## Anti - fuzzy AT - ideals of AT - algebras

# Areej Tawfeeq Hameed Ahmed Hamza Abed Baieda Hassan Hadi Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq. E-mail: areej.tawfeeq@uokufa.edu.iq or areej238@gmail.com 

## Available online : 6/8/2018

DOI: 10.29304/jqcm.2018.10.3.406


#### Abstract

. In this paper, we introduce the notion of anti - fuzzy AT - ideals in AT - algebra, several appropriate examples are provided and theirsome properties are investigated. The image and the inverse imageof anti - fuzzy AT - ideals in AT - algebra are defined and how theimage and the inverse image of anti - fuzzy AT - ideals in AT - algebra become anti - fuzzy AT - ideals are studied. Moreover, the Cartesian product of anti - fuzzy AT - ideals are given .


Keywords : AT - ideal, anti - fuzzy AT - ideals, image and pre-image of anti - fuzzy AT - ideals

Mathematics subject classification: 06F35, 03G25, 08A72.

## 1 Introduction

BCK - algebras form an important class of logical algebras introducedby K. Iseki [4] and was extensively investigated by several researchers. Theclass of all BCK - algebras is quasi variety. J. Meng and Y. B. Jun posed an interesting problem (solved in[7]) whether the class of all BCK - algebras is a variety. In connection with this problem , Komori introduced in [6]a notion of BCC - algebras. W.A. Dudek (cf.[2],[5]) redefined the notion of BCC - algebras by using a dual form of the ordinary definition inthe sense of Y. Komori and studied ideals and congruences of BCC-algebras. In ([10],[11]), C. Prabpayak and U. Leerawat introduced a new algebraic structure, which is called KU-algebra. They gave the concept of homomorphisms of KU - algebras and investigated some related properties. L.A. Zadeh [13] introduced the notion of fuzzy sets. At present this concept has been applied to many mathematical branches, such as group, functional analysis , probability theory, topology, and soon. In 1991, O.G. Xi [12] applied this concept to BCK algebras, and heintroduced the notion of fuzzy subalgebras (ideals) of the BCK - algebras with respect to minimum, and since then Jun et al studiedfuzzy ideals (cf.[1],[5],[12]), and moreover several fuzzystructures in BCC-algebras are considered (cf.[2],[6]). S. Mostafa , M. AbdElnaby, F. Abdel-Halim and A.T. Hameed (in [7]) introduced the notion of fuzzy KUS - ideals of KUS - algebras and they investigated severalbasic properties which are related to fuzzy KUS - ideals. they describedhow to deal with the homomorphism image and inverse image of fuzzy KUS - ideals. And in [8], the anti - fuzzy KUS - ideals of KUS - algebras is introduced. Several theorems are stated and proved. In [3], Areej Tawfeeq Hameed introduced and studied new algebraic structure, called AT algebra and investigate some of its properties. She introduced the notion of fuzzy AT - ideal of AT-algebra, several theorems, properties are stated and proved.
In this paper, we introduce the notion of anti fuzzy AT - ideals of AT - algebras and then we study the homomorphism image and inverse image of anti - fuzzy

AT - ideals.We also prove that the Cartesian product of anti - fuzzy AT - ideals are anti - fuzzy AT ideals.

## 2. Preliminaries

In this section we give some basic definitions and preliminaries lemmas of AT - ideals and fuzzy AT - ideals of AT - algebra.

Definition 2.1[3]. An AT-algebra is a nonempty set X with a constant ( 0 ) and a binary operation $(*)$ satisfying the following axioms: for
all $x, y, z \in X$,
(i) $(\mathrm{x} * \mathrm{y}) *\left(\left(\mathrm{y}^{*} \mathrm{z}\right) *(\mathrm{x} * \mathrm{z})\right)=0$,
(ii) $0^{*} \mathrm{x}=\mathrm{x}$,
(iii) $\quad x^{*} 0=0$.

In $X$ we can define a binary relation ( $\leq$ )
by : $x \leq y$ if and only if, $y * x=0$.
Remark 2.2[3]. ( X ;*, 0 ) is an AT - algebra if and only if, it satisfies that: for allx, $y, z \in X$,
(i') : $(\mathrm{y} * \mathrm{z}) *(\mathrm{x} * \mathrm{z}) \leq \mathrm{x} * \mathrm{y}$,
(ii') : $x \leq y$ if and only if, $y * x=0$.
Example 2.3 [3]. Let $X=\{0,1,2,3,4\}$ in which $\left({ }^{*}\right)$ is defined by the following table:

| $*$ | 0 | 1 | 2 | 3 |
| :---: | :--- | :--- | :--- | :--- |
| 4 |  |  |  |  |
| 0 | 0 | 1 | 2 | 3 |
| 4 |  |  |  |  |
| 1 | 0 | 0 | 2 | 3 |
| 4 |  |  |  |  |
| 2 | 0 | 1 | 0 | 3 |
| 3 | 0 | 0 | 2 | 0 |
| 2 |  |  |  |  |
| 4 | 0 | 0 | 0 | 0 |

It is easy to show that $(\mathrm{X} ; *, 0)$ is an AT - algebra.
Example 2.4[3]. Let $\mathrm{X}=\{0,1,2,3,4\}$ be a set with the following table:

| $*$ | 0 | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 0 | 0 | 2 | 3 | 4 |
| 2 |  | 0 | 1 | 0 | 3 |
|  | 3 |  |  |  |  |
| 3 | 0 | 0 | 2 | 0 | 2 |
| 4 | 0 | 0 | 0 | 0 | 0 |

Then ( $\mathrm{X} ; *, 0$ )is an AT - algebra.
Proposition 2.5 [3]. In any AT - algebra (X ;*, 0 ), the following properties holds: for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ $\in \mathrm{X}$;
a) $\mathrm{z} * \mathrm{z}=0$,
b) $\mathrm{z}^{*}(\mathrm{x} * \mathrm{z})=0$,
c) $y *\left(\left(y^{*} z\right) * z\right)=0$,
d) $\mathrm{x} * \mathrm{y}=0$ implies that $\mathrm{x} * 0=\mathrm{y} * 0$,
e) $0 * x=0 * y$ implies that $x=y$.

