Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.3 Year 2018 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Math Page 63-72

Areej .T/Ahmed .H/Baieda .H

Anti – fuzzy AT – ideals of AT – algebras

Areej Tawfeeq Hameed Ahmed Hamza Abed Baieda Hassan Hadi Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq. E-mail: areej.tawfeeq@uokufa.edu.iq or areej238@gmail.com

Recived : 3\5\2018		Revised ://	Accepted : 24\6\2018		
Available online :	6/8/2018				
DOI: 10.29304/jqcm./	2018.10.3.406				

Abstract.

In this paper , we introduce the notion of anti – fuzzy AT – ideals in AT – algebra, several appropriate examples are provided and theirsome properties are investigated. The image and the inverse imageof anti – fuzzy AT – ideals in AT – algebra are defined and how theimage and the inverse image of anti – fuzzy AT – ideals in AT – algebra become anti – fuzzy AT – ideals are studied. Moreover, the Cartesian product of anti – fuzzy AT – ideals are given .

Keywords : AT - ideal, anti - fuzzy AT - ideals, image and pre-image of anti - fuzzy AT - ideals.

Mathematics subject classification: 06F35, 03G25, 08A72.

1 Introduction

BCK – algebras form an important class of logical algebras introducedby K. Iseki [4] and was extensively investigated several by researchers. The lass of all BCK – algebras is quasi variety. J. Meng and Y. B. Jun posed an interesting problem (solved in[7]) whether the class of all BCK - algebras is a variety. In connection with this problem, Komori introduced in [6]a notion of BCC – algebras. W.A. Dudek (cf.[2],[5]) redefined the notion of BCC – algebras by using a dual form of the ordinary definition in he sense of Y. Komori and studied ideals and congruences of BCC-algebras. In ([10],[11]), C. Prabpayak and U. Leerawat introduced a new algebraic structure, which is called KU-algebra. They gave the concept of homomorphisms of KU – algebras and investigated some related properties. L.A. Zadeh [13] introduced the notion of fuzzy sets. At present this concept has been applied to many mathematical branches, such as group, functional analysis , probability theory, topology, and soon. In 1991, O.G. Xi [12] applied this concept to BCK algebras, and heintroduced the notion of fuzzy subalgebras (ideals) of the BCK – algebras with respect to minimum, and since then Jun et al studiedfuzzy ideals (cf.[1],[5],[12]), and moreover several fuzzystructures in BCC-algebras are considered (cf.[2],[6]). S. Mostafa , M. Abd-Elnaby, F. Abdel-Halim and A.T. Hameed (in [7]) introduced the notion of fuzzy KUS - ideals of KUS – algebras and they investigated severalbasic properties which are related to fuzzy KUS - ideals. they describedhow to deal with the homomorphism image and inverse image of fuzzy KUS - ideals. And in [8], the anti – fuzzy KUS – ideals of KUS – algebras is introduced. Several theorems are stated and proved. In [3], Areej Tawfeeq Hameed introduced and studied new algebraic structure, called AT algebra and investigate some of its properties. She introduced the notion of fuzzy AT - ideal of AT – algebra, several theorems, properties are stated and proved. In this paper, we introduce the notion of anti-

fuzzy AT – ideals of AT – algebras and then we study the homomorphism image and inverse image of anti – fuzzy

AT – ideals.We also prove that the Cartesian product of anti – fuzzy AT – ideals are anti – fuzzy AT – ideals .

2. Preliminaries

In this section we give some basic definitions and

preliminaries lemmas of AT - ideals and

fuzzy AT – ideals of AT – algebra.

Definition 2.1[3]. An **AT-algebra** is a nonempty set X with a constant (0) and a binary operation (*) satisfying the following axioms: for

all x, y, $z \in X$,

(i) $(x^*y)^*((y^*z)^*(x^*z))=0$,

(ii) 0* x =x,

(iii) $x^* 0 = 0$.

In X we can define a binary relation (\leq) by :x \leq y if and only if , y * x = 0.

Remark 2.2[3]. (X ;*, 0) is an AT – algebra if and only if, it satisfies that: for all x, y, $z \in X$, (i'): $(y * z) * (x * z) \le x * y$,

(ii): $x \le y$ if and only if, y * x = 0.

Example 2.3 [3]. Let $X = \{0, 1, 2, 3, 4\}$ in which (*) is defined by the following table:

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	3	4
2	0	1	0	3	3
3	0	0	2	0	2
4	0	0	0	0	0

It is easy to show that (X ;*, 0) is an AT – algebra. **Example 2.4[3].** Let $X = \{0, 1, 2, 3, 4\}$ be a set with the following table:

	*	0	1	2	3	4
	0	0	1	2	3	4
	1	0	0	2	3	4
2		0	1	0	3	3
	3	0	0	2	0	2
	4	0	0	0	0	0

Then (X; *, 0) is an AT – algebra.

