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A B S T R A C T 

In this paper, we investigate the estimator of variance components of one-way repeated 
measurements model (RMM) using MINQUE-principle (Rao 1971a and Rao 1971b) and 
method of MINQUE (1) which using priori values for components of variance. 
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1. Introduction 

A models of repeated measurements (RMM) are widespread in statistical studies (life, health, social, agricultural 
and others). And since the study of estimating the components of variance is of great importance in statistical 
studies, there are many statistical methods for estimating these components. The interclass correlation model is 
a special case of repeated measurements model introduced by Wilks (1946). Vonesh and Chinchlli (1997) 
introduce univariate repeated measurements Model (called One-Way Repeated Measurement Model). AL-Mouel 
(2004) studied the multivariate repeated measurements models and comparison of estimators. Al-Mouel A. H. S. 
еand others (2017) studied Bayesian One- Way Repeated Measurements Model Based on Bayes Quadratic 
Unbiased Estimator. Al-Isawi JA. M. A. and Al-Mouel A. H. S. (2018) studied Best Quadratic Unbiased Estimator 
for Variance Component of One-Way Repeated Measurements Model, in this article we study the quadratic 
unbiased estimator for variance components of one-way repeated measurements model. Now we introduce 
some definitions and remarks which used in this article. 

Definition 1 [7]: For given matrix     of size       we called a matrix      of size       is Moore-Penrose 

generalized  inverse (MР-inverse) of    if satisfy the following  conditions 

 (a         ,                                         (b)           ,  

 (c)  matrix        is symmetric                (d) matrix      is symmetric. 

Definition 2 [7]: The Kronecker product (   of an       and     matrix   and   , is  denoted  by    . This  is 

an         matrix  with  the  (      block      ,  where           and              

                    have the following properties: 

1- (    (            
2- (       (     (     and    (     (     (     
3- (            and (            
4- (     (     (     (     
5-   [     ]  [         ] 
6-   (       (     (  . 

 

Remark 1: If    denotes to     vector of        denotes to the      matrix of      
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Remark 2: If    is any square matrix of  size     ,  then 
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2. The one-way repeated measurements model 
Consider the following linear model and parameterization for the one-way repeated measurement model with 

one between units factor incorporating univariate random effects. 

 
                       (      (               (1) 

where 

         is an index for an experimental unit within group  , 

         is an index for levels of thе between units factor (group), 

        is an index for levels of the within units factor (time), 

     is the responsе measurements at time   for unit   within group     

      is the overall mean, 

   
  is the added effect for treatment group   , 

  (  
  is the random effect due to experimental unit    within treatment group  , 

 
        is the added effect for time  , 

(       is the added effect for the group    time   interaction, and 

  
       is the random error on time   for unit   within group  . 

     For the parameterization to be of full rank, we impose the following set of conditions: 

 
∑         

 
       ∑                                                                  
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We assume that the      's and the   (  's  arе  independent with  

                  
       (    

      and        (    
        (    

                                      (   

 
We can write model (1) as follows 

                                                                                                       (4) 

Where    is    -dimensional response vector,  

  : is a        design  matrix,  

 : is a  (    (    -dimensional vector of fixed effects parameters,  

  : is a   -dimensional vector of random effects,  

 : is error term has length     with       (       
      ). 

And design matrix   of size     (    (      is   

14 
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Then from (3)   
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*(     (   is variance-covariance matrix). 

Lemma 1 [13]: Let      be MP-inverse of     and put       (     )          

    is a given      matrix and         
   Then with   [     ]  

and               
  we have                          

Proposition 1: For model (4) and using Lemma 1; If   [     ]                 
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It is clear that 
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Proposition 2:  For model (4) and using Lemma 1, with    [     ]  
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3.1- MINQUE for   
   

Let   be an          matrix;  then  a quadratic  estimator  for    
    is defined  as 

                                    ̂  
                                                                              (11) 

Note: For matrix   without loss of  generality, we can assume that    is a symmetric  matrix and nonnegative  

definite, to  make   ̂ 
   nonnegative  for  all   . 

When a ratio  
  
 

  
   is known which equal to   , or   

  and    
   are equal (    . 

We can write model (4) as follows 

                                                                                                                (12) 

Where             (        (     
 (         

Since  (        (     (  )       (       , then 

 ( ̂  
    (       [(        (      ] 

                       (               

                        (     (  ) 

                        
   ( (          

      ( ̂  
             

   (         
    (    

To make  ̂ 
  unbiased that  minimizes  the  norm  of matrix    must be have 

               
            ‖ ‖    (                                                    

                               (                          
       }        (13) 

                             
To solve this problem let we assume that 

                           [   ]       *
        
        

+                                      (14) 

Since          ,        and    is  a  symmetric  and nonnegative  matrix then 
                  and              and                                      (15) 
 
From (14) and (15) we have         which implies that problem  (13) becomes 
                  (                                                                                                   (16) 
under restrictions 
                                    and    (                                                              (17) 
 
To solve problems (16-17) using a Lagrange function for multiplier matrix (Lagrange multipliers technique), the 
Lagrange function can be defined as 

 (       
 

 
   (       (         (    (     

where    is       Lagrange  multiplier  matrix  and   is scalar . 
 
