

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Some Results on Symmetric Reverse *-n-Derivations

Anwar Khaleel Faraj^a, Ruqaya Saadi Hashem^b

^a Department of Applied Sciences , University of Technology, Baghdad, Iraq. Email : anwar_78_2004@yahoo.com

^b Department of Applied Sciences , University of Technology, Baghdad, Iraq. Email : ruqaya.saadi94@gmail.com

ARTICLEINFO

Keywords:

Permuting mapping.

Article history: Received: 01 /04/2019 Rrevised form: 18 /04/2019 Accepted : 23 /04/2019 Available online: 30 /05/2019

Prime ring, *-*n*-derivation, Reverse *-*n*-derivation, Commuting mapping, Centralizing mapping, ABSTRACT

In this paper, the commuting and centralizing of symmetric reverse *-*n*-derivation on Lie ideal are studied and the commutativity of prime *-ring with the concept of symmetric reverse *-*n*-derivations are proved under certain conditions.

MSC: 13N15

Corresponding author Ruqaya Saadi Hashem

Email addresses: ruqaya.saadi94@gmail.com

Communicated by Qusuay Hatim Egaar

1. Introduction

Throughout this paper \mathcal{R} will represent an associative ring with center $\mathcal{Z}(\mathcal{R})$. For any $v, \gamma \in \mathcal{R}$, the commutator $v\gamma - \gamma v$ was denoted by $[v, \gamma]$ and the anti-commutator $v \circ \gamma$ was denoted by $v\gamma + \gamma v$ [8]. A ring \mathcal{R} is said to be *n*-torsion free if na=0 with $a \in \mathcal{R}$ then a=0, where *n* is nonzero integer [7]. Recall that a ring \mathcal{R} is said to be prime if $a\mathcal{R}b=0$ implies that either a=0 or b=0 for all $a, b\in\mathcal{R}$ [12] and it is semiprime if $a\mathcal{R}a=0$ implies that a=0 for all $a \in \mathcal{R}$ [7]. An additive mapping $\xi: \mathcal{R} \to \mathcal{R}$ is called a derivation if $\xi(v\gamma) = \xi(v)\gamma + v \xi(\gamma)$ for all $v, \gamma \in \mathcal{R}$ [11]. In [2] were introduced the concept of reverse derivations; an additive mapping $\xi: \mathcal{R} \to \mathcal{R}$ is called a reverse derivation if $\xi(v\gamma) = \xi(\gamma)v + \gamma\xi(v)$ for all $v, \gamma \in \mathcal{R}$. A map $\mathcal{F}: \mathcal{R} \to \mathcal{R}$ is said to be commuting (resp. centralizing) on \mathcal{R} if $[\mathcal{F}(v), v] = 0$ (resp. $[\mathcal{F}(v), v] \in \mathcal{Z}(\mathcal{R})$) for all $v \in \mathcal{R}$ [12]. An additive mapping $v \to v^*$ of \mathcal{R} into itself is called an involution if the following conditions are satisfied (i) $(v\gamma)^* = \gamma^* v^*$ (ii) $(v^*)^* = v$ for all $v, \gamma \in \mathcal{R}$ [8]. A ring equipped with an involution is known as ring with involution or *-ring. Let \mathcal{R} be a *-ring. An additive mapping $\xi: \mathcal{R} \to \mathcal{R}$ is called a *-derivation (resp. a reverse *-derivation) if $\xi(v\gamma) = \xi(v)\gamma^* + v\xi(\gamma)$ (resp. $\xi(v\gamma) = \xi(\gamma)v^* + \gamma\xi(v))$ for all $v, \gamma \in \mathcal{R}$ [2]. An additive subgroup \mathcal{U} of \mathcal{R} is called Lie ideal if whenever $u \in \mathcal{U}$, $\mathbf{r} \in \mathcal{R}$ then $[u, \mathbf{r}] \in \mathcal{U}$ [7]. A Lie ideal \mathcal{U} of \mathcal{R} is called a square closed Lie ideal of \mathcal{R} if $u^2 \in \mathcal{U}$, for all $u \in \mathcal{U}$ [3]. A square closed Lie ideal \mathcal{U} of \mathcal{R} such that $\mathcal{U} \not\subseteq \mathcal{I}(\mathcal{R})$ is called an admissible Lie ideal of \mathcal{R} [11]. Relationship between derivations and reverse derivations with examples were given by [13]. Recently there has been a great deal of work done by many authors on commuting and centralizing mappings on prime rings and semiprime rings, see ([4],[5],[6],[9],[10]). In [2] studied the notion of a *-derivation of \mathcal{R} . Recently [1] defined the concept of *-n-derivation in prime *-rings and semiprime *-rings. Many authors have proved the commutativity of prime and semiprime rings admitting derivation ([11],[3]). In the present paper the commuting and centralizing of symmetric reverse *-n-derivation of Lie ideal are studied under certain conditions and on the other hand the commutativity of prime *-ring with symmetric reverse *-*n*-derivations that satisfying certain identities and some regarding results have also been discussed. Throughout this paper consider n is a fixed positive integer.

2. Preliminaries

Some definitions and fundamental facts of symmetric reverse *-*n*-derivations are recalled in this section, which are principals of reverse left *-*n*-derivation.

