F} : $\mathcal{R} \rightarrow \mathcal{R}$ is said to be commuting (resp. centralizing) on \mathcal{R} if $[\mathcal{F}(v), v]=0(\operatorname{resp}$. $[\mathcal{F}(v), v] \in \mathcal{Z}(\mathcal{R}))$ for all $v \in \mathcal{R}$ [12]. An additive mapping $v \rightarrow v^{*}$ of \mathcal{R} into itself is called an involution if the following conditions are satisfied (i) $(v \gamma)^{*}=\gamma^{*} v^{*}$ (ii) $\left(v^{*}\right)^{*}=v$ for all $v, \gamma \in \mathcal{R}$ [8]. A ring equipped with an involution is known as ring with involution or $*$-ring. Let \mathcal{R} be a $*$-ring. An additive mapping $\xi: \mathcal{R} \rightarrow \mathcal{R}$ is called a $*$-derivation (resp. a reverse $*$-derivation) if $\xi(v \gamma)=\xi(v) \gamma^{*}+v \xi(\gamma)$ (resp. $\left.\xi(v \gamma)=\xi(\gamma) v^{*}+\gamma \xi(v)\right)$ for all $v, \gamma \in \mathcal{R}$ [2]. An additive subgroup \mathcal{U} of \mathcal{R} is called Lie ideal if whenever $u \in \mathcal{U}$, $\mathfrak{r} \in \mathcal{R}$ then $[u, r] \in \mathcal{U}$ [7]. A Lie ideal \mathcal{U} of \mathcal{R} is called a square closed Lie ideal of \mathcal{R} if $u^{2} \in \mathcal{U}$, for all $u \in \mathcal{U}$ [3]. A square closed Lie ideal \mathcal{U} of \mathcal{R} such that $\mathcal{U} \nsubseteq \mathcal{Z}(\mathcal{R})$ is called an admissible Lie ideal of \mathcal{R} [11]. Relationship between derivations and reverse derivations with examples were given by [13]. Recently there has been a great deal of work done by many authors on commuting and centralizing mappings on prime rings and semiprime rings, see ([4],[5],[6],[9],[10]). In [2] studied the notion of a $*$-derivation of \mathcal{R}. Recently [1] defined the concept of $*$ - n-derivation in prime $*$-rings and semiprime $*$-rings. Many authors have proved the commutativity of prime and semiprime rings admitting derivation ([11],[3]). In the present paper the commuting and centralizing of symmetric reverse $*-n$-derivation of Lie ideal are studied under certain conditions and on the other hand the commutativity of prime $*$-ring with symmetric reverse $*-n$-derivations that satisfying certain identities and some regarding results have also been discussed.
Throughout this paper consider n is a fixed positive integer.

2. Preliminaries

Some definitions and fundamental facts of symmetric reverse *- n-derivations are recalled in this section, which are principals of reverse left *- n-derivation.

Proposition (2.1) [8]

Let \mathcal{R} be a ring, then for all $v, \gamma, z \in \mathcal{R}$ we have

```
1- [ [v,\gammaz]= \gamma[v,z]+[v,\gamma]z
2- [v\gamma,z]=v[\gamma,z]+[v,z]\gamma
3- v\circ(\gammaz)=(v\circ\gamma)z-\gamma[v,z]=\gamma(v\circz)+[v,\gamma]z
4- (v\gamma)\circz=v(\gamma\circz)-[u,z] \gamma=(v\circz) }\gamma+v[\gamma,z
```


Definition (2.2) [9]

A map $\xi: \mathcal{R}^{n} \rightarrow \mathcal{R}$ is called permuting (or symmetric) if the equation $\xi\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\xi\left(v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right)$ holds, for all $v_{i} \in \mathcal{R}$ and for every permutation $\{\pi(1), \pi(2), \ldots, \pi(n)\}$.

Definition (2.3) [9]

A map $\delta: \mathcal{R} \rightarrow \mathcal{R}$ is define as $\delta(v)=\Omega(v, v, \ldots, v)$ for all $v \in \mathcal{R}$, where $\Omega: \mathcal{R}^{n} \rightarrow \mathcal{R}$ is called the trace of the symmetric mapping Ω.

It is clear that the trace function δ is an odd function if n is an odd number and is an even function if n is an even number.

Note (2.4) [9]

Let δ be a trace of an n-additive symmetric map $\delta: \mathcal{R}^{n} \rightarrow \mathcal{R}$, then δ satisfies the relation $\delta(v+\gamma)=\delta(v)+\delta(\gamma)+\sum_{k=1}^{n-1}\binom{n}{k} h_{k}(\mathrm{v}, \gamma)$ for all $v, \gamma \in \mathcal{R}$ such that $h_{k}(v, \gamma)=\Omega(v, v, \ldots, \mathrm{v}, \gamma, \gamma, \ldots, \gamma)$ where v appears $(n-k)$ times and γ appear k-times and $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.