By using this formula, for any matrices        of  appropriate  size. 
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differentiate  function    with  respect  to   , 
 
For optimization  (16)  under  restrictions  (17)  is that  the  derivative         must  be equal to zero, 

                  
  

  
                                                                       (    

From equation (18) we have 

                                                                                                          (19) 

To find   and    in (19) , we using  the  conditions  in  (17) , we have 
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substituting the value of   (20)  in (19) , we have  
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3.2- MINQUE for   [  
      

 ]  
 

The derivation of the law is based on minimizing the Euclidean norm.  
If the mixed linear model is expressed as a matrix 

For model (4) we have that      (         
      

   
     

 ) ,   

    Such that      
    

    
    

   and                       (   

We can express the model (4) as  

                                                                                                                  (    

where   [      ] and    [      ]. The model (29) is called a mixed linear model. Thus generally we have 

 (      and     
      

                 
              is called the covariance matrix and the parameters 

  
    

  are the unknown components of variance whose values should be estimated. 

We can write a linear combination for the components of variance    
    by a quadratic 

form     , where   is a symmetric matrix chosen subject to the conditions which, guarantee the estimator’s 
unbiasedness and invariance we have 
 
                    (           

      
                                                         (30) 

                          (         (       

                                                              

Under unbiasedness and invariance, the estimator reduces to 

                                                                                                           (    

Where    [      ]
         is chosen to satisfy the restrictions 

                                           (  
                                       (    

Clear that:   has a normal distribution (since        (    
               (    

    . The components of variance are 
a linear function of  the natural estimated, so it should be       where   is known diagonal matrix.  
 
The difference between the proposed estimator (30) and the natural unbiased estimator 
 (      ) is 

                                (                                                                            (    

Remark 4: ‖      ‖    [(        ]=min.  (Rao1971a deduced )[9]. 

The MINQUE method tries to find minimize the difference in (33) with the restrictions in (32).  

To minimize the square of  Euclidean norm (‖ ‖  using (Remark 4) inasmuch 

‖      ‖    [(        ]    [(    ]    [  ]    

Where              

Inasmuch as   [  ] does not involve   , the problem of MINQUE reduces to minimizing    [(    ] with the 

conditions in (32) attained at, according to Rao [11] 

                                                                                                            (       

Where 

                        (   (               

And   [      ]
  is determined from the equations        , 
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with 

                       (    )    (                           

where   is the matrix in the model in (29) and   is a positive definite matrix. 

For the problem of MINQUE, choosing          or   (  
           ,  

where   [     ]
  are a priori ratios of unknown components of variance.  

On using (34), we have the MINQUE of     is given by 

               ̂         (                                                           (    

the estimator (35) can be written as 

               ̂                   [
       

       
]                                                   (36)  

On substituting       in (36), we have  

               ̂            ̂                                                                         (37) 

The solution vector (37) is unique if and only if the individual components are unbiased.  

Now since   
        

   not equal  

             
 

  

              
 

  

                                                                         (    

Then the difference in (33) is given by 

                    (                                                                                  (    

Where     (  
    

         [
  

   

   
  

] 

Now, the minimization of (39) using (Remark 4) is equivalent to minimizing   [(    ] under the restrictions in (32), 

Where    defined in (29) as. 

                          
      

      
 (   

  
 

  
                                                  (             

The matrix   in (40) have two unknown variance (  
          

Then according to Rao [10], we have two amendments to this problem: 

1.  If we have a priori knowledge of the approximate ratio 
  
 

  
  , we can substitute them in (40) and use the   thus 

computed like as estimator in (section 3.1). 
 

2. We can use a priori estimates in (40) and obtain MINQUEs of   
         

 

These estimates then may be substituted in (40) many times. The procedure is called iterative MINQUE or I-MINQUE 

(Rao and Klеffé,1988) [8]. In this procedure, the MINQUE estimator of the variance components can be obtained by 

solving the   system of equations (37) 
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Although the estimate of the variance component depends on a priori value of the human choice     as long as these 

a priori values do not depend on the experimental data, the MINQUE estimator is still unbiased. Choose any a priori 

    can be obtained the variance component estimate [  
 ]. New estimates can be obtained if the estimates are 

replaced with priori estimates for reevaluation value. This process is repeated until the new estimate is very close to 

the old estimate. This iterative estimation method is like to relative maximum likelihood estimator (REML) method, 

which is a result of the maximum likelihood estimate (EML). In other word, REML estimates and MINQUE estimates 

are relatively close. For more see [12]. 

3.3- MINQUE (1) for   
        

    

The choice of a priori    in (42) can based on experience or even on past analysis. The easier way is to take it all a 

priori values are 1 (    ). This method is called the MINQUE (1) method, and the variance component obtained is 

estimated metering is a MINQUE (1) estimate. 

  

The unbiased estimator of the MINQUE (1) {MINQUE on   =   } is, 
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4. Conclusions  
            The conclusions obtained throughout this work are as follows: 
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