Proposition (2.1) [8]

Let \mathcal{R} be a ring, then for all $v, \gamma, z \in \mathcal{R}$ we have

- 1- $[v, \gamma z] = \gamma [v, z] + [v, \gamma] z$
- 2- $[v\gamma, z] = v[\gamma, z] + [v, z]\gamma$
- 3- $v \circ (\gamma z) = (v \circ \gamma)z \gamma [v, z] = \gamma (v \circ z) + [v, \gamma]z$
- 4- $(\upsilon\gamma)\circ z=\upsilon(\gamma\circ z) [\upsilon, z]\gamma=(\upsilon\circ z)\gamma+\upsilon[\gamma, z]$

Definition (2.2) [9]

A map $\xi: \mathbb{R}^n \to \mathbb{R}$ is called permuting (or symmetric) if the equation $\xi(v_1, v_2, ..., v_n) = \xi(v_{\pi(1)}, v_{\pi(2)}, ..., v_{\pi(n)})$ holds, for all $v_i \in \mathbb{R}$ and for every permutation $\{\pi(1), \pi(2), ..., \pi(n)\}$.

Definition (2.3) [9]

A map $\delta: \mathcal{R} \to \mathcal{R}$ is define as $\delta(v) = \Omega(v, v, ..., v)$ for all $v \in \mathcal{R}$, where $\Omega: \mathcal{R}^n \to \mathcal{R}$ is called the trace of the symmetric mapping Ω .

It is clear that the trace function δ is an odd function if n is an odd number and is an even function if n is an even number.

Note (2.4) [9]

Let δ be a trace of an n -additive symmetric map $\delta : \mathbb{R}^n \to \mathbb{R}$, then δ satisfies the relation $\delta(\upsilon+\gamma) = \delta(\upsilon) + \delta(\gamma) + \sum_{k=1}^{n-1} \binom{n}{k} h_k(\upsilon,\gamma)$ for all $\upsilon, \gamma \in \mathbb{R}$ such that $h_k(\upsilon,\gamma) = \Omega(\upsilon,\upsilon,\ldots,\upsilon,\gamma,\gamma,\ldots,\gamma)$ where υ appears (n-k)-times and γ appear k-times and $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Definition (2.5) [9]

An *n*-additive mapping $\xi: \mathcal{R}^n \to \mathcal{R}$ is said to be a symmetric *-*n*-derivation if the following equations are identical: $\xi(v_1\gamma, v_2, ..., v_n) = \xi(v_1, v_2, ..., v_n)\gamma^* + v_1\xi(\gamma, v_2, ..., v_n)$

 $\xi(v_1, v_2\gamma, \dots, v_n) = \xi(v_1, v_2, \dots, v_n)\gamma^* + v_2\xi(v_1, \gamma, \dots, v_n)$

 $\xi(v_1, v_2, ..., v_n \gamma) = \xi(v_1, v_2, ..., v_n) \gamma^* + v_n \xi(v_1, v_2, ..., \gamma), \text{ for all } v_1, \gamma, v_2, ..., v_n \in \mathcal{R}.$

Definition (2.6) [15]

An *n*-additive symmetric mapping $\xi: \mathcal{R}^n \to \mathcal{R}$ is said to be a symmetric reverse *-*n*-derivation if

$$\xi(v_1\gamma, v_2, \dots, v_n) = \xi(\gamma, v_2, \dots, v_n) v_1^* + \gamma \xi(v_1, v_2, \dots, v_n)$$

 $\xi(v_1, v_2\gamma, ..., v_n) = \xi(v_1, \gamma, ..., v_n) v_2^* + \gamma \xi(v_1, v_2, ..., v_n)$

•

 $\xi(v_1, v_2, \dots, v_n \gamma) = \xi(v_1, v_2, \dots, \gamma) v_n^* + \gamma \xi(v_1, v_2, \dots, v_n), \text{ for all } v_1 \gamma, v_2, \dots, v_n \in \mathcal{R}.$

Example (2.7):

Consider $\mathcal{R} = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} | a, b, c \in \mathbb{C} \right\}$, where \mathbb{C} is a ring of complex numbers and \mathcal{R} is a non-commutative ring

under the usual addition and multiplication of matrices. A map $\xi: \mathcal{R}^n \to \mathcal{R}$ is define by ξ

$$\begin{pmatrix} \begin{pmatrix} 0 & a_1 & b_1 \\ 0 & 0 & c_1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_2 & b_2 \\ 0 & 0 & c_2 \\ 0 & 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & a_n & b_n \\ 0 & 0 & c_n \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & c_1 c_2 \dots c_n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ for all}$$

$$\begin{pmatrix} 0 & a_1 & b_1 \\ 0 & 0 & c_1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_2 & b_2 \\ 0 & 0 & c_2 \\ 0 & 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & a_n & b_n \\ 0 & 0 & c_n \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{R}.$$
And * is defined by
$$\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}^* = \begin{pmatrix} 0 & c & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}. \text{ Then, } \xi \text{ is a symmetric reverse } *-n\text{-derivations.}$$

Lemma (2.8) [11]: Let \mathcal{R} be a prime ring and $\xi: \mathcal{R} \to \mathcal{R}$ be a derivation such that $a \in \mathcal{R}$. If $a\xi(v)=0$ holds for all $v \in \mathcal{R}$, then either a=0 or $\xi=0$.

Lemma (2.9) [14]: Let \mathcal{R} be a n!-torsion free ring and $\lambda \gamma_1 + \lambda^2 \gamma_2 + ... + \lambda^n \gamma_n = 0$ where $\gamma_1, \gamma_2, ..., \gamma_n \in \mathcal{R}$ with $\lambda = 1, 2, ..., n$. Then $\gamma_i = 0$, for all i = 1, 2, ..., n.

Lemma (2.10) [9]: Let \mathcal{R} be a n!-torsion free ring and $\lambda \gamma_1 + \lambda^2 \gamma_2 + ... + \lambda^n \gamma_n \in \mathcal{Z}(\mathcal{R})$ where $\gamma_1, \gamma_2, ..., \gamma_n \in \mathcal{R}$ with $\lambda = 1, 2, ..., n$. Then $\gamma_i \in \mathcal{Z}$, for all i = 1, 2, ..., n.