Definition (2.5) [9]

An n-additive mapping $\xi: \mathcal{R}^{n} \rightarrow \mathcal{R}$ is said to be a symmetric $*-n$-derivation if the following equations are identical:
$\xi\left(v_{1} \gamma, v_{2}, \ldots, v_{n}\right)=\xi\left(v_{1}, v_{2}, \ldots, v_{n}\right) \gamma^{*}+v_{1} \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)$
$\xi\left(v_{1}, v_{2} \gamma, \ldots, v_{n}\right)=\xi\left(v_{1}, v_{2}, \ldots, v_{n}\right) \gamma^{*}+v_{2} \xi\left(v_{1}, \gamma, \ldots, v_{n}\right)$

Definition (2.6) [15]

An n-additive symmetric mapping $\xi: \mathcal{R}^{n} \rightarrow \mathcal{R}$ is said to be a symmetric reverse $*-n$-derivation if
$\xi\left(v_{1} \gamma, v_{2}, \ldots, v_{n}\right)=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v_{1}{ }^{*}+\gamma \xi\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
$\xi\left(v_{1}, v_{2} \gamma, \ldots, v_{n}\right)=\xi\left(v_{1}, \gamma, \ldots, v_{n}\right) v_{2}{ }^{*}+\gamma \xi\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
$\xi\left(v_{1}, v_{2}, \ldots, v_{n} \gamma\right)=\xi\left(v_{1}, v_{2}, \ldots, \gamma\right) v_{n}{ }^{*}+\gamma \xi\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, for all $v_{1} \gamma, v_{2}, \ldots, v_{n} \in \mathcal{R}$.

Example (2.7):

Consider $\mathcal{R}=\left\{\left.\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\}$, where \mathbb{C} is a ring of complex numbers and \mathcal{R} is a non-commutative ring under the usual addition and multiplication of matrices. A map $\xi: \mathcal{R}^{n} \rightarrow \mathcal{R}$ is define by ξ
$\left(\left(\begin{array}{ccc}0 & a_{1} & b_{1} \\ 0 & 0 & c_{1} \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & a_{2} & b_{2} \\ 0 & 0 & c_{2} \\ 0 & 0 & 0\end{array}\right), \ldots,\left(\begin{array}{ccc}0 & a_{n} & b_{n} \\ 0 & 0 & c_{n} \\ 0 & 0 & 0\end{array}\right)\right)=\left(\begin{array}{ccc}0 & 0 & c_{1} c_{2} \ldots c_{n} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, for all
$\left(\begin{array}{ccc}0 & a_{1} & b_{1} \\ 0 & 0 & c_{1} \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & a_{2} & b_{2} \\ 0 & 0 & c_{2} \\ 0 & 0 & 0\end{array}\right), \ldots,\left(\begin{array}{ccc}0 & a_{n} & b_{n} \\ 0 & 0 & c_{n} \\ 0 & 0 & 0\end{array}\right) \in \mathcal{R}$.
And $*$ is defined by $\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)^{*}=\left(\begin{array}{lll}0 & c & b \\ 0 & 0 & a \\ 0 & 0 & 0\end{array}\right)$. Then, ξ is a symmetric reverse $*-n$-derivations.
Lemma (2.8) [11]: Let \mathcal{R} be a prime ring and $\xi: \mathcal{R} \rightarrow \mathcal{R}$ be a derivation such that $a \in \mathcal{R}$. If $a \xi(v)=0$ holds for all $v \in \mathcal{R}$, then either $a=0$ or $\xi=0$.

Lemma (2.9) [14]: Let \mathcal{R} be a $n!$-torsion free ring and $\lambda \gamma_{1}+\lambda^{2} \gamma_{2}+\ldots+\lambda^{n} \gamma_{n}=0$ where $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in \mathcal{R}$ with $\lambda=1,2, \ldots, n$. Then $\gamma_{i}=0$, for all $i=1,2, \ldots, n$.

Lemma (2.10) [9]: Let \mathcal{R} be a n !-torsion free ring and $\lambda \gamma_{1}+\lambda^{2} \gamma_{2}+\ldots+\lambda^{n} \gamma_{n} \in Z(\mathcal{R})$ where $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in \mathcal{R}$ with $\lambda=1,2, \ldots, n$. Then $\gamma_{i} \in \mathcal{Z}$, for all $i=1,2, \ldots, n$.

3. The Main Results

The commuting and centralizing of symmetric reverse $*-n$-derivations are studied and investigate the commutativity of prime $*$-ring with symmetric reverse $*-n$-derivations that satisfying certain conditions to obtain main results.
In the following results, \mathcal{U} assumed as an admissible Lie ideal of n !-torsion free ring \mathcal{R} with $n \geq 2$.
Theorem (3.1): Let \mathcal{R} be a prime $*$-ring and $\Omega: \mathcal{U}^{n} \rightarrow \mathcal{R}$ be a symmetric reverse $*-n$-derivation associated with involution. If the trace δ of Ω satisfies $\left[\delta(v), v^{*}\right]=0$, for all $v \in \mathcal{U}$ then $\Omega\left(v_{1}, v_{2}, \ldots, v_{n}\right)=0$, for all $v_{i} \in \mathcal{U}, i=1,2, \ldots, n$.

Proof:

$\left[\delta(v), v^{*}\right]=0, \quad \forall v \in \mathcal{U}$
Substituting $v=v+\mu \gamma$ in equation (1) and using it and let $\mu(1 \leq \mu \leq n)$ be any integer, to obtain

$$
\begin{align*}
& \left.0=\left[\delta(v+\mu \gamma), v^{*}+\mu \gamma^{*}\right)\right] \\
& =\left[\delta(v)+\delta(\mu \gamma)+\sum_{s=1}^{n-1} C_{S} f_{s}(v, \mu \gamma), v^{*}+\mu \gamma^{*}\right] \\
& =\mu\left\{\left[\delta(v), \gamma^{*}\right]+\left[c_{1} f_{1}(v, \gamma), v^{*}\right]\right\}+\mu^{2}\left\{\left[c_{2} f_{2}(v, \gamma), v^{*}\right]+\left[c_{1} f_{1}(v, \gamma), \gamma^{*}\right]\right\}+\ldots+\mu^{n}\left\{\left[\delta(\gamma), v^{*}\right]+\left[c_{n-1} f_{n-1}(v, \gamma), \gamma^{*}\right]\right\} \tag{2}
\end{align*}
$$