Proposition 2.5 [3]. In any AT – algebra (X ;*, 0), the following properties holds: for all x, y, z $\in X$;

- a) z * z = 0,
- b) $z^*(x * z) = 0$,
- c) y * ((y * z) * z) = 0,
- d) x * y = 0 implies that x * 0 = y * 0,
- e) 0*x=0*y implies that x=y.

Proposition 2.6[3]. In any AT – algebra (X ;*, 0), the following properties holds: for all x, y, z

∈X;

- a) $x \le y$ implies that $y * z \le x * z$,
- b) $x \le y$ implies that $z * x \le z * y$

c) $z * x \le z * y$ implies that $x \le y$ (left cancellation law).

Proposition 2.7[3]. In any AT – algebra (X;*,

0), the following properties holds: for all x, y,z ∈X;
a) x = 0 *(0*x),

b) $x^* y \le z \text{ imply } z^* y \le x$.

Definition 2.8[3]. A nonempty subset S of an AT – algebra X is called **an** AT – subalgebra of AT – algebra X if $x*y \in S$, whenever x, $y \in S$.

Definition 2.9[3]. A nonempty subset I of an AT – algebra X is called **an AT-ideal of AT-algebra X** if it satisfies the following conditions: for all x, y, $z \in X$. AT₁) $0 \in I$;

AT₂) $x * (y * z) \in I$ and $y \in I$ imply $x * z \in I$.

Proposition 2.10[3]. Every AT – ideal of AT – algebra X is an AT – subalgebra.

Definition 2.11[3]. Let X be an AT – algebra.

A fuzzy set μ in X is called a fuzzy AT –

subalgebra of X if it satisfies the following

conditions: for all $x, y \in X$,

 $\mu(\mathbf{x} \ast \mathbf{y}) \geq \min \{ \mu(\mathbf{x}), \mu(\mathbf{y}) \}.$

Definition 2.12[3]. Let X be an AT – algebra.

A fuzzy set μ in X is called a fuzzy AT – ideal of X if it satisfies the following conditions: for all x, y and $z \in X$,

 $(AT_1) \ \mu(0) \ge \mu(x).$

(AT₂) μ (x * z) ≥ min { μ (x *(y * z)), μ (y)}.

Proposition 2.13[3]. Every fuzzy AT – ideal of AT – algebra X is fuzzy AT – subalgebra.

3. Anti-fuzzy AT-ideals of AT-algebras

In this section, we will introduce a new notion called an anti - fuzzy AT - ideal of AT - algebra and study several basic properties of it.

Definition 3.1[13]. Let X be a nonempty set, a

fuzzy set μ in X is a function $\mu : X \rightarrow [0, 1].$

Definition 3.2. Let X be an AT – algebra. A

fuzzy set μ in X is called an anti-fuzzy AT – ideal of X if it satisfies the following conditions: for all x, y and $z \in X$,

 $(AAT_1) \mu(0) \le \mu(x).$ $(AAT_2) \mu(x*z) \le \max \{ \mu(x*(y*z)), \mu(y) \}.$

Example 3.3. Let $X = \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	1	2	3
1	0	0	2	3
2	0	0	0	3
3	0	0	0	0

Then (X ;*, 0) is an AT – algebra. It is easy to show that I_1 ={0, 1} and I_2 ={0, 3} are AT-ideals of X .

Define a fuzzy set μ : X \rightarrow [0, 1] by μ (0) = t₁, μ (1)

$$= \mu(2) = \mu(3) = t_2$$
, where t_1 , $t_2 \in [0, 1]$

with $t_1 < t_2$.

Routine calculation gives that μ is an antifuzzy AT – ideal of AT – algebras X.

Lemma 3.4. Let μ be an anti-fuzzy AT – ideal

of AT – algebra X and if $x \leq y$, then $\mu(y) \leq \mu(x)$, for all $x, \, y \in \, X.$

Proof: Assume that $x \le y$, then y * x = 0, and $\mu(0 * y) = \mu(y) \le \max{\mu(0 * (x*y)), \mu(x)} = \max{\{\mu(0), \mu(x)\}} = \mu(x).$ Hence $\mu(y) \le \mu(x)$. \triangle

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.3 Year 2018 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Areej .T/Ahmed .H/Baieda .H