3. The Main Results

The commuting and centralizing of symmetric reverse *-n-derivations are studied and investigate the commutativity of prime *-ring with symmetric reverse *-n-derivations that satisfying certain conditions to obtain main results.

In the following results, \mathcal{U} assumed as an admissible Lie ideal of n!-torsion free ring \mathcal{R} with $n \geq 2$.

Theorem (3.1): Let \mathcal{R} be a prime *-ring and $\Omega: \mathcal{U}^n \to \mathcal{R}$ be a symmetric reverse *-*n*-derivation associated with involution. If the trace δ of Ω satisfies $[\delta(v), v^*]=0$, for all $v \in \mathcal{U}$ then $\Omega(v_1, v_2, ..., v_n)=0$, for all $v_i \in \mathcal{U}$, i=1,2,...,n.

Proof:

$$[\delta(v), v^*] = 0, \quad \forall v \in \mathcal{U} \qquad \dots (1)$$

Substituting $v=v+\mu\gamma$ in equation (1) and using it and let $\mu(1 \le \mu \le n)$ be any integer, to obtain

$$\begin{aligned} 0 &= [\delta(v + \mu\gamma), v^* + \mu\gamma^*)] \\ &= [\delta(v) + \delta(\mu\gamma) + \sum_{s=1}^{n-1} C_s f_s(v, \mu\gamma), v^* + \mu\gamma^*] \\ &= \mu\{[\delta(v), \gamma^*] + [c_1 f_1(v, \gamma), v^*]\} + \mu^2\{[c_2 f_2(v, \gamma), v^*] + [c_1 f_1(v, \gamma), \gamma^*]\} + \dots + \mu^n\{[\delta(\gamma), v^*] + [c_{n-1} f_{n-1}(v, \gamma), \gamma^*]\} \\ &\dots (2) \end{aligned}$$

Applying lemma (2.9) to equation (2), to get

$$[\delta(v), \gamma^*] + [c_1 f_1(v, \gamma), v^*] = 0 \qquad \dots (3)$$

Replacing $\gamma = 2v\gamma$ in equation (3) then

$$\begin{aligned} 0 &= [\delta(v), (2v\gamma)^*] + [c_1 f_1(v, 2v\gamma), v^*] \\ &= [\delta(v), \gamma^*] v^* + c_1 [f_1(v, \gamma), v^*] v^* + c_1 [\gamma, v^*] \delta(v) + c_1 \gamma [\delta(v), v^*] \\ &= \{ [\delta(v), \gamma^*] + c_1 [f_1(v, \gamma), v^*] \} v^* + c_1 [\gamma, v^*] \delta(v) \end{aligned}$$

By using equation (3) with the equation above to obtain $c_1[\gamma, \upsilon^*]\delta(\upsilon)=0$ Using *n*!-torsion freeness, to get $[\gamma, v^*]\delta(v)=0, \quad \forall v, \gamma \in \mathcal{U}$... (4) Replacing $\gamma = 2 \gamma w$ in equation (4) and using it, for all $w \in U$ then $0 = [2\gamma w, v^*]\delta(v)$ = $[\gamma, \upsilon^*] w \delta(\upsilon)$... (5) By using lemma (2.8), that $\gamma \to [\gamma, \alpha^*(v)]$ is a derivation on \mathcal{U} . Then $\delta(v)=0$... (6) Now, for each value l=1,2,...,n, let us denote $T_{l}(v) = \Omega(v, v, ..., v_{l+1}, v_{l+2}, ..., v_{n})$, where $v, v_{i} \in U, i = l + 1, l + 2, ..., n$. $T_n(v) = \delta(v) = 0$... (7) Let $\eta(1 \le \eta \le n)$ be any positive integer. From equation (7) to have $0 = T_n(\eta v + v_n) = T_n(v_n) + T_n(\eta v) + \sum_{l=1}^{n-1} \eta^l C_l T_l(v) = \delta(v_n) + \eta^n \delta(v) + \sum_{l=1}^{n-1} \eta^l C_l T_l(v)$ $=\sum_{l=1}^{n-1} \eta^{l} C_{l} T_{l}(v) = \eta^{1} C_{1} T_{1}(v) + \eta^{2} C_{2} T_{2}(v) + \dots + \eta^{n-1} C_{n-1} T_{n-1}(v)$... (8) Applying lemma (2.9) to equation (8) then $c_1T_1(v)=0$ then $T_1(v)=0$ which implies that $\Omega(v, v_2, v_3, \dots, v_n)=0$ $c_2T_2(v)=0$ then $T_2(v)=0$ which implies that $\Omega(v, v, v_3, \dots, v_n)=0$ $c_{n-1}T_{n-1}(v)=0$ then $T_{n-1}(v)=0$ which implies that $\Omega(v, v, v, \dots, v_n)=0$ Hence from above we have $T_{n-1}(v)=0$... (9) Again let $\tau(1 \le \tau \le n - 1)$ be any positive integer. Then from equation (9) to get $0=T_{n-1}(\tau v + v_{n-1})=T_{n-1}(\tau v) + T_{n-1}(v_{n-1}) + \sum_{t=1}^{n-2} \tau^t C_t T_t(v)$ $=\tau^{1}C_{1}T_{1}(v) + \tau^{2}C_{2}T_{2}(v) + \dots + \tau^{n-2}C_{n-2}T_{n-2}(v)$... (10) Again applying lemma (2.9) to equation (10) to get $\Omega(v, v, ..., v, v_{n-1}, v_n) = T_{n-2}(v) = 0$... (11) Continuing the above process, finally we obtain $T_1(v)=0$, then $\Omega(v_1, v_2, v_3, \dots, v_{n-1}, v_n) = 0$... (12) Replacing $v_1 = 2v_1p_1$, where $p_1 \in \mathcal{U}$ in equation (12) to get $0 = \Omega(2v_1p_1, v_2, v_3, \dots, v_{n-1}, v_n) = \alpha(p_1) \Omega(v_1, v_2, v_3, \dots, v_{n-1}, v_n) + v_1 \Omega(p_1, v_2, v_3, \dots, v_{n-1}, v_n) = v_1 \Omega(p_1, v_2, v_3, \dots, v_{n-1}, v_n)$... (13)