Applying lemma (2.9) to equation (2), to get
$\left[\delta(v), \gamma^{*}\right]+\left[c_{1} f_{1}(v, \gamma), v^{*}\right]=0$
Replacing $\gamma=2 v \gamma$ in equation (3) then
$0=\left[\delta(v),(2 v \gamma)^{*}\right]+\left[c_{1} f_{1}(v, 2 v \gamma), v^{*}\right]$
$=\left[\delta(v), \gamma^{*}\right] v^{*}+c_{1}\left[f_{1}(v, \gamma), v^{*}\right] v^{*}+c_{1}\left[\gamma, v^{*}\right] \delta(v)+c_{1} \gamma\left[\delta(v), v^{*}\right]$
$=\left\{\left[\delta(v), \gamma^{*}\right]+c_{1}\left[f_{1}(v, \gamma), v^{*}\right]\right\} v^{*}+c_{1}\left[\gamma, v^{*}\right] \delta(v)$

By using equation (3) with the equation above to obtain
$c_{1}\left[\gamma, v^{*}\right] \delta(v)=0$
Using $n!$-torsion freeness, to get
$\left[\gamma, v^{*}\right] \delta(v)=0, \quad \forall v, \gamma \in \mathcal{U}$
Replacing $\gamma=2 \gamma w$ in equation (4) and using it, for all $w \in \mathcal{U}$ then
$0=\left[2 \gamma w, v^{*}\right] \delta(v)$
$=\left[\gamma, v^{*}\right] w \delta(v)$
By using lemma (2.8), that $\gamma \rightarrow\left[\gamma, \alpha^{*}(v)\right]$ is a derivation on \mathcal{U}.
Then $\delta(v)=0$
Now, for each value $l=1,2, \ldots, n$, let us denote
$T_{l}(v)=\Omega\left(v, v, \ldots, v_{l+1}, v_{l+2}, \ldots, v_{n}\right)$, where $v, v_{i} \in \mathcal{U}, i=l+1, l+2, \ldots, n$.
$T_{n}(v)=\delta(v)=0$
Let $\eta(1 \leq \eta \leq n)$ be any positive integer. From equation (7) to have
$0=T_{n}\left(\eta v+v_{n}\right)=T_{n}\left(v_{n}\right)+T_{n}(\eta v)+\sum_{l=1}^{n-1} \eta^{l} C_{l} T_{l}(v)=\delta\left(v_{n}\right)+\eta^{n} \delta(v)+\sum_{l=1}^{n-1} \eta^{l} C_{l} T_{l}(v)$
$=\sum_{l=1}^{n-1} \eta^{l} C_{l} T_{l}(v)=\eta^{1} C_{1} T_{1}(v)+\eta^{2} C_{2} T_{2}(v)+\ldots+\eta^{n-1} C_{n-1} T_{n-1}(v)$
Applying lemma (2.9) to equation (8) then
$c_{1} T_{1}(v)=0$ then $T_{1}(v)=0$ which implies that $\Omega\left(v, v_{2}, v_{3}, \ldots, v_{n}\right)=0$
$c_{2} T_{2}(v)=0$ then $T_{2}(v)=0$ which implies that $\Omega\left(v, v, v_{3}, \ldots, v_{n}\right)=0$
$c_{n-1} T_{n-1}(v)=0$ then $T_{n-1}(v)=0$ which implies that $\Omega\left(v, v, v, \ldots, v_{n}\right)=0$
Hence from above we have $T_{n-1}(v)=0$
Again let $\tau(1 \leq \tau \leq n-1)$ be any positive integer. Then from equation (9) to get
$0=T_{n-1}\left(\tau v+v_{n-1}\right)=T_{n-1}(\tau v)+T_{n-1}\left(v_{n-1}\right)+\sum_{t=1}^{n-2} \tau^{t} C_{t} T_{t}(v)$
$=\tau^{1} C_{1} T_{1}(v)+\tau^{2} C_{2} T_{2}(v)+\cdots+\tau^{n-2} C_{n-2} T_{n-2}(v)$
Again applying lemma (2.9) to equation (10) to get
$\Omega\left(v, v, \ldots, v, v_{n-1}, v_{n}\right)=T_{n-2}(v)=0$
Continuing the above process, finally we obtain $T_{1}(v)=0$, then
$\Omega\left(v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right)=0$
Replacing $v_{1}=2 v_{1} p_{1}$, where $p_{1} \in \mathcal{U}$ in equation (12) to get
$0=\Omega\left(2 v_{1} p_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right)=\alpha\left(p_{1}\right) \Omega\left(v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right)+v_{1} \Omega\left(p_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right)=v_{1} \Omega\left(p_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right)$... (13)

Applying lemma (2.8) to equation (13) then
$\Omega\left(p_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right)=0, \forall p_{1}, v_{i} \in \mathcal{U}$.
Replacing $v_{2}=v_{2} p_{2}, p_{2} \in \mathcal{U}$ in equation (13) to obtain
$0=\Omega\left(p_{1}, v_{2} p_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right)=\alpha\left(p_{2}\right) \Omega\left(p_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right)+v_{2} \Omega\left(p_{1}, p_{2}, \ldots, v_{n-1}, v_{n}\right)=v_{2} \Omega\left(p_{1}, p_{2}, \ldots, v_{n-1}, v_{n}\right)=$ $\Omega\left(p_{1}, p_{2}, \ldots, v_{n-1}, v_{n}\right), \forall p_{1}, p_{2}, v_{i} \in \mathcal{U}$

