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Abstract 
In this paper, simulations for detecting outliers and studying their effects on the values 

of AR(1) time series, transfer function model with one-input variable, transfer function 
model with two-input variables processes, and simultaneous transfer function (STF) are 
conducted using the STFMODEL JOINTMDL paragraph in the Scientific Computing 
Associate Corporation (SCA) program. A simulation of a transfer function model is 
conducted to check its validity. By using the SCA program, Victor Gomez and Agustin 
Maravall's example for detecting outliers in time series by TRAMO program is pursued. 
The conclusion, which we come up with, is that the presence of outliers, depending on their 
nature, may have a moderate to substantial impact on the effectiveness of the standard 
methodology for time series analysis with respect to model identification, estimation, and 
forecasting. 
Keywords: Simulation - transfer function model – AR (1) time series - outliers. 

  
 استخدام أسلوب المحاكاة لاكتشاف القيم الشاذة في السلاسل الزمنية

  
  الدكتور عبداالله الهيبل 

  أستاذ الاحصاء التطبيقي المشارك 
  قسم الاحصاء التطبيقي  

    فلسطين–جامعة غزة 
  

  المستخلص
تم في هذا البحث استخدام أسلوب المحاكاة لاكتشاف القيم الشاذة في السلاسل الزمنيـة              

نمـوذج  أ الذاتي من الدرجة الأولى و     رنموذج الانحدا أ تقدير معالم كل من      فيسة تأثيراتها   ودرا
نموذج دالة التحويل المتزامنة، وقد تـم       أدالة التحويل في حالتي متغير واحد و متغيرين وكذلك          

نموذج دالة التحويـل باسـتخدام البرنـامج        أأيضا باستخدام أسلوب المحاكاة التحقق من صحة        
 وكذلك في إطار اكتشاف القيم الشاذة في الـسلاسل الزمنيـة تـم    ، SCAئي المتخصصالإحصا

 ـ TRAMO تحقيق نتـائج أفـضل مـن نتـائج برنـامج             هباستخدام البرنامج نفس     ن خـلال   م
 .Victor Gomez تتبع مثال 
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 اًومن خلال نتائج هذا البحث، تم التأكيد على أن للقيم الشاذة في السلاسل الزمنية تأثير
 منهجية تحليل السلاسل الزمنية بما يخص التعرف على في  أو جوهرياًقد يكون طفيفاً يالذ
  . المناسب للسلسلة، وتقدير المعالم، وعملية التنبؤجنموذالأ

 
Introduction 

Outliers have recently been studied more and more in the statistical time 
series literature and this interest is also growing in econometrics. Usually 
time series outliers are informally defined as somehow unexpected or 
surprising values in relation to the rest of the series. 

Data of potential value in the formulation of public and private policy 
frequently occur in the form of time series. Most time series data are 
observational in nature. In addition to the possible gross errors, time series 
data are often subject to the influence of some uncontrolled or unexpected 
interventions; for example, implementations of a new regulation, major 
changes in political or economic policy, or occurrence of a disaster. 
Consequently, discordant observations and various types of structural 
changes occur frequently in time series data. Whereas, the usual time series 
model is designed to grasp the homogeneous memory pattern of a time 
series, the presence of outliers, depending on their nature, may have a 
moderate to substantial impact on the effectiveness of the standard 
methodology for time series analysis with respect to model identification, 
estimation, and forecasting. Therefore, there is a clear need to have available 
methods to detect, or accommodate, them. 

Simulation data are derived from a sequence of pseudo random 
numbers. These pseudo random numbers are created by a random number 
generator. The generator requires an initial seed value from which to 
generate its first value. The random number generator creates both a random 
number and a new seed for the next value. 

The SIMULATE paragraph in the Scientific Computing Associate 
Corporation (SCA) program may be used to estimate an ARIMA model or a 
transfer function model. The use of the SIMULATE paragraph for the 
estimation of a transfer function model is identical as its use for the 
estimation of an ARIMA model, except for the presence of input series. The 
SIMULATE paragraph will first generate a noise sequence using a pseudo 
random number generator. This sequence is then used according to a 
transfer function model specified lately using the TSMODEL paragraph. 