Applying lemma (2.8) to equation (13) then

 $\Omega(p_1, v_2, v_3, \dots, v_{n-1}, v_n) = 0, \forall p_1, v_i \in \mathcal{U}.$

Replacing $v_2 = v_2 p_2$, $p_2 \in U$ in equation (13) to obtain

 $\begin{array}{l} 0 = \Omega \ \left(p_1, v_2 p_2, v_3, \ldots, v_{n-1}, v_n \right) = \alpha(p_2) \ \Omega(p_1, v_2, v_3, \ldots, v_{n-1}, v_n) + v_2 \Omega(p_1, p_2, \ldots, v_{n-1}, v_n) = v_2 \Omega(p_1, p_2, \ldots, v_{n-1}, v_n) = \Omega(p_1, p_2, \ldots, v_{n-1}, v_n) \\ \Omega(p_1, p_2, \ldots, v_{n-1}, v_n), \ \forall p_1, p_2, v_i \in \mathcal{U} \end{array}$

Repeating the above process we finally obtain $\Omega(p_1, p_2, \dots, p_{n-1}, p_n) = 0, \forall p_i \in \mathcal{U}.$

Theorem (3.2): Let \mathcal{R} be a semiprime *-ring and $\Omega: \mathcal{U}^n \to \mathcal{R}$ be a symmetric reverse *-*n*-derivation associated with involution. If the trace δ of Ω such that δ is commuting on \mathcal{U} and $[\delta(v), v^*] \in \mathcal{Z}(\mathcal{R})$, then $[\delta(v), v^*]=0$ for all $v \in \mathcal{U}$.

Proof:

 $[\delta(v), v^*] \in \mathcal{Z}(\mathcal{R}), \quad \forall v \in \mathcal{U} \qquad \dots (1)$

Substituting $v=v+\mu\gamma$ in equation (1) and using it and let $\mu(1 \le \mu \le n)$ be any integer, then

 $\mathcal{Z}(\mathcal{R}) \ni [\delta(v + \mu \gamma), v^* + \mu \gamma^*]$

 $= [\delta(v) + \delta(\mu\gamma) + \sum_{s=1}^{n-1} C_s f_s(v, \mu\gamma), v^* + \mu\gamma^*]$

 $= [\delta(v), v^*] + \mu\{[\delta(v), \gamma^*] + [c_1 f_1(v, \gamma), v^*]\} + \mu^2\{[c_2 f_2(v, \gamma), v^*] + [c_1 f_1(v, \gamma), \gamma^*]\} + \dots + \mu^n\{[\delta(\gamma), v^*] + [c_{n-1} f_{n-1}(v, \gamma), \gamma^*]\} + \mu^{n+1}[\delta(\gamma), \gamma^*] \dots (2)$

Commuting equation (2) with $\delta(v)$ to get

$$\left[[\delta(v), v^*], \delta(v) \right] + \mu \left\{ \left[[\delta(v), \gamma^*] + [c_1 f_1(v, \gamma), v^*], \delta(v) \right] \right\} + \mu^2 \left\{ \left[[c_2 f_2(v, \gamma), v^*] \right] \\ \left[c_1 f_1(v, \gamma), \gamma^*], \delta(v) \right] + \dots + \mu^n \left\{ \left[[\delta(\gamma), v^*] + [c_{n-1} f_{n-1}(v, \gamma), \gamma^*], \delta(v) \right] \right\} + \mu^{n+1} \left[[\delta(\gamma), \gamma^*], \delta(v) \right] = 0$$
 (3)

Applying lemma (2.9) to equation (3) to have

 $[[\delta(v), \gamma^*], \delta(v)] + [[c_1 f_1(v, \gamma), v^*], \delta(v)] = 0 \qquad \dots (4)$

Replacing $\gamma = 2v^2$ in equation (4) to get

 $0 = [[\delta(v), (2v^2)^*], \delta(v)] + [[c_1f_1(v, 2v^2), v^*], \delta(v)]$

 $= [[\delta(v), v^*], \delta(v)]v^* + [\delta(v), v^*][v^*, \delta(v)] + [v^*, \delta(v)][\delta(v), v^*] + v^*[[\delta(v), v^*], \delta(v)] + c_1[[\delta(v), v^*], \delta(v)]v^* + c_1[\delta(v), v^*][v^*, \delta(v)] + c_1[[v, v^*], \delta(v)]\delta(v) + c_1[v, v^*][\delta(v), \delta(v)] + c_1[v, \delta(v)][\delta(v), v^*] + c_1v[[\delta(v), v^*], \delta(v)]$

 $= -(c_1 + 2)[\delta(v), v^*]^2 + c_1[[v, v^*], \delta(v)] \delta(v)$

 $=-(c_1+2)[\delta(v),v^*]^2+[[v,\delta(v)],v^*]\delta(v)$

 $=(c_1+2)[\delta(v),v^*]^2$... (5)

Commuting equation (2) with v^* and using lemma (2.9) to get

 $0 = [[\delta(v), \gamma^*], v^*] + [c_1 f_1(v, \gamma), v^*], v^*] \qquad \dots (6)$