Repeating the above process we finally obtain $\Omega\left(p_{1}, p_{2}, \ldots, p_{n-1}, p_{n}\right)=0, \forall p_{i} \in \mathcal{U}$.
Theorem (3.2): Let \mathcal{R} be a semiprime $*$-ring and $\Omega: \mathcal{U}^{n} \rightarrow \mathcal{R}$ be a symmetric reverse $*-n$-derivation associated with involution. If the trace δ of Ω such that δ is commuting on \mathcal{U} and $\left[\delta(v), v^{*}\right] \in \mathcal{Z}(\mathcal{R})$, then $\left[\delta(v), v^{*}\right]=0$ for all $v \in \mathcal{U}$.

Proof:

$\left[\delta(v), v^{*}\right] \in Z(\mathcal{R}), \quad \forall v \in \mathcal{U}$
Substituting $v=v+\mu \gamma$ in equation (1) and using it and let $\mu(1 \leq \mu \leq n)$ be any integer, then

$$
\begin{align*}
& \mathcal{Z}(\mathcal{R}) \ni\left[\delta(v+\mu \gamma), v^{*}+\mu \gamma^{*}\right] \\
& =\left[\delta(v)+\delta(\mu \gamma)+\sum_{s=1}^{n-1} C_{s} f_{s}(v, \mu \gamma), v^{*}+\mu \gamma^{*}\right] \\
& =\left[\delta(v), v^{*}\right]+\mu\left\{\left[\delta(v), \gamma^{*}\right]+\left[c_{1} f_{1}(v, \gamma), v^{*}\right]\right\}+\mu^{2}\left\{\left[c_{2} f_{2}(v, \gamma), v^{*}\right]+\left[c_{1} f_{1}(v, \gamma), \gamma^{*}\right]\right\}+\cdots+\mu^{n}\left\{\left[\delta(\gamma), v^{*}\right]+\right. \\
& \left.\left[c_{n-1} f_{n-1}(v, y), \gamma^{*}\right]\right\}+\mu^{n+1}\left[\delta(\gamma), \gamma^{*}\right] \tag{2}
\end{align*}
$$

Commuting equation (2) with $\delta(v)$ to get
$\left[\left[\delta(v), v^{*}\right], \delta(v)\right]+\mu\left\{\left[\left[\delta(v), \gamma^{*}\right]+\left[c_{1} f_{1}(v, \gamma), v^{*}\right], \delta(v)\right]\right\}+\mu^{2}\left\{\left[\left[c_{2} f_{2}(v, \gamma), v^{*}\right]\right.\right.$
$\left.\left.\left[c_{1} f_{1}(v, \gamma), \gamma^{*}\right], \delta(v)\right]\right\}+\ldots+\mu^{n}\left\{\left[\left[\delta(\gamma), v^{*}\right]+\left[c_{n-1} f_{n-1}(v, \gamma), \gamma^{*}\right], \delta(v)\right]\right\}+\mu^{n+1}\left[\left[\delta(\gamma), \gamma^{*}\right], \delta(v)\right]=0$
Applying lemma (2.9) to equation (3) to have
$\left[\left[\delta(v), \gamma^{*}\right], \delta(v)\right]+\left[\left[c_{1} f_{1}(v, \gamma), v^{*}\right], \delta(v)\right]=0$
Replacing $\gamma=2 v^{2}$ in equation (4) to get

$$
\begin{align*}
& 0=\left[\left[\delta(v),\left(2 v^{2}\right)^{*}\right], \delta(v)\right]+\left[\left[c_{1} f_{1}\left(v, 2 v^{2}\right), v^{*}\right], \delta(v)\right] \\
& =\left[\left[\delta(v), v^{*}\right], \delta(v)\right] v^{*}+\left[\delta(v), v^{*}\right]\left[v^{*}, \delta(v)\right]+\left[v^{*}, \delta(v)\right]\left[\delta(v), v^{*}\right]+v^{*}\left[\left[\delta(v), v^{*}\right], \delta(v)\right]+c_{1}\left[\left[\delta(v), v^{*}\right], \delta(v)\right] v^{*}+ \\
& c_{1}\left[\delta(v), v^{*}\right]\left[v^{*}, \delta(v)\right]+c_{1}\left[\left[v, v^{*}\right], \delta(v)\right] \delta(v)+c_{1}\left[v, v^{*}\right][\delta(v), \delta(v)]+c_{1}[v, \delta(v)]\left[\delta(v), v^{*}\right]+c_{1} v\left[\left[\delta(v), v^{*}\right], \delta(v)\right] \\
& =-\left(c_{1}+2\right)\left[\delta(v), v^{*}\right]^{2}+c_{1}\left[\left[v, v^{*}\right], \delta(v)\right] \delta(v) \\
& =-\left(c_{1}+2\right)\left[\delta(v), v^{*}\right]^{2}+\left[[v, \delta(v)], v^{*}\right] \delta(v) \\
& =\left(c_{1}+2\right)\left[\delta(v), v^{*}\right]^{2} \tag{5}
\end{align*}
$$