Proposition 2.6[3]. In any AT - algebra (X ;*, 0 ), the following properties holds: for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ $\in \mathrm{X}$;
a) $\mathrm{x} \leq \mathrm{y}$ implies that $\mathrm{y} * \mathrm{z} \leq \mathrm{x} * \mathrm{z}$,
b) $\mathrm{x} \leq \mathrm{y}$ implies that $\mathrm{z} * \mathrm{x} \leq \mathrm{z} * \mathrm{y}$
c) $\mathrm{z} * \mathrm{x} \leq \mathrm{z}$ *y implies that $\mathrm{x} \leq \mathrm{y}$ ( left cancellation law).
Proposition 2.7[3]. In any AT - algebra ( X ;*, 0 ), the following properties holds: for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$;
a) $x=0 *(0 * x)$,
b) $\quad x^{*} y \leq z$ imply $z^{*} y \leq x$.

Definition 2.8[3]. A nonempty subset $S$ of an AT - algebra $X$ is called an AT - subalgebra of AT - algebra $X$ if $x * y \in S$, whenever $x, y \in S$.
Definition 2.9[3]. A nonempty subset I of an AT - algebra X is called an AT-ideal of ATalgebra $X$ if it satisfies the following conditions: for all $x, y, z \in X$.
$\left.\mathrm{AT}_{1}\right) 0 \in \mathrm{I}$;
$\left.A T_{2}\right) x *(y * z) \in I$ and $y \in I$ imply $x * z \in I$.
Proposition 2.10[3]. Every AT - ideal of AT - algebra $X$ is an AT - subalgebra.
Definition 2.11[3]. Let X be an AT - algebra.
A fuzzy set $\mu$ in X is called a fuzzy AT subalgebra of X if it satisfies the following conditions: for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$,
$\mu(x * y) \geq \min \{\mu(x), \mu(y)\}$.
Definition 2.12[3]. Let X be an AT - algebra.
A fuzzy set $\mu$ in $X$ is called a fuzzy AT - ideal of $X$ if it satisfies the following conditions: for all $x, y$ and $\mathrm{z} \in \mathrm{X}$,
$\left(\mathrm{AT}_{1}\right) \mu(0) \geq \mu(\mathrm{x})$.
$\left(\mathrm{AT}_{2}\right) \mu(\mathrm{x} * \mathrm{z}) \geq \min \{\mu(\mathrm{x} *(\mathrm{y} * \mathrm{z})), \mu(\mathrm{y})\}$.
Proposition 2.13[3]. Every fuzzy AT - ideal of AT - algebra X is fuzzy AT - subalgebra.

## 3. Anti-fuzzy AT-ideals of AT-algebras

In this section, we will introduce a new notion called an anti - fuzzy AT - ideal of AT - algebra and study several basic properties of it.

Definition 3.1[13]. Let X be a nonempty set, a fuzzy set $\mu$ in X is a function
$\mu: \mathrm{X} \rightarrow[0,1]$.

Definition 3.2. Let X be an AT - algebra. A fuzzy set $\mu$ in X is called an anti- fuzzy AT - ideal of X if it satisfies the following conditions: for all x , $y$ and $z \in X$,

$$
\begin{aligned}
& \left(\mathrm{AAT}_{1}\right) \mu(0) \leq \mu(\mathrm{x}) \\
& \left(\mathrm{AAT}_{2}\right) \mu(\mathrm{x} * \mathrm{z}) \leq \max \{\mu(\mathrm{x} *(\mathrm{y} * \mathrm{z})), \mu(\mathrm{y})\}
\end{aligned}
$$

Example 3.3. Let $X=\{0,1,2,3\}$ be a set with the following table:

| $*$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 |
| 1 | 0 | 0 | 2 | 3 |
| 2 | 0 | 0 | 0 | 3 |
| 3 | 0 | 0 | 0 | 0 |

Then ( $\mathrm{X} ; *, 0$ ) is an AT - algebra. It is easy to show that $\mathrm{I}_{1}=\{0,1\}$ and $\mathrm{I}_{2}=\{0,3\}$ are AT-ideals of X .
Define a fuzzy set $\mu: X \rightarrow[0,1]$ by $\mu(0)=t_{1}, \mu(1)$
$=\mu(2)=\mu(3)=t_{2}$, where $t_{1}$,

$$
\mathrm{t}_{2} \in[0,1]
$$

with $\mathrm{t}_{1}<\mathrm{t}_{2}$.
Routine calculation gives that $\mu$ is an antifuzzy AT - ideal of AT - algebras X.

Lemma 3.4. Let $\mu$ be an anti- fuzzy AT - ideal of AT - algebra $X$ and if $x \leq y$, then $\mu(y) \leq \mu(x)$, for all $x, y \in X$.

Proof: Assume that $\mathrm{x} \leq \mathrm{y}$, then $\mathrm{y} * \mathrm{x}=0$, and $\mu(0 * y)=\mu(y) \leq \max \{\mu(0 *(x * y)), \mu(x)\}=\max$
$\{\mu(0), \mu(x)\}=\mu(x)$.
Hence $\mu(\mathrm{y}) \leq \mu(\mathrm{x}) . \Delta$

Proposition 3.5. Let $\mu$ be an anti- fuzzy AT ideal of AT - algebra X. If the inequality $y * x \leq z$ hold in $X$, then $\mu(x) \leq \max \{\mu(y), \mu(z)\}$.

Proof: Assume that the inequality $\mathrm{y} * \mathrm{x} \leq \mathrm{z}$ hold in X , by lemma(3.4),

$$
\begin{aligned}
& \mu(\mathrm{z}) \leq \mu(\mathrm{y} * \mathrm{x})--(1) . \\
& \quad \operatorname{By}\left(\mathrm{AAT}_{2}\right), \mu(\mathrm{z} * \mathrm{x}) \leq \max \{\mu(\mathrm{z} *(\mathrm{y} * \mathrm{x})), \mu(\mathrm{y})\} . \mathrm{Put}
\end{aligned}
$$ $\mathrm{z}=0$,then

$\mu(0 * x)=\mu(x) \leq \max \{\mu(0 *(y * x)), \mu(y)\}=\max$ $\{\mu(y * x), \mu(y)\}---(2)$.