Replacing $\gamma = 2v\gamma$ in equation (6) to obtain

 $0 = [[\delta(v), (2v\gamma)^*], v^*] + [[c_1f_1(v, 2v\gamma), v^*], v^*]$

 $= \left[[\delta(v), \gamma^*], v^* \right] v^* + [\gamma^*, v^*] \left[\delta(v), v^* \right] + \gamma^* \left[[\delta(v), v^*], v^* \right] + c_1 [[f_1(v, \gamma), v^*], v^*] v^* + c_1 [[\gamma, v^*], v^*] \delta(v) + c_1 [\gamma, v^*] [\delta(v), v^*] + c_1 [\gamma, v^*] [\delta(v), v^*] + c_1 [\gamma, v^*] [\delta(v), v^*] + c_1 [[\delta(v), v^*], v^*] \right]$

 $=\{\left[[\delta(v),\gamma^*],v^*\right]+c_1\left[[f_1(v,\gamma),v^*],v^*\right]\}v^*+[\gamma^*,v^*][\delta(v),v^*]+c_1\left[[\gamma,v^*],v^*\right]\delta(v)+2c_1[\gamma,v^*][\delta(v),v^*]\right]$

By using equation (6) with above equation to get

 $[\gamma^{*}, v^{*}][\delta(v), v^{*}] + c_{1}[[\gamma, v^{*}], v^{*}]\delta(v) + 2c_{1}[\gamma, v^{*}][\delta(v), v^{*}] = 0 \qquad ... (7)$ Replacing $\gamma = \delta(v)[\delta(v), v^{*}]$ in equation (7), to have $0 = [[\delta(v), v^{*}]\delta(v), v^{*}][\delta(v), v^{*}] + c_{1}[[\delta(v)[\delta(v), v^{*}], v^{*}]\delta(v) + 2c_{1}[\delta(v)[\delta(v), v^{*}], v^{*}][\delta(v), v^{*}]$ $= (2c_{1} + 1)[\delta(v), v^{*}]^{3} \qquad ... (8)$ $= (2c_{1} + 1)[\delta(v), v^{*}]^{2}\mathcal{U} (2c_{1} + 1)[\delta(v), v^{*}]^{2}$ Since \mathcal{R} is a semiprime, then $(2c_{1} + 1)[\delta(v), v^{*}]^{2} = 0, \text{ for all } v \in \mathcal{U} \qquad ... (9)$ Combining equations (5) and (9) to get $[\delta(v), v^{*}]^{2} = 0, \text{ for all } v \in \mathcal{U}.$

As the center of the semiprime ring contains no non-zero nilpotent elements, then $[\delta(v), v^*]=0$, for all $v \in \mathcal{U}$.

Theorem (3.3): Let \mathcal{R} be a prime *-ring and $\Omega: \mathcal{U}^n \to \mathcal{R}$ be a non-zero symmetric reverse *-*n*-derivation associated with involution. If the trace δ of Ω is commuting on \mathcal{U} and $[\delta(v), v^*] \in \mathcal{Z}(\mathcal{R})$ for all $v \in \mathcal{U}$, then \mathcal{U} must be commutative.

Proof:

Suppose that \mathcal{U} is anon commutative prime ring. From Theorem (3.2) we have $[\delta(v), v^*]=0$ for all $v \in \mathcal{U}$. And from Theorem (3.1) we have $\Omega=0$ which it contradiction, hence \mathcal{U} is commutative prime ring.

Theorem (3.4): Let \mathcal{R} be a semiprime *-ring. If \mathcal{R} admits a symmetric reverse *- *n*-derivation ξ of \mathcal{R} , then ξ is a maps from \mathcal{R} to $\mathcal{Z}(\mathcal{R})$.

Proof: By hypothesis

 $\xi(v\gamma, v_2, ..., v_n) = \xi(\gamma, v_2, ..., v_n) v^* + \gamma \xi(v, v_2, ..., v_n)$...(1)

Let $\gamma = \gamma z$ in equation (1) to get

 $\xi(\upsilon\gamma z,\upsilon_2,\ldots,\upsilon_n) = \xi(\gamma z,\upsilon_2,\ldots,\upsilon_n) \upsilon^* + \gamma z \xi(\upsilon,\upsilon_2,\ldots,\upsilon_n)$

 $=\xi(z,v_2,\ldots,v_n)\,\gamma^*\,v^*+z\xi(\gamma,v_2,\ldots,v_n)\,v^*+\gamma z\xi(v,v_2,\ldots,v_n),\,\text{for all }v,\gamma,z,v_2,\ldots,v_n\in\mathcal{R}.\ldots(2)$

Also, $\xi(v\gamma z, v_2, \dots, v_n) = \xi(z, v_2, \dots, v_n) \gamma^* v^* + z\xi(v\gamma, v_2, \dots, v_n)$

$$=\xi(z, v_2, ..., v_n) \gamma^* v^* + z\xi(\gamma, v_2, ..., v_n) v^* + z\gamma\xi(v, v_2, ..., v_n) \qquad ... (3)$$

Comparing equations (2) and (3) to have

 $[\gamma, z]\xi(v, v_2, ..., v_n) = 0$... (4)

Replacing $\gamma = \xi(v, v_2, ..., v_n)\gamma$ in equation (4) and using it then

 $[\xi(v, v_2, ..., v_n), z]\gamma\xi(v, v_2, ..., v_n) = 0 \qquad ... (5)$

Let $\gamma = \gamma z$ in equation (5) to have

 $[\xi(v, v_2, ..., v_n), z]\gamma z \xi(v, v_2, ..., v_n) = 0 \qquad ... (6)$

Now, multiplying equation (5) from the right side by z, to have

 $[\xi(v, v_2, ..., v_n), z]\gamma\xi(v, v_2, ..., v_n)z=0 \qquad ...(7)$

Comparing equations (6) and (7) then

 $[\xi(v, v_2, ..., v_n), z]\gamma[\xi(v, v_2, ..., v_n), z]=0$, hence $[\xi(v, v_2, ..., v_n), z]\mathcal{R}[\xi(v, v_2, ..., v_n), z]=0$. Since \mathcal{R} is semiprime then $[\xi(v, v_2, ..., v_n), z]=0$ for all $v, z, v_2, ..., v_n \in \mathcal{R}$ and then ξ is a map from \mathcal{R} into $\mathcal{Z}(\mathcal{R})$.