Commuting equation (2) with v^{*} and using lemma (2.9) to get
$\left.0=\left[\left[\delta(v), \gamma^{*}\right], v^{*}\right]+\left[c_{1} f_{1}(v, \gamma), v^{*}\right], v^{*}\right]$
Replacing $\gamma=2 v \gamma$ in equation (6) to obtain

$$
0=\left[\left[\delta(v),(2 v \gamma)^{*}\right], v^{*}\right]+\left[\left[c_{1} f_{1}(v, 2 v \gamma), v^{*}\right], v^{*}\right]
$$

$=\left[\left[\delta(v), \gamma^{*}\right], v^{*}\right] v^{*}+\left[\gamma^{*}, v^{*}\right]\left[\delta(v), v^{*}\right]+\gamma^{*}\left[\left[\delta(v), v^{*}\right], v^{*}\right]+c_{1}\left[\left[f_{1}(v, \gamma), v^{*}\right], v^{*}\right] v^{*}+c_{1}\left[\left[\gamma, v^{*}\right], v^{*}\right] \delta(v)+c_{1}\left[\gamma, v^{*}\right]\left[\delta(v), v^{*}\right]+$ $c_{1}\left[\gamma, v^{*}\right]\left[\delta(x), v^{*}\right]+c_{1} \gamma\left[\left[\delta(v), v^{*}\right], v^{*}\right]$
$=\left\{\left[\left[\delta(v), \gamma^{*}\right], v^{*}\right]+c_{1}\left[\left[f_{1}(v, \gamma), v^{*}\right], v^{*}\right]\right\} v^{*}+\left[\gamma^{*}, v^{*}\right]\left[\delta(v), v^{*}\right]+c_{1}\left[\left[\gamma, v^{*}\right], v^{*}\right] \delta(v)+2 c_{1}\left[\gamma, v^{*}\right]\left[\delta(v), v^{*}\right]$

By using equation (6) with above equation to get
$\left[\gamma^{*}, v^{*}\right]\left[\delta(v), v^{*}\right]+c_{1}\left[\left[\gamma, v^{*}\right], v^{*}\right] \delta(v)+2 c_{1}\left[\gamma, v^{*}\right]\left[\delta(v), v^{*}\right]=0$
Replacing $\gamma=\delta(v)\left[\delta(v), v^{*}\right]$ in equation (7), to have
$0=\left[\left[\delta(v), v^{*}\right] \delta(v), v^{*}\right]\left[\delta(v), v^{*}\right]+c_{1}\left[\left[\delta(v)\left[\delta(v), v^{*}\right], v^{*}\right], v^{*}\right] \delta(v)+2 c_{1}\left[\delta(v)\left[\delta(v), v^{*}\right], v^{*}\right]\left[\delta(v), v^{*}\right]$
$=\left(2 c_{1}+1\right)\left[\delta(v), v^{*}\right]^{3}$
$=\left(2 c_{1}+1\right)\left[\delta(v), v^{*}\right]^{2} \mathcal{U}\left(2 c_{1}+1\right)\left[\delta(v), v^{*}\right]^{2}$
Since \mathcal{R} is a semiprime, then
$\left(2 c_{1}+1\right)\left[\delta(v), v^{*}\right]^{2}=0$, for all $v \in \mathcal{U}$
Combining equations (5) and (9) to get
$\left[\delta(v), v^{*}\right]^{2}=0$, for all $v \in \mathcal{U}$.
As the center of the semiprime ring contains no non-zero nilpotent elements, then $\left[\delta(v), v^{*}\right]=0$, for all $v \in \mathcal{U}$.

Theorem (3.3): Let \mathcal{R} be a prime $*$-ring and Ω : $\mathcal{U}^{n} \rightarrow \mathcal{R}$ be a non-zero symmetric reverse $*-n$-derivation associated with involution. If the trace δ of Ω is commuting on \mathcal{U} and $\left[\delta(v), v^{*}\right] \in \mathcal{Z}(\mathcal{R})$ for all $v \in \mathcal{U}$, then \mathcal{U} must be commutative.

Proof:

Suppose that \mathcal{U} is anon commutative prime ring. From Theorem (3.2) we have $\left[\delta(v), v^{*}\right]=0$ for all $v \in \mathcal{U}$. And from Theorem (3.1) we have $\Omega=0$ which it contradiction, hence \mathcal{U} is commutative prime ring.

Theorem (3.4): Let \mathcal{R} be a semiprime $*$-ring. If \mathcal{R} admits a symmetric reverse $*-n$-derivation ξ of \mathcal{R}, then ξ is a maps from \mathcal{R} to $\mathcal{Z}(\mathcal{R})$.

Proof: By hypothesis
$\xi\left(v \gamma, v_{2}, \ldots, v_{n}\right)=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v^{*}+\gamma \xi\left(v, v_{2}, \ldots, v_{n}\right)$
Let $\gamma=\gamma z$ in equation (1) to get
$\xi\left(v \gamma z, v_{2}, \ldots, v_{n}\right)=\xi\left(\gamma z, v_{2}, \ldots, v_{n}\right) v^{*}+\gamma z \xi\left(v, v_{2}, \ldots, v_{n}\right)$
$=\xi\left(z, v_{2}, \ldots, v_{n}\right) \gamma^{*} v^{*}+z \xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v^{*}+\gamma z \xi\left(v, v_{2}, \ldots, v_{n}\right)$, for all $v, \gamma, z, v_{2}, \ldots, v_{n} \in \mathcal{R} . \ldots$ (2)
Also, $\xi\left(v \gamma z, v_{2}, \ldots, v_{n}\right)=\xi\left(z, v_{2}, \ldots, v_{n}\right) \gamma^{*} v^{*}+z \xi\left(v \gamma, v_{2}, \ldots, v_{n}\right)$
$=\xi\left(z, v_{2}, \ldots, v_{n}\right) \gamma^{*} v^{*}+z \xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v^{*}+z \gamma \xi\left(v, v_{2}, \ldots, v_{n}\right)$
Comparing equations (2) and (3) to have
$[\gamma, z] \xi\left(v, v_{2}, \ldots, v_{n}\right)=0$
Replacing $\gamma=\xi\left(v, v_{2}, \ldots, v_{n}\right) \gamma$ in equation (4) and using it then
$\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right] \gamma \xi\left(v, v_{2}, \ldots, v_{n}\right)=0$