From (1) and (2), we get $\mu(x) \leq \max \{\mu(y), \mu(z)\}$, for all $x, y, z \in X . \Delta$

Theorem 3.6. Let $\mu$ be an anti-fuzzy set in $X$ then $\mu$ is an anti - fuzzy AT - ideal of X if and only if, it satisfies:
For all $\alpha \in[0,1], \mathrm{U}(\mu, \alpha) \neq \varnothing$ implies $\mathrm{U}(\mu, \alpha)$
is an AT - ideal of X----(A),
where $U(\mu, \alpha)=\{x \in X \mid \mu(x) \leq \alpha\}$.
Proof: Assume that $\mu$ is an anti - fuzzy AT ideal of $X$, let $\alpha \in[0,1]$ be such that $U(\mu, \alpha) \neq \varnothing$, and let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ be such that $\mathrm{x} \in \mathrm{U}(\mu, \alpha)$, then $\mu(\mathrm{x}) \leq \alpha$ and so by $\left(\mathrm{AAT}_{1}\right), \mu(0) \leq \mu(\mathrm{x}) \leq \alpha$. Thus $0 \in$ $\mathrm{U}(\mu, \alpha)$.

Now let $\left(\mathrm{z}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right), \mathrm{y} \in \mathrm{U}(\mu, \alpha)$. It follows from $\left(\mathrm{AAT}_{2}\right)$ that
$\mu(\mathrm{z} * \mathrm{x}) \leq \max \left\{\mu\left(\mathrm{z} *\left(\mathrm{y}^{*} \mathrm{x}\right)\right), \mu(\mathrm{y})\right\}=\alpha$, so that $\left(\mathrm{z}^{*}\right.$ $x) \in U(\mu, \alpha)$. Hence $U(\mu, \alpha)$ is an AT - ideal of X.

Conversely, suppose that $\mu$ satisfies (A), assume that $\left(\mathrm{AAT}_{1}\right)$ is false, then there exist $\mathrm{x} \in \mathrm{X}$ such that $\mu(0)>\mu(x)$.If we take $t=\frac{1}{2}\left(\mu(x)^{+} \mu(0)\right)$, then $\mu$ (0) >t and
$0 \leq \mu(x)<t \leq 1$, thus $x \in U(\mu, t)$ and $U(\mu, t) \neq \varnothing$.As
$\mathrm{U}(\mu, \mathrm{t})$ is an AT - ideal of X , we have $0 \in$
$\mathrm{U}(\mu, \mathrm{t})$, and so $\mu(0) \leq \mathrm{t}$.This is a contradiction.
Hence $\mu(0) \leq \mu(x)$ for all $x \in X$. Now, assume $\left(\mathrm{AAT}_{2}\right)$ is not true thenthere exist $\mathrm{x}, \mathrm{y}, \mathrm{z} \in$ Xsuch that
$\mu\left(\mathrm{z}^{*} \mathrm{x}\right)>\max \left\{\mu\left(\mathrm{z}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right), \mu(\mathrm{y})\right\}$,
taking $\beta_{0}=\frac{1}{2}\left[\mu\left(\mathrm{z}^{*} \mathrm{x}\right)+\max \{\mu(\mathrm{z} *(\mathrm{y} * \mathrm{x})), \mu(\mathrm{y})\}\right]$, we have $\beta_{0} \in[0,1]$ and $\max \left\{\mu\left(\mathrm{z}^{*}(\mathrm{y} * \mathrm{x})\right), \mu(\mathrm{y})\right\},<\beta_{0}<\mu\left(\mathrm{z}^{*} \mathrm{x}\right)$, it follows that
$\max \left\{\mu\left(\mathrm{z}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right), \mu(\mathrm{y})\right\}, \in \mathrm{U}\left(\mu, \beta_{0}\right)$ and $\mathrm{z} * \mathrm{y} \notin$
$\mathrm{U}\left(\mu, \beta_{0}\right)$, this is a contradiction and therefore $\mu$ is an anti - fuzzy AT - ideal of $\mathrm{X} . \Delta$

## 4. Characterization of anti-fuzzy AT-

## ideals by their level AT-ideals

Theorem 4.1. A fuzzy subset $\mu$ of an AT algebra X is an anti - fuzzy AT - ideal of X if and only if, for every $t \in[0,1], \mu_{t}$ is an AT - ideal of $X$, where
$\mu_{t}=\{x \in X \mid \mu(x) \leq t\}$.
Proof: Assume that $\mu$ is an anti - fuzzy AT ideal of X , by $\left(\mathrm{AAT}_{1}\right)$, we have
$\mu(0) \leq \mu(x)$ for all $x \in X$, therefore $\mu(0) \leq \mu(x) \leq t$, for $x \in \mu_{t}$ and so $0 \in \mu_{t}$.