Proposition 3.5. Let μ be an anti- fuzzy AT – ideal of AT – algebra X. If the inequality $y * x \le z$ hold in X, then $\mu(x) \le \max \{ \mu(y), \mu(z) \}$. **Proof:** Assume that the inequality $y * x \le z$ hold in X, by lemma(3.4), $\mu(z) \le \mu(y * x) --- (1)$. By(AAT₂), $\mu(z * x) \le \max \{ \mu(z * (y * x)), \mu(y) \}$.Put z=0,then $\mu(0 * x) = \mu(x) \le \max \{ \mu(0 * (y * x)), \mu(y) \} = \max \{ \mu(y * x), \mu(y) \} --- (2) .$ From (1) and (2), we get $\mu(x) \le \max \{ \mu(y), \mu(z) \}$, for all x, y, $z \in X$. \triangle

Theorem 3.6. Let μ be an anti-fuzzy set in X then μ is an anti – fuzzy AT – ideal of X if and only if, it satisfies:

For all $\alpha \in [0, 1]$, $U(\mu, \alpha) \neq \emptyset$ implies $U(\mu, \alpha)$

is an AT – ideal of X----(A),

where $U(\mu, \alpha) = \{x \in X | \mu(x) \le \alpha\}.$

Proof: Assume that μ is an anti – fuzzy AT –

ideal of X, let $\alpha \in [0,1]$ be such that $U(\mu, \alpha) \neq \emptyset$,

and let $x,\,y\in X$ be such that $x\in U(\mu,\alpha)$, then

 $\mu(x) \leq \! \alpha and$ so by $(AAT_1), \mu(0) \leq \! \mu(x) \! \leq \! \alpha.$ Thus $0 \in U(\mu, \alpha)$.

Now let $(z * (y * x)), y \in U(\mu, \alpha)$. It follows from (AAT_2) that

$$\begin{split} & \mu\left(z^*x\right) \leq max\{\mu\left(z^*(y^*x)\right),\!\mu\left(y\right)\} = \alpha, \text{ so that } (z^*x) \in U(\mu,\alpha) \text{ . Hence } U(\mu,\alpha) \text{ is an } AT - \text{ ideal of } X. \end{split}$$

Conversely, suppose that μ satisfies (A), assume that (AAT₁) is false, then there exist $x \in X$ such that

 $\mu(0) > \mu(x)$. If we take $t = \frac{1}{2} (\mu(x) + \mu(0))$, then $\mu(0) > t$ and

$$\begin{split} &0 \leq \mu(x) < t \leq 1 \text{, thusx} \in U(\mu, t) \text{ and } U(\mu, t) \neq \varnothing. \text{As} \\ &U(\mu, t) \text{ is an } AT - \text{ideal of } X, \text{ we have } 0 \in \\ &U(\mu, t) \text{ , and so } \mu(0) \leq t. \text{This is a contradiction.} \\ &\text{Hence } \mu(0) \leq \mu(x) \text{ for all } x \in X. \text{ Now, assume} \\ &(AAT_2) \text{ is not true thenthere exist } x, y, z \in X \text{ such } \\ &\text{that} \\ &\mu(z*x) > \max\{\mu(z*(y*x)),\mu(y)\}, \\ &\text{taking } \beta_0 = \frac{1}{2} \left[\mu(z*x) + \max\{\mu(z*(y*x)),\mu(y)\}\right], \\ &\text{we have } \beta_0 \in [0, 1] \text{ and} \\ &\max\{\mu(z*(y*x)),\mu(y)\}, <\beta_0 < \mu(z*x), \text{ it follows } \\ &\text{that} \\ &\max\{\mu(z*(y*x)),\mu(y)\}, \in U(\mu,\beta_0) \text{ and } z*y \notin \\ &U(\mu,\beta_0) \quad \text{, this is a contradiction and therefore } \mu \\ &\text{ is an anti } - \text{ fuzzy } AT - \text{ ideal of } X. \ \Delta \end{split}$$

4. Characterization of anti-fuzzy ATideals by their level AT-ideals

Theorem 4.1. A fuzzy subset μ of an AT – algebra X is an anti – fuzzy AT – ideal of X if and only if, for every t \in [0,1], μ_t is an AT – ideal of X, where

 $\mu_t = \{x \in X | \mu(x) \le t\}.$

Proof: Assume that μ is an anti – fuzzy AT – ideal of X, by (AAT₁), we have $\mu(0) \leq \mu(x)$ for all $x \in X$, therefore $\mu(0) \leq \mu(x) \leq t$, for $x \in \mu_t$ and so $0 \in \mu_t$.