The paper is organized as follows. Section 2 recalls the technical 
background of Transfer Function model. Section 3 detecting outliers of a 
simulated AR (1) time series. Section 4 detecting outliers by TRAMO and 
SCA programs. Section 5 simulation is a transfer function model. Section 6 
simulation is a single-equation transfer function model (with two-input 
variables. Section 7 simulation is simultaneous transfer function (STF) 
model. Section 8 concludes. 
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The Transfer Function Model  
In many cases, we may be able to relate the response (i.e., the observed 

value) of one series to its own past values, and also to the past and present 
values of other time series. So, we consider a time series Yt as an output 
time series whose values may be related to one or more input time series Xt, 
for example, sales may be related to advertising expenditures; daily 
electricity consumption may be related to certain weather variable series 
such as maximum daily temperature or relative humidity or both. 

For a single explanatory variable, the transfer function model is 
Yt   =  C +  B1 Xt + Nt                                   

where Yt represents a stationary ARMA process. If we assume that the 
input and output variables are both stationary time series, the general form 
of the single-input, single-output transfer function model can be expressed 
as  

  Yt   =  C +  [ω(B)/δ(B)] Xt +  Nt                    (1) 
where Nt follows an ARMA model (i.e., Nt =[θ(B)/ ф (B)] at), at is a 

sequence of random errors that are independently and identically distributed 
with normal distribution N (0, σa

2),  
and 

ω(B)= ω0+ ω1(B)+ ω2(B)**2+………+ ω[s-1](B)**[s-1]  
and δ(B) =1 – δ1(B)- δ2(B)**2-……..- δr(B)**r. 

In practice, the number of terms in ω(B) is small and the value for r is 
usually 0 or 1. We can also represent the rational polynomial operator  
ω(B)/δ(B) with a linear operator ν(B), where ν(B)= ν0 + ν1B + 
ν2B**2+……………. 

The polynomial operators are related according to ν(B)= ω(B)/δ(B) 
Since we assume the transfer function is stable, the coefficients ν0, ν1, ν2, 

diminish to zero regardless the order of the δ(B) polynomial. If the linear 
operator ν(B) is used, the model in (1) can be written as : 

 
Yt   =  C +  ν(B) Xt + Nt                          (2) 

In the event that δ(B) =1 (i.e., r = 0), we have ν(B) = ω(B) and ν(B) has 
a finite number of terms. In the case that δ(B) ≠1 (i.e., r > 0 ) , then ν(B) has 
an infinite number of terms. 

The representation in (1) can be extended directly to the case of 
multiple-input transfer function model as : 
Yt = C + [ω1(B)/δ1(B)] X1t +……..+ [ωm(B)/δm(B)] Xmt + Nt               (3) 

we can also use the linear form of the transfer function by writing (2) as: 
Yt = C +  ν1(B) X1t + ν2(B) X2t +....................+ νm(B) Xmt + Nt             (4)                     

The values ν0, ν1, ν2, ….are either referred to as the transfer function 
weights or the impulse response weights for the input series Xt (see chapter 
9 of Box and Jenkins, 1970). These weights provide a measure of how the 
input series affects the output series, and the weight given to each time lag. 
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That is ν0, is a measure of how the current response is affected by the 
current value of the input series; ν1 is a measure of how the current response 
is affected by the value of the input series one period ago; ν2 is a measure of 
how the current response is affected by the value of the input series two 
periods ago; and so on. The sum of all weights, usually represented by g, is 
called the steady state gain and represents the total change in the mean level 
of the response variable if we maintain the input at a single unit increase 
above its mean level. 
There are three assumptions of the model in (2) which describes the transfer 
function between Xt and Yt (either in a linear form or as a rational 
polynomial) (Lon-Mu Liu, Gregory B. Hudak, 1992-2000): 
1. The input series can affect the response variable, but not conversely (i.e., 

the relationship between Xt and Yt is unidirectional).  
2. The input series is assumed to be independent of the disturbance.  
3. The model is stable; this is usually manifested as assuming the input and 

output series are stationary time series, and that the sum of the transfer 
function (TF) weights is finite.  