Let $\left(\mathrm{z}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right) \in \mu_{\mathrm{t}}$ and $(\mathrm{y}) \in \mu_{\mathrm{t}}$, then $\mu\left(\mathrm{z}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right) \leq \mathrm{t}$ and $\mu(\mathrm{y}) \leq \mathrm{t}$,since $\mu$ is an anti - fuzzy AT - ideal it follows that $\mu(\mathrm{z} * \mathrm{x}) \leq\left\{\mu\left(\mathrm{z} *\left(\mathrm{y}^{*} \mathrm{x}\right)\right), \mu(\mathrm{y})\right\} \leq \mathrm{t}$ and that
$(\mathrm{z} * \mathrm{x}) \in \mu_{\mathrm{t}}$. Hence $\mu_{\mathrm{t}}$ is an AT - ideal of X .
Conversely, we only need to show that $\left(\mathrm{AAT}_{1}\right)$ and $\left(\mathrm{AAT}_{2}\right)$ are true. If $\left(\mathrm{AAT}_{1}\right)$ is false, then there exist $x \in$ Xsuch that $\mu(0)>\mu(x)$. If we take $t=\frac{1}{2}(\mu(x)$ $+\mu(0)$ ), then $\mu(0)>\mathrm{t}$ and $0 \leq \mu(\mathrm{x})<\mathrm{t} \leq 1$ thus $\mathrm{x} \in$ $\mu_{t}$ and $\mu_{t} \neq \varnothing$. As $\mu_{t}$ is an AT - ideal of $X$, we have $0 \in \mu_{t}$ and so $\mu(0) \leq \mathrm{t}$. This is a contradiction. Now, assume $\left(\mathrm{AAT}_{2}\right)$ is not true, then there exist x , $y$ and $z \in$ Xsuch that,
$\mu\left(z^{*} \mathrm{x}\right)>\max \left\{\mu\left(\mathrm{z}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right), \mu(\mathrm{y})\right\}$.
Putting $t=\frac{1}{2}\left[\mu\left(z^{*} x\right)+\max \left\{\mu\left(z^{*}\left(y^{*} x\right)\right), \mu(y)\right\}\right]$, then $\mu(\mathrm{z} * \mathrm{x})>\mathrm{t}$ and $0 \leq \max \left\{\mu\left(\mathrm{z}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right), \mu(\mathrm{y})\right\},<\mathrm{t} \leq 1$, hence $\mu\left(\mathrm{z}^{*}\right.$ $\left.\left(y^{*} x\right)\right)<t$ and $\mu(y)<t$, which imply that $\left(z^{*} y\right) \in \mu_{t}$ $\operatorname{and}(\mathrm{y} * \mathrm{x}) \in \mu_{\mathrm{t}}$, since $\mu_{\mathrm{t}}$ is an anti - fuzzy AT ideal, it follows that $(\mathrm{z} * \mathrm{x}) \in \mu_{\mathrm{t}}$ and that $\mu(\mathrm{z} * \mathrm{x}) \leq$ $t$, this is also a contradiction. Hence $\mu$ is an anti fuzzy AT - ideal of X. $\triangle$

Corollary 4.2. If a fuzzy subset $\mu$ of AT algebra X is an anti - fuzzy AT - ideal, then for every $\mathrm{t} \in \operatorname{Im}(\mu), \mu_{\mathrm{t}}$ is an AT - ideal of X .

Definition 4.3. Let $\mu$ be an anti - fuzzy AT ideal of AT - algebra $X$, then the AT - ideal $\mu_{t}, t$ $\in[0,1]$ are called level AT - ideals of $\mu$.

Corollary 4.4. Let I be an AT - ideal of an AT - algebra X , then for any fixed number t in an open interval ( 0,1 ), there existan anti - fuzzy AT ideal $\mu$ of $X$ such that $\mu_{t}=\mathrm{I}$.

Proof: Define $\mu: \mathrm{X} \rightarrow[0: 1]$ by $\mu(\mathrm{x})=$
$\begin{cases}0, & \text { if } \mathrm{x} \in \mathrm{I} ; \\ \mathrm{t}, & \text { if } \mathrm{x} \notin \mathrm{I} .\end{cases}$
Where $t$ is a fixed number in $(0,1)$. Clearly, $\mu(0) \leq \mu$
(x) and we have one two level sets $\mu_{0}=I, \mu_{t}=X$, which are AT - ideals of X , then from Theorem (4.1) $\mu$ is an anti - fuzzy AT - ideal of X. $\triangle$

## 5. Image and Pre-image of anti-fuzzy

## AT-ideals

Definition 5.1. $f:(\mathrm{X} ; *, 0) \rightarrow\left(\mathrm{Y} ;{ }^{\prime}{ }^{\prime}, 0^{\circ}\right)$ be a mapping from a nonempty set X to a nonemptyset Y. If $\beta$ is a fuzzy subset of $X$, then the fuzzy subset $\mu$ of $Y$ defined by: $f(\mu)(y)=\beta(y)=$
$\left\{\begin{array}{l}\inf _{x \in f^{-1}(y)} \mu(x) \\ 0 \quad \text { otherwise }\end{array}\right.$ if $f^{-1}(y)=\{x \in X, f(x)=y\} \neq \phi$
is said to be the image of $\mu$ under $f$.
Similarly if $\mu$ is a fuzzy subset of Y , then the fuzzy subset $\mu=(\beta o f)$ in X (i.e., the fuzzy subset defined by $\mu(x)=\beta(f(x))$, for all $x \in X)$ is called the pre-image of $\beta$ under $f$.

Theorem 5.2. An into homomorphic preimage of anti - fuzzy AT - ideal is also an anti - fuzzy AT - ideal.

Proof: Let $f:(\mathrm{X} ; *, 0) \rightarrow\left(\mathrm{Y} ; * `, 0^{`}\right)$ be an onto homomorphism of AT - algebras, $\beta$ is an anti - fuzzy AT - ideal of Y and $\mu$ the pre-image of $\beta$ under $f$, then
$\beta(f(\mathrm{x}))=\mu(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{X}$. Let $\mathrm{x} \in \mathrm{X}$, then $\mu(0)$
$=\beta(f(0))<\beta(f(x))=\mu(x)$.
Now let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, then $\mu(\mathrm{z} * \mathrm{x})=\beta(f(\mathrm{z} * \mathrm{x}))$

$$
\begin{aligned}
=\beta & \beta(f(\mathrm{z}) * ' f(\mathrm{x})) \\
& \leq \max \left\{\beta(f(\mathrm{z}) * ' f(\mathrm{y})), \beta\left(f(\mathrm{y}) *{ }^{\prime} f(\mathrm{x})\right)\right\} \\
& =\max \{\beta(f(\mathrm{z} * \mathrm{y})), \beta(f(\mathrm{y} * \mathrm{x}))\} \\
& =\max \{\mu(\mathrm{z} * \mathrm{y}), \mu(\mathrm{y} * \mathrm{x})\}, \text { and the proof is } \\
& \text { completed. } \Delta
\end{aligned}
$$

Definition 5.3. An anti fuzzy subset $\mu$ of $X$ has inf property if for any subset T of X , there exist $\mathrm{t}_{0} \in \mathrm{~T}$ such that $\mu(\mathrm{t})=\inf _{\mathrm{t} \in \mathrm{T}} \mu(\mathrm{t})$.

Theorem 5.4. Let $f:(\mathrm{X} ; *, 0) \rightarrow\left(\mathrm{Y} ; *^{*}, 0 `\right)$ be a homomorphism between AT - algebras X and Y respectively . For every anti - fuzzy AT - ideal $\mu$ in $\mathrm{X}, f(\mu)$ is an anti - fuzzy AT - ideal of Y .