Let $(z * (y^*x)) \in \mu_t$ and $(y) \in \mu_t$, then $\mu(z^*(y^*x)) \leq t$ and $\mu(y) \leq t$,since μ is an anti – fuzzy AT – ideal it follows that $\mu(z * x) \leq \{\mu(z * (y^*x)), \mu(y)\} \leq t$ and that

 $(z * x) \in \mu_t \text{ .Hence } \mu_t \text{ is an } AT - \text{ ideal of } X.$ Conversely, we only need to show that (AAT_1) and (AAT_2) are true. If (AAT_1) is false, then there exist $x \in X$ such that $\mu(0) > \mu(x)$. If we take $t = \frac{1}{2} (\mu(x) + \mu(0))$, then $\mu(0) > t$ and $0 \le \mu(x) < t \le 1$ thus $x \in \mu_t$ and $\mu_t \neq \emptyset$. As μ_t is an AT - ideal of X, we have $0 \in \mu_t$ and so $\mu(0) \le t$. This is a contradiction. Now, assume (AAT_2) is not true, then there exist x, y and $z \in X$ such that, $\mu(z^*x) > \max\{\mu(z^*(y^*x)), \mu(y)\}$. Putting $t = \frac{1}{2} [\mu(z * x) + \max\{\mu(z * (y^*x)), \mu(y)\}], then \ \mu(z * x) > t and <math>0 \le \max\{\mu(z * (y^*x)), \mu(y)\}, < t \le 1$, hence $\mu(z * (y^*x)) < t$ and $\mu(y) < t$, which imply that $(z * y) \in \mu_t$ and $(y * x) \in \mu_t$, since μ_t is an anti - fuzzy AT -

ideal, it follows that $(z * x) \in \mu_t$ and that $\mu(z * x) \le t$, this is also a contradiction. Hence μ is an anti – fuzzy AT – ideal of X . \triangle

Corollary 4.2. If a fuzzy subset μ of AT – algebra X is an anti – fuzzy AT – ideal, then for every t \in Im(μ), μ , is an AT – ideal of X.

Definition 4.3. Let μ be an anti – fuzzy AT –

ideal of AT – algebra X, then the AT – ideal μ_t , t

 \in [0,1] are called level AT – ideals of μ .

Corollary 4.4. Let I be an AT – ideal of an AT – algebra X, then for any fixed number t in an open interval (0,1), there exist a anti – fuzzy AT – ideal μ of X such that $\mu_t = I$.

Proof: Define $\mu : X \rightarrow [0:1]$ by $\mu(x) =$ $\begin{cases}
0, & \text{if } x \in I; \\
t, & \text{if } x \notin I.
\end{cases}$ Where t is a fixed number in (0,1). Clearly, $\mu(0) \leq \mu$ (x) and we have one two level sets $\mu_0 = I$, $\mu_t = X$, which are AT – ideals of X, then from Theorem (4.1) μ is an anti – fuzzy AT – ideal of X. \triangle

5. Image and Pre-image of anti-fuzzy AT-ideals

Definition 5.1. $f : (X; *, 0) \rightarrow (Y; *`, 0`)$ be a mapping from a nonempty set X to a nonempty set Y. If β is a fuzzy subset of X, then the fuzzy subset μ of Y defined by: $f(\mu)(y) = \beta(y) =$

$$\begin{cases} \inf_{x \in f^{-1}(y)} \mu(x) & \text{if } f^{-1}(y) = \{x \in X, f(x) = y\} \neq \phi \\ 0 & \text{otherwise} \end{cases}$$

is said to be the image of μ under f. Similarly if μ is a fuzzy subset of Y, then the fuzzy subset $\mu = (\beta \circ f)$ in X (i.e., the fuzzy subset defined by $\mu(x) = \beta(f(x))$, for all $x \in X$) is called the pre-image of β under f.

Theorem 5.2. An into homomorphic pre-

image of anti – fuzzy AT – ideal is also an anti – fuzzy AT – ideal.

Proof: Let $f : (X; *, 0) \rightarrow (Y; *`, 0`)$ be an onto homomorphism of AT – algebras, β is an anti – fuzzy AT – ideal of Y and μ the pre-image of β under f, then $\beta(f(x)) = \mu(x)$, for all $x \in X$. Let $x \in X$, then $\mu(0)$ $= \beta(f(0)) < \beta(f(x)) = \mu(x)$. Now let x, y, $z \in X$, then $\mu(z*x) = \beta(f(z*x))$ $= \beta(f(z)*'f(x))$ $\leq \max\{\beta(f(z)*'f(y)),\beta(f(y)*'f(x))\}$ $= \max\{\beta(f(z*y)),\beta(f(y*x))\}$ $= \max\{\beta(f(z*y)),\beta(f(y*x))\}$ $= \max\{\mu(z*y),\mu(y*x)\}, \text{and the proof is completed. } \Delta$

Definition 5.3. An anti fuzzy subset μ of X has inf property if for any subset T of X, there exist $t_0 \in T$ such that $\mu(t) = \inf_{t \in T} \mu(t)$.