The assumption that the output series does not affect the input series is often 
appropriate for physical or engineering processes. In these cases, the input 
may be viewed as a controller mechanism that is used to maintain a certain 
level in the response variable. If we model economic and business data, we 
may wish to use more dynamic models that allow for bi-directional (or 
feedback) relationships. Examples of such models include simultaneous 
transfer function (STF) models, vector ARMA models. However, although 
the assumption of a unidirectional relationship may not be strictly true, 
transfer function models can still be effectively in modeling business and 
economic data. 

Note: There are some special cases of the transfer function model shown 
in (3). 
1. If there are no explanatory variables, then the transfer function is the 

ARIMA model.  
2. The intervention models can be obtained directly if all input series are 

binary series (that is, series consisting of only the values 0 and 1). 
  

 
Detecting Outliers of a Simulated AR (1) Time Series 

To facilitate our understanding of detecting outliers and their effects for 
example on the values of a simulated AR (1) process, we will assume that 
the constant of the proposed model is equal zero. For this purpose, 100 
observations are simulated from the model  
zt   =    [1/ (1 - 0.6B)] at  with σa =1.0. The data are shown in figure 1 
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Figure 1 

Zdata 
 

To illustrate, for example, the effect of an AO on the base AR(1) model, we 
include an AO at time t = 42  with ωA =6  (the value ωA  represents the 
amount of deviation from the ''true'' value of  ZT). The new shape of data is 
shown in figure 2. 

 
Figure 2 
Zdata1 
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By using the SCA program, only AO has been detected at t = 42, and we get 
estimation results for an AR (1) fit of the simulated AR(1) process as the 
following: 
 

σa estimate S.E. of φ estimate φ estimate Case 
0.9783 0.0810 0.5921 Without outlier 
1.2177 0.0888 0.4683 AO at time t = 42 

  
From the table, with the additive outlier at time t = 42, we can see that 

the parameter estimate is decreased by approximately 0.13 and the estimated 
residual variance is inflated and in consequence the prediction intervals can 
be too wide. In turn, it will affects the model identification, estimation and 
forecasting.  
  
Detecting Outliers by TRAMO and SCA Programs 

Victor Gomez and Agustin Maravall consider an example for detecting 
outliers in time series in their (Beta version: November 1997, instructions 
for the user of program TRAMO (Time Series Regression with ARIMA 
Noise, Missing Observations, and Outliers). 

TRAMO is a program for estimation and forecasting of regression 
models with possibly non-stationary (ARIMA) errors and any sequence of 
missing values. The program interpolates these values, identifies and 
corrects for several types of outliers, and estimates special effects such as 
Trading Day and Easter and, in general, intervention variable type of 
effects. 

The program TRAMO has a facility for detecting outliers and for 
removing their effect; the outliers can be entered by the user or they can be 
automatically detected by the program, using an original approach based on 
those of Tsay (1986) and Chen and Liu (1993). The outliers are detected one 
by one, as proposed by Tsay (1986), and multiple regressions are used, as in 
Chen and Liu (1993), to detect spurious outliers. The procedure used to 
incorporate or reject outliers is similar to the stepwise regression procedure 
for selecting the ''best'' regression equation. This results in a more robust 
procedure than that of Chen and Liu (1993), which uses ''backward 
elimination'' and may therefore detect too many outliers in the first step of 
the procedure. 

The four types of outliers considered are additive outlier (AO), 
innovational outlier (IO), level shift (LS), and transitory change (TC). 