Proof: By definition $\beta\left(\mathrm{y}^{\prime}\right)=f(\mu)\left(\mathrm{y}^{\prime}\right)=$ $\inf _{x \in f^{-1}\left(y^{\prime}\right)} \mu(x)$, for all $y^{\prime} \in Y$ and $\varnothing=0$.

We have to prove that $\beta\left(z^{\prime} * x^{\prime}\right) \leq \max \left\{\beta\left(z^{\prime} *\right.\right.$ $\left.\left.\left(y^{\prime} * x^{\prime}\right)\right), \beta\left(y^{\prime}\right)\right\}$, for all $\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime} \in \mathrm{Y}$.

Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be an onto homomorphism of AT - algebras, $\mu$ is an anti - fuzzy AT - ideal of X with inf property and $\beta$ the image of $\mu$ under $f$, since $\mu$ is anti - fuzzy AT - ideal of X, we have $\mu(0) \leq \mu(x)$ for all $x \in X$.

Note that $0 \in f^{-1}\left(0^{\prime}\right)$, where 0,0 'are the zero of $X$ and $Y$, respectively.

Thus $\beta\left(0^{\prime}\right)=\inf _{t \in f^{-1}\left(x^{\prime}\right)} \mu(t)=\beta\left(x^{\prime}\right)$, for all $x \in X$, which implies that
$\beta\left(0^{\prime}\right) \leq \inf _{t \in \mathrm{f}^{-1}\left(\mathrm{x}^{\prime}\right)} \mu(\mathrm{t})=\beta\left(\mathrm{x}^{\prime}\right)$, for any $\mathrm{x}^{\prime} \in \mathrm{Y}$. For any $\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime} \in \mathrm{Y}$, let $\mathrm{x}_{0} \in f^{-1}\left(\mathrm{x}^{\prime}\right)$,
$\mathrm{y}_{0} \in f^{-1}\left(\mathrm{y}^{\prime}\right), \mathrm{z}_{0} \in f^{-1}\left(\mathrm{z}^{\prime}\right)$ be such that
$\mu\left(\mathrm{z}_{0} *\left(\mathrm{y}_{0}{ }^{*} \mathrm{x}_{0}\right)\right)=\inf _{t \in f^{-1}\left(z^{*}\left(y^{* *} x^{\prime}\right)\right)} \mu(t), \mu\left(\mathrm{y}_{0}\right)=$
$\inf _{t \in f^{-1}\left(y^{\prime}\right)} \mu(t)$ and
$\mu\left(\mathrm{z}_{0} * \mathrm{x}_{0}\right)=\inf _{\mathrm{t} \in \mathrm{f}^{-1}\left(\mathrm{z}^{*} * \mathrm{x}^{\prime}\right)} \mu(\mathrm{t})$. Then
$\beta\left(z^{\prime} * x^{\prime}\right)=\inf _{t \in f^{-1}\left(z^{* *} x^{\prime}\right)} \mu(t)=\mu\left(z_{0} * x_{0}\right)$
$\leq \max \left\{\mu\left(\mathrm{z}_{0} *\left(\mathrm{y}_{0} * \mathrm{x}_{0}\right)\right), \mu\left(\mathrm{y}_{0}\right)\right\}$
$=\max \left[\inf _{t \in f^{-1}\left(z^{* *}\left(y^{* *} x^{\prime}\right)\right)} \mu(t), \inf _{t \in f^{-1}\left(y^{\prime}\right)} \mu(t)\right]$
$=\max \left\{\beta\left(\mathrm{z}^{\prime} *\left(\mathrm{y}^{\prime *} \mathrm{x}^{\prime}\right)\right), \beta\left(\mathrm{y}^{\prime}\right)\right\}$.
Hence $\beta$ is an anti - fuzzy AT - ideal of Y. $\triangle$

## 6. Cartesian product of anti-fuzzy AT-

## ideals

Definition 6.1 ([1],[9]). A fuzzy relation R on any set $S$ is a fuzzy subset
R: $S \times S \rightarrow[0,1]$.

Definition 6.2 ([1]). If R is a fuzzy relation on sets $S$ and $\beta$ is a fuzzy subset of $S$, then Ris a fuzzy relation on $\beta$ if $R(x, y) \geq \max \{\beta(x)$, $\beta(y)\}$, for all $x, y \in S$.

Definition 6.3([1]). Let $\mu$ and $\beta$ be fuzzy subsets of a set $S$. The Cartesian product of $\mu$ and $\beta$ is defined by $(\mu \times \beta)(x, y)=\max \{\mu(x), \beta(y)\}$, for all $x, y \in S$.

Lemma 6.4([1]). Let $S$ be a set and $\mu$ and $\beta$ be fuzzy subsets of S. Then,
(1) $\mu \times \beta$ is a fuzzy relation on $S$,
(2) $(\mu \times \beta)_{t}=\mu_{t} \times \beta_{t}$, for all $t \in[0,1]$.

Definition 6.5([1]). Let $S$ be a set and $\beta$ be fuzzy subset of S . The strongest fuzzy relation on S , that is, a fuzzy relation on $\beta$ is $\mathrm{R}_{\beta}$ given by

$$
\mathrm{R}_{\beta}(\mathrm{x}, \mathrm{y})=\max \{\beta(\mathrm{x}), \beta(\mathrm{y})\}, \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{~S}
$$

Lemma 6.6([1]). For a given fuzzy subset $\beta$ of a set $S$, let $R_{\beta}$ be the strongest fuzzy relation on $S$.

Then for $t \in[0,1]$, we have $\left(R_{\beta}\right)_{t}=\beta_{t} \times \beta_{t}$.