Theorem 5.4. Let $f : (X; *, 0) \rightarrow (Y; *`, 0`)$ be a homomorphism between AT – algebras X and Y respectively. For every anti – fuzzy AT – ideal μ in X, $f(\mu)$ is an anti – fuzzy AT – ideal of Y.

Proof: By definition $\beta(y') = f(\mu)(y') =$

 $\inf_{x \in f^{-1}(y)} \mu(x)$, for all $y' \in Y$ and $\emptyset = 0$.

We have to prove that $\beta(z' * x') \le \max \{\beta(z' * (y'*x')), \beta(y')\}$, for all x', y', z' $\in Y$.

Let $f : X \to Y$ be an onto homomorphism of AT – algebras, μ is an anti – fuzzy AT – ideal of X with inf property and β the image of μ under

f, since μ is anti – fuzzy AT – ideal of X, we have $\mu(0) \leq \mu(x)$ for all $x \in X$.

Note that $0 \in f^{-1}(0)$, where 0, 0'are the zero of X and Y, respectively.

Thus $\beta(0') = \inf_{t \in f^{-1}(x')} \mu(t) = \beta(x')$, for all $x \in X$, which implies that $\beta(0') \leq \inf_{t \in f^{-1}(x')} \mu(t) = \beta(x')$, for any $x' \in Y$. For any $x', y', z' \in Y$, let $x_0 \in f^{-1}(x')$, $y_0 \in f^{-1}(y'), z_0 \in f^{-1}(z')$ be such that $\mu(z_0 * (y_0 * x_0)) = \inf_{t \in f^{-1}(z'*(y'*x'))} \mu(t), \mu(y_0) =$ $\inf_{t \in f^{-1}(y')} \mu(t)$ and $\mu(z_0 * x_0) = \inf_{t \in f^{-1}(z'*x')} \mu(t)$. Then $\beta(z' * x') = \inf_{t \in f^{-1}(z'*x')} \mu(t) = \mu(z_0 * x_0)$ $\leq \max{\{\mu(z_0 * (y_0 * x_0)), \mu(y_0)\}}$ $= \max{[\inf_{t \in f^{-1}(z'*(y'*x')), \mu(t), \inf_{t \in f^{-1}(y')} \mu(t)]}$ $= \max{\{\beta(z' * (y'*x')), \beta(y')\}}.$ Hence β is an anti – fuzzy AT – ideal of Y. \triangle

6. Cartesian product of anti-fuzzy ATideals

Definition 6.1 ([1],[9]). A fuzzy relation R on any set S is a fuzzy subset R: $S \times S \rightarrow [0,1]$.

Definition 6.2 ([1]). If R is a fuzzy relation on sets S and β is a fuzzy subset of S, then R is a fuzzy relation on β if $R(x, y) \ge \max \{\beta(x), \beta(y)\}$, for all x, $y \in S$.

Definition 6.3([1]). Let μ and β be fuzzy subsets of a set S. The Cartesian product of μ and β is defined by $(\mu \times \beta)(x,y) = \max \{\mu(x), \beta(y)\}, for all <math>x, y \in S$.

Lemma 6.4([1]). Let S be a set and μ and β be fuzzy subsets of S. Then,

- (1) $\mu \times \beta$ is a fuzzy relation on S,
- (2) $(\mu \times \beta)_t = \mu_t \times \beta_t$, for all $t \in [0,1]$.

Definition 6.5([1]). Let S be a set and β be fuzzy subset of S. The strongest fuzzy relation on S, that is, a fuzzy relation on β is R_{β} given by $R_{\beta}(x,y) = \max \{\beta(x), \beta(y)\}$, for all $x, y \in S$.

Lemma 6.6([1]). For a given fuzzy subset β of a set S, let R_{β} be the strongest fuzzy relation on S. Then for $t \in [0,1]$, we have $(R_{\beta})_t = \beta_t \times \beta_t$.

 $\begin{array}{l} \label{eq:proposition 6.7.} \mbox{ For a given fuzzy subset β of} \\ & \mbox{ an } AT- \mbox{ algebra } X \ , \mbox{ let } R_{\beta} \ \mbox{ be the strongest} \\ & \mbox{ fuzzy relation on } X \ . \ \mbox{ If β is an anti - fuzzy } AT- \\ & \mbox{ ideal of } X \times X \ , \ \mbox{ then} \end{array}$

 $R_{\,\beta}\left(x,x\right)\geq\,R_{\,\beta}\ \left(0,0\right)$, for all $x\!\in\!X$.