Let $\gamma=\gamma z$ in equation (5) to have
$\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right] \gamma z \xi\left(v, v_{2}, \ldots, v_{n}\right)=0$
Now, multiplying equation (5) from the right side by z, to have
$\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right] \gamma \xi\left(v, v_{2}, \ldots, v_{n}\right) z=0$
Comparing equations (6) and (7) then
$\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right] \gamma\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right]=0$, hence $\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right] \mathcal{R}\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right]=0$. Since \mathcal{R} is semiprime then $\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right]=0$ for all $v, z, v_{2}, \ldots, v_{n} \in \mathcal{R}$ and then ξ is a map from \mathcal{R} into $\mathcal{Z}(\mathcal{R})$.

Theorem (3.5): Let \mathcal{R} be a prime $*$-ring. If \mathcal{R} admits a symmetric reverse $*-n$-derivation ξ of \mathcal{R} such that $\xi\left(v, v_{2}, \ldots, v_{n}\right) \neq v$ and $\xi\left(v \gamma, v_{2}, \ldots, v_{n}\right)=\xi\left(v, v_{2}, \ldots, v_{n}\right) \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)$ for all $v, \gamma, v_{2}, \ldots, v_{n} \in \mathcal{R}$ then $\xi=0$.

Proof: By hypothesis
$\xi\left(v \gamma, v_{2}, \ldots, v_{n}\right)=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v^{*}+\gamma \xi\left(v, v_{2}, \ldots, v_{n}\right)=\xi\left(v, v_{2}, \ldots, v_{n}\right) \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)$
Let $\gamma=z \gamma$ in equation (1) to get
$\xi\left(z, v_{2}, \ldots, v_{n}\right) \xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v^{*}+z \gamma \xi\left(v, v_{2}, \ldots, v_{n}\right)=\xi\left(v, v_{2}, \ldots, v_{n}\right) \quad \xi\left(z, v_{2}, \ldots, v_{n}\right) \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=$ $\left.\xi\left(v z, v_{2}, \ldots, v_{n}\right) \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=\left\{\xi\left(z, v_{2}, \ldots, v_{n}\right) v^{*}+z \xi\left(v, v_{2}, \ldots, v_{n}\right)\right\} \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\right\}$

This implies that
$\xi\left(z, v_{2}, \ldots, v_{n}\right)\left[\xi\left(\gamma, v_{2}, \ldots, v_{n}\right), v^{*}\right]+z \xi\left(v, v_{2}, \ldots, v_{n}\right)\left(\gamma-\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\right)=0$
By theorem (3.4) the above equation becomes
$z \xi\left(v, v_{2}, \ldots, v_{n}\right)\left(\gamma-\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\right)=0$
Hence, $\xi\left(v, v_{2}, \ldots, v_{n}\right) z\left(\gamma-\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\right)=0$. We can written as $\xi\left(v, v_{2}, \ldots, v_{n}\right) \mathcal{R}\left(\gamma-\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\right)=0$. Since \mathcal{R} is prime then either $\xi\left(v, v_{2}, \ldots, v_{n}\right)=0$ or $\left(\gamma-\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\right)=0$, but $\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) \neq \gamma$, then $\xi\left(v, v_{2}, \ldots, v_{n}\right)=0$ for all $v, v_{2}, \ldots, v_{n} \in \mathcal{R}$.

Theorem (3.6): Let \mathcal{R} be a prime $*$-ring. If \mathcal{R} admits a reverse $*-n$-derivation ξ of \mathcal{R} such that $\xi\left(v, v_{2}, \ldots, v_{n}\right) \neq v^{*}$ and $\xi\left(v \gamma, v_{2}, \ldots, v_{n}\right)=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) \xi\left(v, v_{2}, \ldots, v_{n}\right)$ for all $v, \gamma, v_{2}, \ldots, v_{n} \in \mathcal{R}$ then $\xi=0$.

Proof: By hypothesis
$\xi\left(v \gamma, v_{2}, \ldots, v_{n}\right)=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v^{*}+\gamma \xi\left(v, v_{2}, \ldots, v_{n}\right)=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) \xi\left(v, v_{2}, \ldots, v_{n}\right)$
Replacing $v=v \gamma$ in equation (1) to get
$\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) \gamma^{*} v^{*}+\gamma \xi\left(\gamma, v_{2}, \ldots, v_{n}\right) \xi\left(v, v_{2}, \ldots, v_{n}\right)=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) \xi\left(v \gamma, v_{2}, \ldots, v_{n}\right)=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\left\{\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v^{*}+\right.$ $\left.\gamma \xi\left(v, v_{2}, \ldots, v_{n}\right)\right\}$

By theorem (3.4) then
$\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) \gamma^{*} v^{*}-\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) \xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v^{*}=0$
$\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\left(\gamma^{*}-\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\right) v^{*}=0$
Hence $\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v^{*}\left(\gamma^{*}-\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\right)=0$
We can written as $\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) \mathcal{R}\left(\gamma^{*}-\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\right)=0$. Since \mathcal{R} is prime then either $\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=0$ or $\left(\gamma^{*}-\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\right)=0$, but $\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) \neq \gamma^{*}$, then we have that $\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=0$ for all $\gamma, v_{2}, \ldots, v_{n} \in \mathcal{R}$.