The example illustrates what could be a standard way of executing 
TRAMO for the monthly series of sales in retail stores in Chen Liu and 
Hudak (1990). The series consists of 153 observations. The data are shown 
in figure 3. 
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Figure 3 
Retail series 

 
Victor Gomez and Agustin Maravall identify for the series the ARIMA    

(2,1,0) (0,1,1)12  model of the type 
(1 + φ1B + φ2 B2)(1 – B)(1 – B12) = (1 + Ө12 B12)at,   
and only three outliers have been detected. 
Their work is pursued, and retained the same model for the series 

according to the Auto-Correlation Function (ACF) of the residuals. 
By using the SCA program, 15 outliers have been detected at t = 23, 26, 

61 (AO-type), t = 38, 118 (IO-type), t = 142 (LS-type), and t = 40, 53, 66, 
79, 88, 92, 101, 105, 114 (TC-type).  
  
Simulation of a Transfer Function Model 

A simulation for a transfer function model is conducted to see how close 
our estimates are to the true model (to check its validity). 

To illustrate the simulation of a transfer function, we will simulate an 
input series and an output series. Specifically, we will simulate Xt and Yt so 
that (1 – 0.65B)Xt = 13.0 + et  and Yt = 7.0 +[ 0.3B/(1 – 0.75B)]Xt + (1 – 
0.7B)at     with σe = 2.5 and σa = 1.5. 

We will simulate 200 observations for Xt and Yt and store the data in 
XDATA and YDATA, respectively. We intentionally simulate more than 
200 observations and then select only the last 200 values of XDATA and 
YDATA to ensure that any potential irregularities in the beginning of the 
recursive computation of values are eliminated. The data are shown in 
figure 4. 



A study of detecting outliers in time series …                                                              [16] 
 

 
Figure 4 
ydata1 

  
We can check to see how consonant these series are to Xt  and  Yt by 

computing the values of statistics based on our equations mentioned in the 
transfer function. In particular: 

μχ = 13.0/(1 – 0.65) = 37.143; the ACF for Xt  is (0.65)l, l =1,2,3,…..; 
the steady state gain of the transfer function is g = 3.0/(1 – 0.75) = 1.2;              
μy = 7.0 + g μχ = 7.0 +1.2 (37.143) = 51.571;  υ0 = 0 and the values of the 
remaining transfer function weights are 

(0.3) (0.75)l-1                           
This is not done here, instead, we estimate 
YDATAt = c + [ωB/(1 – δB)]XDATAt + (1 – ӨB)at, 
to see how close our estimates are to the true model. 
A summary from an exact estimation of this model is given below (t-

values in parentheses): 
estimate of c = 9.7141 (12.37), estimate of  υ1 = 0.3076 (41.06), 

estimate of  D1 = 0.7268 (98.31), and estimate of  Ө =0.7754 (17.15). 
The estimated values of c, ω, δ, and  Ө  are in reasonable to good accord 

with the values used in the simulation. All diagnostic checks of this model 
support its validity. No outlier is detected. 

When we include an IO at time t = 50 with ωI = 5, only IO has been   
detected at time t = 50 by using the SCA program, and we get estimation 
results for a transfer function fit of the simulated transfer function process as 
the following: 
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S.E. of 

estimate 
of Ө  

estimate 
of Ө 

S.E. of  
estimate 

of δ 

estimate 
of δ  

S.E. of 
estimate of 
ω 

estimate 
of ω Case 

0.0472 0.7593 0.0209 0.6860 0.0192 0.3367 Without 
outlier 

0.0491 0.7336 0.0235 0.6763 0.0211 0.3417 IO at t = 
50 
  

Estimation results for a transfer function fit of the simulated transfer 
function, with the innovational outlier at t = 50, the parameters estimates are 
moderately changed, and the estimated residual variance is inflated and in 
consequence the existing of this outlier will affects the model identification, 
estimation and forecasting. 