Proof: Since R_{β} is a strongest fuzzy relation of $X \times X$, it follows from that, $R_{\beta}(x,x) = \max\{\beta(x), \beta(x)\} \ge \max\{\beta(0), \beta(0)\} = R_{\beta}$

(0,0), which implies that

 $\mathbf{R}_{\beta}(\mathbf{x},\mathbf{x}) \geq \mathbf{R}_{\beta}(0,0).$

 $\begin{array}{ll} \mbox{Proposition 6.8.} & \mbox{For a given fuzzy subset β of} \\ \mbox{an AT}-\mbox{algebra } X \ , \mbox{let R_β} \ \mbox{be the strongest} \\ \mbox{fuzzy relation on } X \ . \ \mbox{If R_β} \ \mbox{is an anti} -\ \mbox{fuzzy AT} - \\ \mbox{ideal of $X \times X$} \ , \ \mbox{then} \\ \mbox{\beta(0)} \leq \mbox{\beta(x)} \ , \ \mbox{for all $x \in X$} \ . \end{array}$

Proof: Since R_{β} is an anti – fuzzy AT – ideal

of $X \times X$, it follows from (AAT₁),

$$\begin{split} R_{\beta}\left(x,x\right) &\geq R_{\beta}\left(0,0\right) \text{,where } (0,0) \text{ is the zero element} \\ \text{of } X \times X \text{ . But this means that , } \max\left\{\beta(x),\,\beta(x)\right\} &\geq \\ \max\left\{\beta(0),\,\beta(0)\right\} \text{ which implies that } \beta(0) &\leq \beta(x) \text{ . } \bigtriangleup \end{split}$$

Remark 6.9([9]). Let X and Y be AT – algebras, we define (*) on $X \times Y$ by: for all(x,y),(u,v) $\in X \times Y$, (x,y) * (u,v) = (x * u,y * v). Then clearly ($X \times Y$; *.(0,0)) is anAT-algebra.

Theorem 6.10. Let μ and β be an anti – fuzzy AT – ideal of AT – algebra X . Then $\mu \times \beta$ is an anti – fuzzy AT – ideal of $X \times X$. **Proof:** Note first that for every $(x,y) \in X \times X$, $(\mu \times \beta)(0,0) = \max \{\mu(0), \beta(0)\} \le \max \{\mu(x), \beta(0)\} \le \max \{\mu(x$ $\beta(\mathbf{y})\} = (\boldsymbol{\mu} \times \boldsymbol{\beta})(\mathbf{x}, \mathbf{y})$. Now let (x_1, x_2) , (y_1, y_2) , $(z_1, z_2) \in X \times X$. Then $(\mu \times \beta)(x_1 * z_1, x_2 * z_2) = \max \{ \mu(x_1 * z_1), \beta(x_2) \}$ (z_2) $\leq \max \{ \max\{ \mu(x_1 * (y_1 * z_1)), \mu(y_1) \}, \max\{ \beta(x_2) \} \}$ $(y_2 * z_2)), \beta(y_2)$ = max { max{ $\mu((x_1 * (y_1 * z_1)))$, $\beta(x_2 * (y_2 * z_1)))$ $z_2))\}, \max\{ \mu(y_1), \beta(y_2)\} \}$ = max { $(\mu \times \beta)((x_1 * (y_1 * z_1)), (x_2 * (y_2 * z_1)))$ $z_2))), (\mu \times \beta) (y_1, y_2)\}$ Hence $(\mu \times \beta)$ is an anti – fuzzy AT – ideal of $X \times X$. \triangle

Theorem 6.11. Let μ and β be anti-fuzzy subsets of AT – algebra X such that $\mu \times \beta$ is an anti – fuzzy AT – ideal of X × X. Then for all $x \in X$,

(i) either $\mu(0) \leq \mu(x)$ or $\beta(0) \leq \beta(x)$.

- (ii) $\mu(0) \le \mu(x)$ for all $x \in X$, then either $\beta(0) \le \beta(x)$ or $\beta(0) \le \mu(x)$.
- (iii)
 - If $\beta(0) \leq$
 - $\beta\left(x\right) \text{for all } x{\in}X$, then either $\;\mu\left(0\right)\leq$
 - $\mu(x) \text{ or } \mu(0) \leq \beta(x).$
- (iv) Either μ or β is an anti fuzzy AT ideal of X .

Proof.