Theorem (3.7): Let \mathcal{R} be a prime $*$-ring and $a \in \mathcal{R}$. If \mathcal{R} admits a symmetric reverse $*-n$-derivation ξ of \mathcal{R} and $\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), a\right]=0$, then $\xi(a)=0$ or $a \in Z(\mathcal{R})$.

Proof: By hypothesis
$\left[\xi\left(v \gamma, v_{2}, \ldots, v_{n}\right), a\right]=0$, for all $v, \gamma, v_{2}, \ldots, v_{n} \in \mathcal{R}$
That is
$\left[\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v^{*}+\gamma \xi\left(v, v_{2}, \ldots, v_{n}\right), a\right]=0$
Hence, $\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)\left[v^{*}, a\right]+[\gamma, a] \xi\left(v, v_{2}, \ldots, v_{n}\right)=0$
Replacing $\gamma=a$ and $v^{*}=v$ in equation (2) to get
$\xi\left(a, v_{2}, \ldots, v_{n}\right)[v, a]=0$
Replacing $v=v \gamma$ in equation (3) and using it then
$\xi\left(a, v_{2}, \ldots, v_{n}\right) v[\gamma, a]=0$
This implies that $\xi\left(a, v_{2}, \ldots, v_{n}\right) \mathcal{R}[\gamma, a]=0$. Since \mathcal{R} is prime then $\xi d\left(a, v_{2}, \ldots, v_{n}\right)=0$ for all $a, v_{2}, \ldots, v_{n} \in \mathcal{R}$ or $a \in Z(\mathcal{R})$.

Theorem (3.8): Let \mathcal{R} be a semiprime $*$-ring. If \mathcal{R} admits a symmetric reverse $*-n$-derivation d of \mathcal{R} then $\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right]=0$ for all $v, z, v_{2}, \ldots, v_{n} \in \mathcal{R}$.

Proof: By hypothesis
$\xi\left(v \gamma, v_{2}, \ldots, v_{n}\right)=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) v^{*}+\gamma \xi\left(v, v_{2}, \ldots, v_{n}\right)$
Substituting $v=v z$ in equation (1) to get
$\xi\left(v z \gamma, v_{2}, \ldots, v_{n}\right)=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)(v z)^{*}+\gamma \xi\left(v z, v_{2}, \ldots, v_{n}\right)$
$=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) z^{*} v^{*}+\gamma \xi\left(z, v_{2}, \ldots, v_{n}\right) v^{*}+\gamma z \xi\left(v, v_{2}, \ldots, v_{n}\right)$
Also $\xi\left(v z \gamma, v_{2}, \ldots, v_{n}\right)=\xi\left(z \gamma, v_{2}, \ldots, v_{n}\right) v^{*}+z \gamma \xi\left(v, v_{2}, \ldots, v_{n}\right)$
$=\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) z^{*} v^{*}+\gamma \xi\left(z, v_{2}, \ldots, v_{n}\right) v^{*}+z \gamma \xi\left(v, v_{2}, \ldots, v_{n}\right)$
Comparing equations (2) and (3) to get
$[\gamma, z] \xi\left(v, v_{2}, \ldots, v_{n}\right)=0$
Replacing $\gamma=\xi\left(v, v_{2}, \ldots, v_{n}\right) \gamma$ in equation (4) and using it then
$\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right] \gamma \xi\left(v, v_{2}, \ldots, v_{n}\right)=0$
Let $\gamma=\gamma z$ in equation (5) to have
$\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right] \gamma z \xi\left(v, v_{2}, \ldots, v_{n}\right)=0$
Now, multiplying equation (5) from the right side by z to have
$\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right] \gamma \xi\left(v, v_{2}, \ldots, v_{n}\right) z=0$
Comparing equations (6) and (7) then
$\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right] \gamma\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right]=0$
Hence, $\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right] \mathcal{R}\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right]=0$. Since \mathcal{R} is semiprime then $\left[\xi\left(v, v_{2}, \ldots, v_{n}\right), z\right]=0$, for all $v, z, v_{2}, \ldots, v_{n} \in \mathcal{R}$.

Theorem (3.9): Let \mathcal{R} be a prime $*$-ring. If \mathcal{R} admits a symmetric reverse $*-n$-derivation ξ of \mathcal{R} such that $\xi\left([v, \gamma], v_{2}, \ldots, v_{n}\right)=0$ for all $v, \gamma, v_{2}, \ldots, v_{n} \in \mathcal{R}$ then $\xi=0$ or \mathcal{R} is commutative.

Proof: By hypothesis
$\xi\left([v, \gamma], v_{2}, \ldots, v_{n}\right)=0$
Let $v=\gamma v$ in equation (1) and using it then
$[v, \gamma] \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=0$
Replacing $v=v z$ in equation (2) to have
$[v, \gamma] z \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)+v[z, \gamma] \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=0$
By using equation (2) the above equation becomes
$[v, \gamma] z \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=0$
This implies that $[v, \gamma] \mathcal{R} \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=0$. Since \mathcal{R} is prime then $[v, \gamma]=0$ and that means \mathcal{R} is commutative, or $\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=0$ for all $\gamma, v_{2}, \ldots, v_{n} \in \mathcal{R}$.