Theorem (3.5): Let \mathcal{R} be a prime *-ring. If \mathcal{R} admits a symmetric reverse *-n-derivation ξ of \mathcal{R} such that $\xi(v, v_2, ..., v_n) \neq v$ and $\xi(v\gamma, v_2, ..., v_n) = \xi(v, v_2, ..., v_n)\xi(\gamma, v_2, ..., v_n)$ for all $v, \gamma, v_2, ..., v_n \in \mathcal{R}$ then $\xi = 0$.

Proof: By hypothesis

 $\xi(v\gamma, v_2, \dots, v_n) = \xi(\gamma, v_2, \dots, v_n)v^* + \gamma\xi(v, v_2, \dots, v_n) = \xi(v, v_2, \dots, v_n)\xi(\gamma, v_2, \dots, v_n) \quad \dots (1)$

Let $\gamma = z\gamma$ in equation (1) to get

 $\begin{aligned} & \{(z, v_2, \dots, v_n) \xi(\gamma, v_2, \dots, v_n) v^* + z\gamma \xi(v, v_2, \dots, v_n) = \xi(v, v_2, \dots, v_n) \} \\ & \{(vz, v_2, \dots, v_n) \xi(\gamma, v_2, \dots, v_n) = \{\xi(z, v_2, \dots, v_n) v^* + z\xi(v, v_2, \dots, v_n)\} \{(\gamma, v_2, \dots, v_n) \} \end{aligned}$

This implies that

 $\xi(z, v_2, \dots, v_n)[\xi(\gamma, v_2, \dots, v_n), v^*] + z\xi(v, v_2, \dots, v_n)(\gamma - \xi(\gamma, v_2, \dots, v_n)) = 0$

By theorem (3.4) the above equation becomes

 $z\xi(v,v_2,\ldots,v_n)(\gamma-\xi(\gamma,v_2,\ldots,v_n))=0$

Hence, $\xi(v, v_2, \dots, v_n) z (\gamma - \xi(\gamma, v_2, \dots, v_n)) = 0$. We can written as $\xi(v, v_2, \dots, v_n) \mathcal{R} (\gamma - \xi(\gamma, v_2, \dots, v_n)) = 0$. Since \mathcal{R} is prime then either $\xi(v, v_2, \dots, v_n) = 0$ or $(\gamma - \xi(\gamma, v_2, \dots, v_n)) = 0$, but $\xi(\gamma, v_2, \dots, v_n) \neq \gamma$, then $\xi(v, v_2, \dots, v_n) = 0$ for all $v, v_2, \dots, v_n \in \mathcal{R}$.

Theorem (3.6): Let \mathcal{R} be a prime * -ring. If \mathcal{R} admits a reverse * - n -derivation ξ of \mathcal{R} such that $\xi(v, v_2, \dots, v_n) \neq v^*$ and $\xi(v\gamma, v_2, \dots, v_n) = \xi(\gamma, v_2, \dots, v_n) \xi(v, v_2, \dots, v_n)$ for all $v, \gamma, v_2, \dots, v_n \in \mathcal{R}$ then $\xi = 0$.

Proof: By hypothesis

 $\xi(v\gamma, v_2, ..., v_n) = \xi(\gamma, v_2, ..., v_n)v^* + \gamma\xi(v, v_2, ..., v_n) = \xi(\gamma, v_2, ..., v_n)\xi(v, v_2, ..., v_n) \quad ... (1)$

Replacing $v = v\gamma$ in equation (1) to get

 $\xi(\gamma, v_2, \dots, v_n) \gamma^* v^* + \gamma \xi(\gamma, v_2, \dots, v_n) \\ \xi(v, v_2, \dots, v_n) = \xi(\gamma, v_2, \dots, v_n) \\ \xi(v, v_2, \dots, v_n) = \xi(\gamma, v_2, \dots, v_n) \\ \xi(\gamma, v_2, \dots,$

By theorem (3.4) then

 $\xi(\gamma, \upsilon_2, \ldots, \upsilon_n) \gamma^* \upsilon^* - \xi(\gamma, \upsilon_2, \ldots, \upsilon_n) \xi(\gamma, \upsilon_2, \ldots, \upsilon_n) \upsilon^* = 0$

 $\xi(\gamma, \upsilon_2, \dots, \upsilon_n)(\gamma^* - \xi(\gamma, \upsilon_2, \dots, \upsilon_n))\upsilon^* = 0$

Hence $\xi(\gamma, v_2, ..., v_n)v^*(\gamma^* - \xi(\gamma, v_2, ..., v_n)) = 0$

We can written as $\xi(\gamma, v_2, ..., v_n) \mathcal{R} (\gamma^* - \xi(\gamma, v_2, ..., v_n)) = 0$. Since \mathcal{R} is prime then either $\xi(\gamma, v_2, ..., v_n) = 0$ or $(\gamma^* - \xi(\gamma, v_2, ..., v_n)) = 0$, but $\xi(\gamma, v_2, ..., v_n) \neq \gamma^*$, then we have that $\xi(\gamma, v_2, ..., v_n) = 0$ for all $\gamma, v_2, ..., v_n \in \mathcal{R}$.