- (i) Suppose that $\mu(0) > \mu(x)$ and $\beta(0) > \beta(y)$ for some x , y $\in X$. Then
- $(\mu \times \beta)(\mathbf{x},\mathbf{y}) = \max\{\mu(\mathbf{x}), \beta(\mathbf{y})\} < \max\{\mu(0), \beta(\mathbf{y})\} < \max\{\mu(0)$
 - $\beta(0)\} = (\mu \times \beta)(0,0)$. This is a contradiction and we obtain (i).
- (ii) Assume that there exist x , $y \in X$ such that $\beta(0)$ > $\mu(x)$ and $\beta(0) > \beta(y)$. Then
- $(\mu \times \beta)(0,0) = \max \{\mu(0),\beta(0)\} = \beta(0) \text{ it follows}$ that
- $(\mu \times \beta)(x,y) = \max{\{\mu(x), \beta(y)\}} <\beta(0) =$

 $(\mu \times \beta)(0,0)$ which is a contradiction. Hence (ii) holds.

- (iii) Is by similar method to part (ii).
- (iv) Suppose $\beta(0) \le \beta(x)$ by (i), then form (iii) either $\mu(0) \le \mu(x)$ or
- $\mu(0) \leq \beta(x) \text{ for all } x \in X$.
- If $\mu(0) \leq \beta(x)$, for any $x \in X$, then($\mu \times \beta$)(0,x) = max { $\mu(0), \beta(x)$ } = $\beta(x)$. Let $(x_1,x_2), (y_1,y_2),$ $(z_1,z_2) \in X \times X$,since($\mu \times \beta$) is an anti-fuzzy

AT-ideal of $X \times X$, we have

$$(\mu \times \beta)(x_1 * z_1, x_2 * z_2) \le \max\{(\mu \times \beta) ((x_1 * (y_1 * z_1)), (x_2 * (y_2 * z_1)), (y_2 * z_1))$$

$$z_2))), (\mu \times \beta) (y_1, y_2) \}$$
---- (A)
If we take $x_1 = y_1 = z_1 = 0$, then

 $\beta(x_2 * z_2) = (\mu \times \beta)(0, x_2 * z_2)$

 $\leq \max\{(\mu \times \beta) (0, (x_2 * (y_2 * z_2))), (\mu \times \beta) (0, y_2)\}$ $= \max\{\max\{\mu(0), \beta((x_2 * (y_2 * z_2)))\},\$ $\max{\{\mu(0), \beta(y_2)\}}$ $= \max\{\beta((x_2 * (y_2 * z_2))), \beta(y_2)\}$ This prove that β is an anti – fuzzy AT – ideal of X. Now we consider the case $\mu(0) \le \mu(x)$ for all $x \in X$. Suppose that $\mu(0) > \mu(y)$ for some $y \in X$. then $\beta(0) \leq \beta(y) < \mu(0).$ Since $\mu(0) \leq \mu(x)$ for all $x \in X$, it follows that $\beta(0)$ $< \mu(x)$ for any $x \in X$. Hence $(\mu \times \beta)(x,0) = \max \{\mu(x), \beta(0)\} = \mu(x)$ taking $x_2 = y_2 = z_2 = 0$ in (A), then $\mu(x_1 * z_1) = (\mu \times \beta)(x_1 * z_1, 0)$ $\leq \max\{(\mu \times \beta) ((x_1 * (y_1 * z_1)), 0), (\mu \times \beta) (y_1, 0)\}$ = max {max { $\mu(x_1 * (y_1 * z_1)), \beta(0)$ }, $\max\{\mu(y_1), \beta(0)\}\}$ $= \max\{ \ \mu(x_1 * (y_1 * z_1)), \ \mu(y_1) \}$ Which proves that μ is an anti – fuzzy AT – ideal of X . Hence either μ or β is an anti – fuzzy AT – ideal of X . \triangle

Theorem 6.12. Let β be a fuzzy subset of an AT – algebra X and let R_{β} be the strongest fuzzy relation on X, then β is an anti – fuzzy AT – ideal of X if and only if R_{β} is an anti – fuzzy AT – ideal of X×X. **Proof:** Assume that β is an anti – fuzzy AT – ideal of X. By proposition (6.7), we get, $R_{\beta}(0,0) \leq {}^{4}R_{\beta}(x,y)$, for any $(x,y) \in X \times X$. Let (x_{1},x_{2}) , (y_{1},y_{2}) , $(z_{1},z_{2}) \in X \times X$, we have from (AAT₂):

$$\mathbf{R}_{\beta}(z_{1} * x_{1}, z_{2} * x_{2}) = \max \{\beta(z_{1} * x_{1}), \beta(z_{2} * x_{2})\}$$

 $\leq \max\{\max\{\beta(z_1 * (y_1 * x_1)), \beta(y_1)\}, \max\{\beta(z_2 * (y_2 * x_2)), \beta(y_2)\}\}$

 $= \max \{ \max \{ \beta(z_1 * (y_1 * x_1)), \beta(z_2 * (y_2 * x_2)) \}, \max \{ \beta(y_1), \beta(y_2) \} \}$

 $= \max \{ R_{\beta} ((z_2 * (y_2 * x_2)), (z_2 * (y_2 * x_2))) ,$

 $R_{\beta}(y_1, y_2)$

Hence \mathbf{R}_{β} is an anti – fuzzy AT – ideal of

$X\! \times\! X$.