 
Simulation of a Single-equation Transfer Function Model (with two-
input variables 

To detect outliers and study their effects on the values of a simulated 
single-equation transfer function model (with two-input variables), 300 
observations are simulated from the model 
zdata = 12.0 + (0.6)xdata + (0.7)ydata  + at,  
where the model of xdata is 
(1 – 0.66B)xdata = 12.0 + at,  
and the model of ydata is 
(1 – 0.7B)ydata = 11.0 + (1 – 0.6B) at, with σa = 2.25. 

We select only the last 250 values of xdata, ydata and zdata to ensure 
that any potential irregularities in the beginning of the recursive 
computation of values are eliminated. 

By using the SCA program, we estimated the model 
zdata = 12.0 + (ω1)xdata + (ω2)ydata  + at, 

AO has been detected at t=50,82,106 and TC at t = 160. We get 
estimation results for a single-equation transfer function model (with two-
input variables) fit of the simulated single-equation transfer function model 
(with two-input variables) process as the following: 

 
estimate 

of σa 

S.E. of 
estimate of 
ω2 

Estimate of 
ω2 

S.E. of 
estimate of 
ω1 

estimate 
of ω1 Case 

2.3085 0.0518 0.7416 0.0463 o.5741 Without outlier 

2.3096 0.0476 0.7448 0.0424 0.5494 AO at t=50,82,106 
and TC at t = 160 

 
As we see from the table, the parameters estimates are moderately 

changed, and the estimated residual variance is inflated. Thus, the presence 
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of those extraordinary events could easily mislead the conventional time 
series analysis. 
    
Simulation of Simultaneous Transfer Function (STF) Model 

In order to detect outliers and study their effects on the values of a 
simulated simultaneous transfer function model, 150 observations are 
simulated from the models 
Z1data = 17.0 + (1 – 0.5B) at, 
Z2data = 25.0 + (1 – 0.6B) at, 
with σa = 2.25. The data of z1data and z2data are shown in figure 5.  

  

 
Figure 5 

z1data and z2data for simultaneous transfer function model  
 
By using the SCA program, we estimated the two models simultaneously 
using the STFMODEL JOINTMDL paragraph 
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TC has been detected at t = 112 and IO at t = 126. We get estimation 
results for simultaneous transfer function model fit of the simulated 
simultaneous transfer function process as the following: 

Estimation results for the simultaneous transfer function fit of the 
simulated transfer function process (first model) 

 
S.E. of 

estimate of 
z2data 

estimate of 
z2data 

S.E. of 
estimate of 

z1data 

estimate of 
z1data Case 

0.0811 0.0702 0.0726 0.4579 Without outlier 
0.0794 0.0786 0.0671 0.4786 TC at t= 112 

 
Estimation results for the simultaneous transfer function fit of the simulated 
transfer function process (second model) 
 

S.E. of estimate 
of z2data 

estimate of 
z2data 

S.E. of 
estimate of 

z1data 

estimate of 
z1data Case 

0.0568 0.7262 0.0369 0.0061 Without outlier 
0.0553 0.7452 0.0706 -0.0079 IO at t= 126 

 
As we see from the above two tables, the parameters estimates are 

changed, and the estimated residual variance is inflated. So, those outliers 
could easily mislead the conventional time series analysis. 
   
Summary 

In this paper, simulations for detecting outliers and studying their effects 
on the values of AR(1) time series, transfer function model with one-input 
variable, transfer function model with two-input variables processes, and 
simultaneous transfer function (STF) are conducted using the STFMODEL 
JOINTMDL paragraph in the Scientific Computing Associate Corporation 
(SCA) program. A simulation of a transfer function model is conducted to 
check its validity. Also, by using the SCA program, Victor Gomez and 
Agustin Maravall's example for detecting outliers in time series by TRAMO 
program is pursued, in which, they detect only three outliers. However, by 
using the SCA program, 15 outliers have been detected. 

The conclusion, which we come up with, is that the presence of outliers, 
depending on their nature, may have a moderate to substantial impact on the 
effectiveness of the standard methodology for time series analysis with 
respect to model identification, estimation, and forecasting. 
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