Proposition 6.7. For a given fuzzy subset $\beta$ of an AT - algebra $X$, let $R_{\beta}$ be the strongest fuzzy relation on $X$. If $\beta$ is an anti - fuzzy AT ideal of $X \times X$, then
$R_{\beta}(x, x) \geq R_{\beta}(0,0)$, for all $x \in X$.
Proof: Since $R_{\beta}$ is a strongest fuzzy relation of $\mathrm{X} \times \mathrm{X}$, it follows from that,
$\mathbf{R}_{\beta}(\mathrm{x}, \mathrm{x})=\max \{\beta(\mathrm{x}), \beta(\mathrm{x})\} \geq \max \{\beta(0), \beta(0)\}=\mathrm{R}_{\beta}$
$(0,0)$,which implies that

$$
\mathrm{R}_{\beta}(\mathrm{x}, \mathrm{x}) \geq \mathrm{R}_{\beta}(0,0) . \Delta
$$

Proposition 6.8. For a given fuzzy subset $\beta$ of an AT - algebra X , let $\mathrm{R}_{\beta}$ be the strongest fuzzy relation on $X$. If $R_{\beta}$ is an anti - fuzzy AT ideal of $X \times X$, then $\beta(0) \leq \beta(x)$, for all $x \in X$.

Proof: Since $R_{\beta}$ is an anti - fuzzy AT - ideal of $\mathrm{X} \times \mathrm{X}$, it follows from $\left(\mathrm{AAT}_{1}\right)$,
$R_{\beta}(x, x) \geq R_{\beta}(0,0)$, where $(0,0)$ is the zero element of $X \times X$. But this means that, $\max \{\beta(x), \beta(x)\} \geq$ $\max \{\beta(0), \beta(0)\}$ which implies that $\beta(0) \leq \beta(x) . \triangle$

Remark 6.9([9]). Let X and Y be AT algebras, we define (*) on $\mathrm{X} \times \mathrm{Y}$ by: for $\operatorname{all}(\mathrm{x}, \mathrm{y}),(\mathrm{u}, \mathrm{v}) \in \mathrm{X} \times \mathrm{Y},(\mathrm{x}, \mathrm{y}) *(\mathrm{u}, \mathrm{v})=(\mathrm{x} * \mathrm{u}, \mathrm{y} * \mathrm{v})$. Then clearly ( $\mathrm{X} \times \mathrm{Y} ; * .(0,0)$ ) is anAT-algebra.

Theorem 6.10. Let $\mu$ and $\beta$ be an anti fuzzy AT - ideal of AT - algebra X . Then $\mu \times \beta$ is an anti - fuzzy AT - ideal of $\mathrm{X} \times \mathrm{X}$.

Proof: Note first that for every $(\mathrm{x}, \mathrm{y}) \in \mathrm{X} \times \mathrm{X}$, $(\mu \times \beta)(0,0)=\max \{\mu(0), \beta(0)\} \leq \max \{\mu(x)$, $\beta(\mathrm{y})\}=(\mu \times \beta)(\mathrm{x}, \mathrm{y})$.

Now let $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right),\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \in \mathrm{X} \times \mathrm{X}$. Then $(\mu \times \beta)\left(\mathrm{x}_{1} * \mathrm{z}_{1}, \mathrm{x}_{2} * \mathrm{z}_{2}\right)=\max \left\{\mu\left(\mathrm{x}_{1} * \mathrm{z}_{1}\right), \beta\left(\mathrm{x}_{2}\right.\right.$ * $\mathrm{z}_{2}$ ) $\}$
$\leq \max \left\{\max \left\{\mu\left(\mathrm{x}_{1} *\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right)\right), \mu\left(\mathrm{y}_{1}\right)\right\}, \max \left\{\beta\left(\mathrm{x}_{2}\right.\right.\right.$

* $\left.\left.\left.\left(\mathrm{y}_{2} * \mathrm{z}_{2}\right)\right), \beta\left(\mathrm{y}_{2}\right)\right\}\right\}$
$=\max \left\{\max \left\{\mu\left(\left(\mathrm{x}_{1} *\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right)\right)\right), \beta\left(\mathrm{x}_{2} *\left(\mathrm{y}_{2} *\right.\right.\right.\right.$
$\left.\left.\left.\left.\mathrm{z}_{2}\right)\right)\right\}, \max \left\{\mu\left(\mathrm{y}_{1}\right), \beta\left(\mathrm{y}_{2}\right)\right\}\right\}$

$$
=\max \left\{( \mu \times \beta ) \left(\left(\mathrm{x}_{1} *\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right)\right),\left(\mathrm { x } _ { 2 } * \left(\mathrm{y}_{2} *\right.\right.\right.\right.
$$

$\left.\left.\mathrm{z}_{2}\right)\right)$ ), $\left.(\mu \times \beta)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}$
Hence $(\mu \times \beta)$ is an anti - fuzzy AT - ideal of $X \times X . \Delta$

Theorem 6.11. Let $\mu$ and $\beta$ be anti-fuzzy subsets of AT - algebra $X$ such that $\mu \times \beta$ is an anti - fuzzy AT - ideal of $\mathrm{X} \times \mathrm{X}$. Then for all $\mathrm{x} \in \mathrm{X}$,
(i) either $\mu(0) \leq \mu(x)$ or $\beta(0) \leq \beta(x)$.
(ii) $\mu(0) \leq \mu(x)$ for all $x \in X$, then either $\beta(0) \leq$ $\beta(x)$ or $\beta(0) \leq \mu(x)$.
(iii)

If $\beta(0) \leq$
$\beta$ (x)for all $x \in X$, then either $\mu(0) \leq$
$\mu(x)$ or $\mu(0) \leq \beta(x)$.
(iv) Either $\mu$ or $\beta$ is an anti - fuzzy AT ideal of $X$.