Conversely, suppose that R_{β} is an anti –

fuzzy AT – ideal of $X \times X$, by proposition

 $(6.8)\beta(0) \le \beta(x)$ for all $x \in X$, which prove (AAT_1) .

Now, let (x_1, x_2) , (y_1, y_2) , $(z_1, z_2) \in X \times X$.

Then,

 $\max\{\beta(z_1 * x_1), \beta(z_2 * x_2)\} = \mathbf{R}_{\beta}(z_1 * x_1, z_2 * x_2)$

x₂)

 $\leq \max\{ R_{\beta}((z_1,z_2)*((y_1,y_2)*(x_1,x_2)), R_{\beta}) \}$

 $(y_1,y_2)\}$

 $= \max\{ R_{\beta} ((z_1 * (y_1 * x_1)), (z_2 * x_2)) \}$

 $(y_2^*x_2))), R_{\beta}(y_1,y_2) \}$

= max { max { $\beta((z_1 * (y_1 * x_1)), \beta(z_2 *$

$$(y_2^*x_2))$$
 }, max { $\beta(y_1), \beta(y_2)$ }

In particular if we take $x_2 = y_2 = z_2 = 0$, then

 $\beta(z_1 * x_1) \le \max \{\beta(z_1 * (y_1 * x_1)), \beta(y_1)\}$. This proves

(AAT_2) and β is an anti – fuzzy AT – ideal of X . \bigtriangleup

References

- [1] Bhattacharye P. and MukherieeN.P., Fuzzy relations and fuzzy group, Inform Sci., vol. 36 (1985), 267-282.
- [2] Dudek W. A., The number of sub-algebras of finite BCC-algebras, Bull. Inst. Math. Academia Sinica 20 (1992), 129-136.
- [3] Hameed A. T., On (Fuzzy) AT-ideals of ATalgebras. Submitted.
- [4] Is'ekiK. and Yanaka S., An introduction to theory of BCK-algebras, Math. Japonica , vol. 23 (1979), 1-20.
- [5] Jun Y. B., Hong S. M. and Roh E. H., Fuzzy characteristic sub-algebras /ideals of a BCKalgebra, Pusan Kyongnam Math. J.(presentlyEast Asian Math. J.), vol. 9, no.1 (1993), 127-132.
- [6] Komori Y., The class of BCC-algebras is not a variety, Math. Japon., vol. 29 (1984), 391-394.
- [7] Meng J. and Jun Y. B., BCK-algebras, Kyung Moon Sa Co., Korea, 1994.
- [8] Mostafa S.M., Hameed A. T. and Abed A. H., Fuzzy KUS-Ideals of KUS-Algebras, Basra, Journal of Science (A), vol.34, no.2, pp:73-84, (2016).
- [9] Mostafa S.M.and Hameed A. T., Anti-fuzzy KUS-ideals of KUS-algebras,International Journal of Computer Applications (0975 – 8887) Vol. 70, no.9 (2013) ,24-28.
- [10] Prabpayak C. and Leerawat U., On ideals and congurences in KU-algebras, Scientia Magna J., vol. 5, no.1 (2009), 54-57.
- [11] Prabpayak C. and Leerawat U., On isomorphisms of KU-algebras, Scientia Magna J., vol. 5, no.3 (2009), 25-31.
- [12] Xi O. G., Fuzzy BCK-algebras, Math. Japan., vol. 36(1991), 935-942.
- [13] Zadeh L. A., Fuzzy sets, Inform. Control,vol.8 (1965), 338-353.

المثاليات الضبابية المضاد (AT) في الجبريات (AT)

أريج توفيق حميد أحمد حمزة عبد بيداء حسن هادي قسم الرياضيات، كلية التربية للبنات ، جامعة الكوفة ، العراق.

المستخلص:

في هذا البحث ، نقدم مفهوم المثاليات الضبابية المضاد "AT" في AT-الجبر ، وفيه يتم تقديم العديد من الأمثلة المناسبة ويتم التحقيق في خصائصها. يتم تعريف الصورة والصورة المعكوسة للمثالي الضبابي المضاد "AT" في الجبر AT-وكيف يتم دراسة خواص الصورة والصورة العكسيّة للمثاليات الضبابية المضادة AT في -ATالجبر. علاوة على ذلك ، يتم إعطاء الضرب الديكارتي للمثالي الضبابي المضاد AT.