Theorem (3.10): Let \mathcal{R} be a prime $*$-ring. If \mathcal{R} admits a symmetric reverse $*-n$-derivation ξ of \mathcal{R} such that $\xi\left((v \circ \gamma), v_{2}, \ldots, v_{n}\right)=0$ for all $v, \gamma, v_{2}, \ldots, v_{n} \in \mathcal{R}$ then $\xi=0$ or \mathcal{R} is commutative.

Proof: By hypothesis
$\xi\left((v \circ \gamma), v_{2}, \ldots, v_{n}\right)=0$
Let $v=\gamma v$ in equation (1) and using it then
$(v \circ \gamma) \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=0$
Replacing $v=s v$ in equation (2) to have
$(s \circ \gamma) v \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=0$
Hence, $(s \circ \gamma) \mathcal{R} \xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=$. Since \mathcal{R} is prime then $(s \circ \gamma)=0$, replace $s=s z$ to get $s[z, \gamma]=0$. Now let $s=v s$ then $v s[z, \gamma]=0$, that $v \mathcal{R}[z, \gamma]=0$ for $0 \neq v \in \mathcal{R}$ and since \mathcal{R} is prime then \mathcal{R} is commutative, or $\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=0$ for all $\gamma, v_{2}, \ldots, v_{n} \in \mathcal{R}$.

Theorem (3.11): Let \mathcal{R} be a prime $*$-ring. If \mathcal{R} admits a symmetric reverse $*-n$-derivation ξ of \mathcal{R} such that $\xi\left(v, v_{2}, \ldots, v_{n}\right) \circ \gamma=0$ for all $v, \gamma, v_{2}, \ldots, v_{n} \in \mathcal{R}$ then $\xi=0$ or \mathcal{R} is commutative.

Proof: By hypothesis

$$
\begin{equation*}
\xi\left(v, v_{2}, \ldots, v_{n}\right) \circ \gamma=0 \tag{1}
\end{equation*}
$$

Replacing $v=z v$ in equation (1) and using it then

$$
\begin{equation*}
\xi\left(v, v_{2}, \ldots, v_{n}\right)\left[z^{*}, \gamma\right]-[v, \gamma] \xi\left(z, v_{2}, \ldots, v_{n}\right)=0 \tag{2}
\end{equation*}
$$

Let $v=\gamma$ and $z^{*}=z$ in equation (2) to get
$\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)[z, \gamma]=0$
Replacing $z=z v$ in equation (3) and using it then
$\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) z[v, \gamma]=0$, for all $v, \gamma, z, v_{2}, \ldots, v_{n} \in \mathcal{R}$
This implies that $\xi\left(\gamma, v_{2}, \ldots, v_{n}\right) \mathcal{R}[v, \gamma]=0$, since \mathcal{R} is prime then $\xi\left(\gamma, v_{2}, \ldots, v_{n}\right)=0$ for all $\gamma, v_{2}, \ldots, v_{n} \in \mathcal{R}$ or \mathcal{R} is commutative.

References

[1] M.Ashraf and M. A. siddeeque, "On *-n-Derivations in Rings with Involution", Georgian Math. J., 22(2015), No. 1, 9-18.
[2] M. Bresar, and J. Vukman, "On Some Additive Mappings in Rings with involution", Aequationes Math., 38(1989), 178-185.
[3] M. Bresar, and J. Vukman, "On Left Derivations and Related Mappings", Proc. Amer. Math. Soc., 110(1990), No. 1, 7-16.
[4] A. K. Faraj, and S. J. Shareef, "Jordan Permuting 3-Derivations of Prime Rings", Iraqi Journal of Science, 58(2017), No. 2A, 687-693.
[5] A. K. Faraj, and S. J. Shareef, " On Generalized Permuting Left 3-Derivations of Prime Rings", Engineering and Technology Journal, 35(2017), No. 1, Part B.
[6] A. Fosner, "Prime and Semiprime Rings with Symmetric Skew 3-Derivations", Aequat. Math., 87(2014), 191-200.
[7] I.N. Herstein, "Topics in Ring Theory", the University of Chicago Press, Chicago, 1969.
[8] K. H. Kim, and Y. H. Lee, "A Note on *-Derivation of Prime *-Rings", International Mathematical Forum, 12(2017), No. 8, 391-398.
[9] K. H. Park, "On Prime and Semiprime Rings with Symmetric n-Derivations", J.Chungcheong Math. Soc., 22(2009), No. 3, 451-458.
[10] C.J. Reddy, S. V. Kumar, and S. M. Rao, "Symmetric Skew 4- Derivations on Prime Rings", Global Jr. of pure and appl. Math., 12(2016), No. 1, 1013-1018.
[11] E. C. Posner, "Derivations in Prime Rings", proc. Amer. Math. Soc., 8(1957), 1093-1100.
[12] B.Satyanarayana, and M. Mastan, "Symmetric Skew Reverse n-Derivation on Prime Rings and Semiprime rings", Int. Journal of Math. Trends and Technology, 47(2017), No. 2, 81-86.
[13] M. Samman, and N. Alyamani, "Derivations and Reverse Derivations in Semiprime Rings", Int. Math. Forum, 2(2007), No. 39, 1895-1902.
[14] V. K. Yadav, and R. K. Sharma, "Skew n-Derivations on Prime and Semiprime Rings", Ann Univ Ferrara, 2016, Sep. 1-12.
[15] U. K. Sharma, and S. Kumar, "On generalized *-n-Derivation in *-Ring", Global Journal of Pure and Applied Math., 13(2017), No. 10, 7561-7572.