## Proof.

(i) Suppose that $\mu(0)>\mu(x)$ and $\beta(0)>\beta(y)$ for some $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. Then
$(\mu \times \beta)(\mathrm{x}, \mathrm{y})=\max \{\mu(\mathrm{x}), \beta(\mathrm{y})\}<\max \{\mu(0)$, $\beta(0)\}=(\mu \times \beta)(0,0)$. This is a contradiction and we obtain (i).
(ii) Assume that there exist $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\beta(0)$ $>\mu(\mathrm{x}) \quad \operatorname{and} \beta(0)>\beta(\mathrm{y})$. Then
$(\mu \times \beta)(0,0)=\max \{\mu(0), \beta(0)\}=\beta(0)$ it follows that
$(\mu \times \beta)(\mathrm{x}, \mathrm{y})=\max \{\mu(\mathrm{x}), \beta(\mathrm{y})\}<\beta(0)=$
$(\mu \times \beta)(0,0)$ which is a contradiction. Hence (ii) holds.
(iii) Is by similar method to part (ii).
(iv) Suppose $\beta(0) \leq \beta(x)$ by (i), then form (iii) either $\mu(0) \leq \mu(x)$ or
$\mu(0) \leq \beta(x)$ for all $x \in X$.
If $\mu(0) \leq \beta(x)$, for any $x \in X$, then $(\mu \times \beta)(0, x)=$ $\max \{\mu(0), \beta(x)\}=\beta(x)$. Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$, $\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \in \mathrm{X} \times \mathrm{X}$, since $(\mu \times \beta)$ is an anti-fuzzy

AT-ideal of $X \times X$, we have $(\mu \times \beta)\left(x_{1} * z_{1}, x_{2} * z_{2}\right) \leq \max \left\{(\mu \times \beta)\left(\left(x_{1} *\left(y_{1} * z_{1}\right)\right),\left(x_{2} *\left(y_{2} * R_{\beta}(x, y)\right.\right.\right.\right.$, for any $(x, y) \in X \times X$.
$\left.\left.\mathrm{z}_{2}\right)\right)$ ), $\left.(\mu \times \beta)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}---$ (A)
If we take $x_{1}=y_{1}=z_{1}=0$, then

$$
\beta\left(\mathrm{x}_{2} * \mathrm{z}_{2}\right)=(\mu \times \beta)\left(0, \mathrm{x}_{2} * \mathrm{z}_{2}\right)
$$

$\leq \max \left\{(\mu \times \beta)\left(0,\left(\mathrm{x}_{2} *\left(\mathrm{y}_{2} * \mathrm{z}_{2}\right)\right)\right),(\mu \times \beta)\left(0, \mathrm{y}_{2}\right)\right\}$

$$
=\max \left\{\max \left\{\mu(0), \beta\left(\left(\mathrm{x}_{2} *\left(\mathrm{y}_{2} * \mathrm{z}_{2}\right)\right)\right)\right\}\right.
$$

$$
\left.\max \left\{\mu(0), \beta\left(\mathrm{y}_{2}\right)\right\}\right\}
$$

$$
=\max \left\{\beta\left(\left(\mathrm{x}_{2} *\left(\mathrm{y}_{2} * \mathrm{z}_{2}\right)\right)\right), \beta\left(\mathrm{y}_{2}\right)\right\}
$$

This prove that $\beta$ is an anti - fuzzy AT - ideal of X .

Now we consider the case $\mu(0) \leq \mu(x)$ for all $x \in X$.
Suppose that $\mu(0)>\mu(y)$ for some $y \in X$. then $\beta(0) \leq \beta(y)<\mu(0)$.

Since $\mu(0) \leq \mu(x)$ for all $x \in X$, it follows that $\beta(0)$ $<\mu(\mathrm{x})$ for any $\mathrm{x} \in \mathrm{X}$.

Hence $(\mu \times \beta)(x, 0)=\max \{\mu(x), \beta(0)\}=\mu(x)$ taking $\mathrm{x}_{2}=\mathrm{y}_{2}=\mathrm{z}_{2}=0$ in $(\mathrm{A})$, then
$\mu\left(\mathrm{x}_{1} * \mathrm{z}_{1}\right)=(\mu \times \beta)\left(\mathrm{x}_{1} * \mathrm{z}_{1}, 0\right)$
$\leq \max \left\{(\mu \times \beta)\left(\left(x_{1} *\left(y_{1} * z_{1}\right)\right), 0\right),(\mu \times \beta)\left(y_{1}, 0\right)\right\}$

$$
=\max \left\{\max \left\{\mu\left(\mathrm{x}_{1} *\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right)\right), \beta(0)\right\}\right.
$$

$$
\left.\max \left\{\mu\left(\mathrm{y}_{1}\right), \beta(0)\right\}\right\}
$$

$$
=\max \left\{\mu\left(\mathrm{x}_{1} *\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right)\right), \mu\left(\mathrm{y}_{1}\right)\right\}
$$

Which proves that $\mu$ is an anti - fuzzy AT ideal of $X$. Hence either $\mu$ or $\beta$ is an anti fuzzy AT - ideal of X. $\Delta$

Theorem 6.12. Let $\beta$ be a fuzzy subset of an
AT - algebra $X$ and let $R_{\beta}$ be the strongest fuzzy relation on X , then $\beta$ is an anti fuzzy AT - ideal of $X$ if and only if $R_{\beta}$ is an anti - fuzzy AT - ideal of $\mathrm{X} \times \mathrm{X}$.

Proof: Assume that $\beta$ is an anti - fuzzy AT ideal of X . By proposition (6.7), we get, $\mathbf{R}_{\beta}(0,0) \leq$

Let $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right),\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \in \mathrm{X} \times \mathrm{X}$, we have from $\left(\mathrm{AAT}_{2}\right)$ :

$$
\begin{aligned}
& \mathrm{R}_{\beta}\left(\mathrm{z}_{1} * \mathrm{x}_{1}, \mathrm{z}_{2} * \mathrm{x}_{2}\right)=\max \left\{\beta\left(\mathrm{z}_{1} * \mathrm{x}_{1}\right), \beta\left(\mathrm{z}_{2} * \mathrm{x}_{2}\right)\right\} \\
& \leq \max \left\{\max \left\{\beta\left(\mathrm{z}_{1} *\left(\mathrm{y}_{1} * \mathrm{x}_{1}\right)\right), \beta\left(\mathrm{y}_{1}\right)\right\}, \max \left\{\beta \left(\mathrm{z}_{2} *\right.\right.\right. \\
& \left.\left.\left.\begin{array}{c}
\left.\left(\mathrm{y}_{2} * \mathrm{x}_{2}\right)\right),
\end{array}\right), \beta\left(\mathrm{y}_{2}\right)\right\}\right\} \\
& \quad=\max \left\{\operatorname { m a x } \left\{\beta\left(\mathrm{z}_{1} *\left(\mathrm{y}_{1} * \mathrm{x}_{1}\right)\right), \beta\left(\mathrm{z}_{2} *\right.\right.\right. \\
& \left.\left.\left.\left(\mathrm{y}_{2} * \mathrm{x}_{2}\right)\right)\right\}, \max \left\{\beta\left(\mathrm{y}_{1}\right), \beta\left(\mathrm{y}_{2}\right)\right\}\right\} \\
& \quad=\max \left\{\mathrm{R}_{\beta}\left(\left(\mathrm{z}_{2} *\left(\mathrm{y}_{2} * \mathrm{x}_{2}\right)\right),\left(\mathrm{z}_{2} *\left(\mathrm{y}_{2} * \mathrm{x}_{2}\right)\right)\right),\right. \\
& \left.\mathrm{R}_{\beta}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}
\end{aligned}
$$

Hence $\mathrm{R}_{\beta}$ is an anti - fuzzy AT - ideal of $X \times X$.