Theorem (3.7): Let \mathcal{R} be a prime *-ring and $a \in \mathcal{R}$. If \mathcal{R} admits a symmetric reverse *-*n*-derivation ξ of \mathcal{R} and $[\xi(v, v_2, ..., v_n), a] = 0$, then $\xi(a) = 0$ or $a \in \mathcal{Z}(\mathcal{R})$.

Proof: By hypothesis

 $[\xi(v\gamma, v_2, \dots, v_n), a] = 0, \text{ for all } v, \gamma, v_2, \dots, v_n \in \mathcal{R} \qquad \dots (1)$

That is

 $[\xi(\gamma, \upsilon_2, \dots, \upsilon_n)\upsilon^* + \gamma\xi(\upsilon, \upsilon_2, \dots, \upsilon_n), a] = 0$

Hence, $\xi(\gamma, v_2, ..., v_n)[v^*, a] + [\gamma, a]\xi(v, v_2, ..., v_n) = 0$... (2)

Replacing $\gamma = a$ and $v^* = v$ in equation (2) to get

 $\xi(a, v_2, \dots, v_n)[v, a] = 0$... (3)

Replacing $v = v\gamma$ in equation (3) and using it then

 $\xi(a, v_2, \dots, v_n)v[\gamma, a] = 0$

This implies that $\xi(a, v_2, ..., v_n) \mathcal{R}[\gamma, a] = 0$. Since \mathcal{R} is prime then $\xi d(a, v_2, ..., v_n) = 0$ for all $a, v_2, ..., v_n \in \mathcal{R}$ or $a \in \mathcal{Z}(\mathcal{R})$.

Theorem (3.8): Let \mathcal{R} be a semiprime *-ring. If \mathcal{R} admits a symmetric reverse *-*n*-derivation d of \mathcal{R} then $[\xi(v, v_2, ..., v_n), z] = 0$ for all $v, z, v_2, ..., v_n \in \mathcal{R}$.

Proof: By hypothesis

 $\xi(v\gamma, v_2, \dots, v_n) = \xi(\gamma, v_2, \dots, v_n)v^* + \gamma\xi(v, v_2, \dots, v_n) \qquad \dots (1)$

Substituting v = vz in equation (1) to get

$$\xi(\upsilon z\gamma, \upsilon_2, \dots, \upsilon_n) = \xi(\gamma, \upsilon_2, \dots, \upsilon_n)(\upsilon z)^* + \gamma \xi(\upsilon z, \upsilon_2, \dots, \upsilon_n)$$

$$=\xi(\gamma, v_2, ..., v_n)z^*v^* + \gamma\xi(z, v_2, ..., v_n)v^* + \gamma z\xi(v, v_2, ..., v_n)(2)$$

Also $\xi(\upsilon z \gamma, \upsilon_2, \dots, \upsilon_n) = \xi(z \gamma, \upsilon_2, \dots, \upsilon_n) \upsilon^* + z \gamma \xi(\upsilon, \upsilon_2, \dots, \upsilon_n)$

$$=\xi(\gamma, v_2, ..., v_n)z^*v^* + \gamma\xi(z, v_2, ..., v_n)v^* + z\gamma\xi(v, v_2, ..., v_n)(3)$$

Comparing equations (2) and (3) to get

$$[\gamma, z]\xi(v, v_2, ..., v_n) = 0$$
 ... (4)

Replacing $\gamma = \xi(v, v_2, ..., v_n)\gamma$ in equation (4) and using it then

$$[\xi(v, v_2, ..., v_n), z]\gamma\xi(v, v_2, ..., v_n) = 0 \qquad ... (5)$$

Let $\gamma = \gamma z$ in equation (5) to have

$$[\xi(v, v_2, ..., v_n), z] \gamma z \xi(v, v_2, ..., v_n) = 0 \qquad ... (6)$$

Now, multiplying equation (5) from the right side by z to have

$$[\xi(v, v_2, ..., v_n), z]\gamma\xi(v, v_2, ..., v_n)z=0 \qquad ...(7)$$

Comparing equations (6) and (7) then

 $[\xi(v, v_2, ..., v_n), z]\gamma[\xi(v, v_2, ..., v_n), z]=0$

Hence, $[\xi(v, v_2, \dots, v_n), z]\mathcal{R} [\xi(v, v_2, \dots, v_n), z] = 0$. Since \mathcal{R} is semiprime then $[\xi(v, v_2, \dots, v_n), z] = 0$, for all $v, z, v_2, \dots, v_n \in \mathcal{R}$.

Theorem (3.9): Let \mathcal{R} be a prime *-ring. If \mathcal{R} admits a symmetric reverse *-n-derivation ξ of \mathcal{R} such that $\xi([v, \gamma], v_2, ..., v_n)=0$ for all $v, \gamma, v_2, ..., v_n \in \mathcal{R}$ then $\xi=0$ or \mathcal{R} is commutative.

... (1)

Proof: By hypothesis

 $\xi([v, \gamma], v_2, \dots, v_n) = 0$

Let $v = \gamma v$ in equation (1) and using it then

 $[v, \gamma] \xi(\gamma, v_2, ..., v_n) = 0$... (2)

Replacing v = vz in equation (2) to have

 $[v, \gamma]z\xi(\gamma, v_2, \dots, v_n) + v[z, \gamma]\xi(\gamma, v_2, \dots, v_n) = 0$

By using equation (2) the above equation becomes

 $[v, \gamma] z \xi(\gamma, v_2, \dots, v_n) = 0$

This implies that $[v, \gamma] \mathcal{R}\xi(\gamma, v_2, ..., v_n) = 0$. Since \mathcal{R} is prime then $[v, \gamma] = 0$ and that means \mathcal{R} is commutative, or $\xi(\gamma, v_2, ..., v_n) = 0$ for all $\gamma, v_2, ..., v_n \in \mathcal{R}$.