Conversely, suppose that $R_{\beta}$ is an anti -
fuzzy AT - ideal of $\mathrm{X} \times \mathrm{X}$, by proposition $(6.8) \beta(0) \leq \beta(x)$ for all $x \in X$, which prove $\left(A A T_{1}\right)$.

Now, let $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right),\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \in \mathrm{X} \times \mathrm{X}$.
Then,

$$
\begin{aligned}
& \max \left\{\beta\left(\mathrm{z}_{1} * \mathrm{x}_{1}\right), \beta\left(\mathrm{z}_{2} * \mathrm{x}_{2}\right)\right\}=\mathrm{R}_{\beta}\left(\mathrm{z}_{1} * \mathrm{x}_{1}, \mathrm{z}_{2} *\right. \\
& \left.\mathrm{x}_{2}\right) \\
& \leq \max \left\{\mathrm { R } _ { \beta } \left(\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) *\left(\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) *\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right), \mathrm{R}_{\beta}\right.\right. \\
& \left.\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\} \\
& = \\
& =\max \left\{\mathrm { R } _ { \beta } \left(\left(\mathrm{z}_{1} *\left(\mathrm{y}_{1} * \mathrm{x}_{1}\right)\right),\left(\mathrm{z}_{2} *\right.\right.\right. \\
& \left.\left.\left(\mathrm{y}_{2} * x_{2}\right)\right)\right), \\
& \left.\quad \mathrm{R}_{\beta}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\} \\
& =\max \left\{\operatorname { m a x } \left\{\beta \left(\left(\mathrm{z}_{1} *\left(\mathrm{y}_{1} * x_{1}\right)\right), \beta\left(\mathrm{z}_{2} *\right.\right.\right.\right. \\
& \left.\left.\left.\left(\mathrm{y}_{2} * x_{2}\right)\right)\right\}, \max \left\{\beta\left(\mathrm{y}_{1}\right), \beta\left(\mathrm{y}_{2}\right)\right\}\right\}
\end{aligned}
$$

In particular if we take $x_{2}=y_{2}=z_{2}=0$, then $\beta\left(\mathrm{z}_{1} * \mathrm{x}_{1}\right) \leq \max \left\{\beta\left(\mathrm{z}_{1} *\left(\mathrm{y}_{1} * \mathrm{x}_{1}\right)\right), \beta\left(\mathrm{y}_{1}\right)\right\}$. This proves $\left(\mathrm{AAT}_{2}\right)$ and $\beta$ is an anti - fuzzy AT - ideal of $\mathrm{X} . \Delta$

## References

[1] Bhattacharye P. and MukherieeN.P., Fuzzy relations and fuzzy group, Inform Sci. ,vol. 36 (1985), 267-282 .
[2] Dudek W. A., The number of sub-algebras of finite BCC-algebras, Bull. Inst. Math. Academia Sinica 20 (1992), 129-136.
[3] Hameed A. T., On (Fuzzy) AT-ideals of ATalgebras. Submitted.
[4] Is'ekiK. and Yanaka S., An introduction to theory of BCK-algebras, Math. Japonica , vol. 23 (1979), 1-20.
[5] Jun Y. B., Hong S. M. and Roh E. H., Fuzzy characteristic sub-algebras /ideals of a BCKalgebra, Pusan Kyongnam Math. J.(presentlyEast Asian Math. J.), vol. 9 , no. 1 (1993), 127-132.
[6] Komori Y., The class of BCC-algebras is not a variety, Math. Japon., vol. 29 (1984), 391-394.
[7] Meng J. and Jun Y. B., BCK-algebras, Kyung Moon Sa Co., Korea, 1994.
[8] Mostafa S.M.,Hameed A. T. and Abed A. H. , Fuzzy KUS-Ideals of KUS-Algebras, Basra, Journal of Science (A), vol.34, no.2, pp:73-84, (2016) .
[9] Mostafa S.M.and Hameed A. T. , Anti-fuzzy KUS-ideals of KUS-algebras,International Journal of Computer Applications (0975 8887) Vol. 70, no. 9 (2013) ,24-28.
[10] Prabpayak C. and Leerawat U., On ideals and congurences in KU-algebras, Scientia Magna J. , vol. 5, no. 1 (2009), 54-57.
[11] Prabpayak C. and Leerawat U., On isomorphisms of KU-algebras, Scientia Magna J., vol. 5 , no. 3 (2009), 25-31.
[12] Xi O. G., Fuzzy BCK-algebras, Math. Japan., vol. 36(1991), 935-942.
[13] Zadeh L. A., Fuzzy sets, Inform. Control, vol. 8 (1965), 338-353.

# المثّاليات الضبابية المضاد (AT) في الجبريات (AT) <br> أريج توفيق حميد أحمد حمزة عبد بيداء حسن هادي <br> قسم الرياضيات، كلية التربية للبنات ، جامعة الكوفة ، العراق. 

المستخلص :
في هذا البحث ، نقدم مفهوم المثاليات الضبابية المضـاد "AT "AT الجبر ، وفيه يتم تقديم العديد من الأمثلة المناسبة
 وكيف يتم در اسة خو اص الصورة والصورة العكسيّة للمثاليات الضبابية المضادة AT في AT الجبر. علاوة على ذلك ، AT ينم إعطاء الضرب الديكارتي للمثالمي الضبابي المضـاد AT.