Theorem (3.10): Let \mathcal{R} be a prime *-ring. If \mathcal{R} admits a symmetric reverse *-*n*-derivation ξ of \mathcal{R} such that $\xi((v \circ \gamma), v_2, ..., v_n) = 0$ for all $v, \gamma, v_2, ..., v_n \in \mathcal{R}$ then $\xi = 0$ or \mathcal{R} is commutative.

Proof: By hypothesis

 $\xi((v \circ \gamma), v_2, \dots, v_n) = 0 \qquad \dots (1)$

Let $v = \gamma v$ in equation (1) and using it then

 $(v \circ \gamma)\xi(\gamma, v_2, \dots, v_n) = 0 \qquad \dots (2)$

Replacing v = sv in equation (2) to have

 $(s \circ \gamma)v\xi(\gamma, v_2, \dots, v_n)=0$

Hence, $(s \circ \gamma)\mathcal{R} \xi(\gamma, v_2, ..., v_n)$ =. Since \mathcal{R} is prime then $(s \circ \gamma)$ =0, replace s=sz to get $s[z, \gamma]$ =0. Now let s=vs then $vs[z, \gamma]$ =0, that $v\mathcal{R} [z, \gamma]$ =0 for $0 \neq v \in \mathcal{R}$ and since \mathcal{R} is prime then \mathcal{R} is commutative, or $\xi(\gamma, v_2, ..., v_n)$ =0 for all $\gamma, v_2, ..., v_n \in \mathcal{R}$.

Theorem (3.11): Let \mathcal{R} be a prime *-ring. If \mathcal{R} admits a symmetric reverse *-*n*-derivation ξ of \mathcal{R} such that $\xi(v, v_2, ..., v_n) \circ \gamma = 0$ for all $v, \gamma, v_2, ..., v_n \in \mathcal{R}$ then $\xi = 0$ or \mathcal{R} is commutative.

Proof: By hypothesis

 $\xi(v, v_2, \dots, v_n) \circ \gamma = 0 \qquad \qquad \dots (1)$

Replacing v = zv in equation (1) and using it then

 $\xi(v, v_2, ..., v_n)[z^*, \gamma] - [v, \gamma]\xi(z, v_2, ..., v_n) = 0 \qquad ... (2)$

Let $v = \gamma$ and $z^* = z$ in equation (2) to get

 $\xi(\gamma, v_2, ..., v_n)[z, \gamma] = 0$... (3)

Replacing z=zv in equation (3) and using it then

 $\xi(\gamma, v_2, \dots, v_n) z[v, \gamma] = 0$, for all $v, \gamma, z, v_2, \dots, v_n \in \mathcal{R}$

This implies that $\xi(\gamma, v_2, ..., v_n) \mathcal{R}[v, \gamma] = 0$, since \mathcal{R} is prime then $\xi(\gamma, v_2, ..., v_n) = 0$ for all $\gamma, v_2, ..., v_n \in \mathcal{R}$ or \mathcal{R} is commutative.

References

[1] M.Ashraf and M. A. siddeeque, "On *-n-Derivations in Rings with Involution", Georgian Math. J., 22(2015), No. 1, 9–18.

[2] M. Bresar, and J. Vukman, "On Some Additive Mappings in Rings with involution", Aequationes Math., 38(1989), 178-185.

[3] M. Bresar, and J. Vukman, "On Left Derivations and Related Mappings", Proc. Amer. Math. Soc., 110(1990), No. 1, 7-16.

[4] A. K. Faraj, and S. J. Shareef, "Jordan Permuting 3-Derivations of Prime Rings", Iraqi Journal of Science, 58(2017), No. 2A, 687-693.

[5] A. K. Faraj, and S. J. Shareef, " On Generalized Permuting Left 3-Derivations of Prime Rings", Engineering and Technology Journal, 35(2017), No. 1, Part B.

[6] A. Fosner, "Prime and Semiprime Rings with Symmetric Skew 3-Derivations", Aequat. Math., 87(2014), 191-200.

[7] I.N. Herstein, "Topics in Ring Theory", the University of Chicago Press, Chicago, 1969.

[8] K. H. Kim, and Y. H. Lee, "A Note on *-Derivation of Prime *-Rings", International Mathematical Forum, 12(2017), No. 8, 391-398.

[9] K. H. Park, "On Prime and Semiprime Rings with Symmetric n-Derivations", J.Chungcheong Math. Soc., 22(2009), No. 3, 451-458.

[10] C.J. Reddy, S. V. Kumar, and S. M. Rao, "Symmetric Skew 4- Derivations on Prime Rings", Global Jr. of pure and appl. Math., 12(2016), No. 1, 1013-1018.

[11] E. C. Posner, "Derivations in Prime Rings", proc. Amer. Math. Soc., 8(1957), 1093 - 1100.

[12] B.Satyanarayana, and M. Mastan, "Symmetric Skew Reverse n-Derivation on Prime Rings and Semiprime rings", Int. Journal of Math. Trends and Technology, 47(2017), No. 2, 81-86.

[13] M. Samman, and N. Alyamani, "Derivations and Reverse Derivations in Semiprime Rings", Int. Math. Forum, 2(2007), No. 39, 1895-1902.

[14] V. K. Yadav, and R. K. Sharma, "Skew n-Derivations on Prime and Semiprime Rings", Ann Univ Ferrara, 2016, Sep. 1-12.

[15] U. K. Sharma, and S. Kumar, "On generalized *-n-Derivation in *-Ring", Global Journal of Pure and Applied Math., 13(2017), No. 10, 7561-7572.