

Automatic Continuity of Dense Range Homomorphisms into Multiplicatively Semisimple Complete Normed Algebras

RUQAYAH N. BALO

Department of Mathematics / College of Education University of Mosul

> Received 28 / 11 / 2013

Accepted 16 / 02 / 2014

الملخص

المسالة المفتوحة الآتية تنص على انه: إذا كان $B \to A \to \phi$ تطبيق متشاكل ذا مستقر كثيف من جبر باناخ A إلى جبر باناخ B بحيث إن B شبه بسيطة. هل أن ϕ مستمرة تلقائيا؟ (انظر [1]).

في [5] أعطى حلا جزئيا للمسالة أعلاه كالآتي:

ليكن A و B جبور فريجيت بحيث إن B شبه بسيطة، نصف القطر الطيفي r_B مستمر على B و نصف القطر الطيفي r_A مستمر عند الصفر. إذا كان $B \leftrightarrow A \rightarrow \phi$ تطبيق متشاكل ذا مستقر كثيف، عندئذ ϕ مستمرة تلقائيا.

في هذا البحث برهنا النتيجة التالية:

إذا كان $B \longrightarrow A \to B$ تطبيق متشاكل ذا مستقر كثيف من جبر معياري كامل غير تجميعي A إلى جبر معياري كامل غير تجميعي B بحيث إن B شبه بسيطة وجبر المضروبات لـ B((B)) شبه بسيطة أيضاً، نصف القطر الطيفي $\rho_{M(B)}$ هو مستمر على M(B) ونصف القطر الطيفي $\rho_{M(A)}$ مستمر عند الصفر، عندئذ ϕ مستمرة تلقائيا.

ABSTRACT

The following open problem state that: If $\phi: A \rightarrow B$ is a dense range homomorphism from Banach algebra A into Banach algebra B such that B is semisimple. Is ϕ automatically continuous? (see[1])

In [5] given a partial solution of the above problem as follows:

Let A and B be a Fréchet algebras such that B is semisimple, the spectral radius r_B is continuous on B and the spectral radius r_A is

continuous at zero. If $\phi: A \rightarrow B$ is a dense range homomorphism, then ϕ is automatically continuous.

In this paper, we prove the following result:

If $\phi: A \to B$ is a dense range homomorphism from a complete normed nonassociative algebra A into a complete normed nonassociative algebra B such that B is semisimple and multiplication algebra M(B)of B is also semisimple, the spectral radius $\rho_{M(B)}$ is continuous on M(B) and the spectral radius $\rho_{M(A)}$ is continuous at zero, then ϕ is automatically continuous.

1. Introduction

If A and B are Banach algebras, B is semisimple and $\phi: A \rightarrow B$ is a dense range homomorphism, then the continuity of ϕ is along-standing open problem.

This is perhaps the most interesting open problem remains unsolved in automatic continuity theory of the Banach algebras.(see[1]).

We recall that from [4], the radical of an algebra A, denoted by rad A, is the intersection of all maximal left(right) ideals in A. The algebra A is called semisimple if rad $A = \{0\}$. In [5], for the algebra A the spectrum of an element $x \in A$ is the set of all $\lambda \in C$ such that $\lambda I - x$ is not invertible in A and is denoted by Sp(x) (or by $Sp_A(x)$). Thus $Sp(x) = \{\lambda \in C : \lambda I - x \notin Inv(A)\}$.

Also let A be Banach algebra, then the spectral radius of x (with respect to A) is denoted by r(x) (or $r_A(x)$) and is defined by the formula $r(x) = Sup\{|\lambda| : \lambda \in Sp(x)\}$.

If $(A, \|.\|)$ is a Banach algebra (not necessarily commutative) then $r_A(x) = \lim_{n \to \infty} \|x^n\|^{\frac{1}{n}} \le \|x\|.$

It is known that for any algebra A we have:

 $radA = \{x \in A : r_A(xy) = 0 \text{ for every } y \in A\}.$

From [9], for X, Y normed spaces and T a linear mapping from X into Y, then the separating subspace S(T) of T is defined as follows:

 $S(T) = \{ y \in Y : \exists \{ x_n \} \subseteq X, x_n \to 0, Tx_n \to y, where \ n \in IN \}.$

Proposition 1.1

Let A, B be normed algebras (complete). If $\phi: A \to B$ is a dense range homomorphism, then $S(\phi)$ is a closed ideal of B.

Proof: see[6].

We recall from [2] that, an annihilator of algebra A (denoted by Ann(A)) is defined as follows: $Ann(A) = \{x \in A : ax = xa = 0, \forall a \in A\}$ and we say that A is zero annihilator if $Ann(A) = \{0\}$. In [7] the multiplication algebra of A denoted by M(A) is defined as a subalgebra of L(A) (the algebra of all linear mapping on A) generated by following operators:

$$Id_A: A \to A$$
, $L_x: A \to A$, $R_x: A \to A$
 $a \mapsto Id_A(a) = a$, $a \mapsto L_x(a) = xa$, $a \mapsto R_x(a) = ax$

Where $a, x \in A$, which are called identity, left and right multiplication operators respectively.

Proposition 1.2 [7]

Let A, B be normed algebras, $\phi: A \to B$ is a dense range homomorphism. Then $\hat{\phi}: M(A) \to M(B)$ is a dense range homomorphism given by the relation :

Proposition 1.3

If ϕ is a dense range homomorphism from a normed algebra A into a normed algebra B, then

- 1. $S(\hat{\phi})(B) \subseteq S(\phi)$.
- 2. $L_{S(\phi)} \cup R_{S(\phi)} \subseteq S(\hat{\phi})$, where $L_{S(\phi)} = \{L_x : x \in S(\phi)\}$, $R_{S(\phi)} = \{R_x : x \in S(\phi)\}$.

Proof:

1. To prove that $S(\hat{\phi})(B) \subseteq S(\phi)$, we first prove that $S(\hat{\phi})(\phi(A)) \subseteq S(\phi)$. Let $a \in A$, let $T \in S(\hat{\phi})$ and $\{F_n\}$ be a sequence of continuous operators in M(A), such that $\{F_n\} \rightarrow 0$ and $\{\hat{\phi}(F_n)\} \rightarrow T$. From strange operator topology (SOT), we obtain $\{F_n(a)\} \rightarrow 0$ and $\{\phi(F_n(a))\} = \{(\phi F_n)(a)\} = \{(\hat{\phi}(F_n)\phi)(a)\} = \{(\hat{\phi}(F_n)(\phi(a))\} \rightarrow T(\phi(a))).$ Therefore, $T(\phi(a)) \in S(\phi)$, for all $T \in S(\hat{\phi})$, $a \in A$. i.e. $S(\hat{\phi})(\phi(A)) \subseteq S(\phi)$. Note that, $S(\hat{\phi})(B) = S(\hat{\phi})(\overline{\phi(A)})$ $\subseteq \overline{S(\phi)} = S(\phi)$ (by proposition(1.1)).

2. Let $b \in S(\phi)$. Then $\exists \{a_n\} \subseteq A$ such that $\lim_{n \to \infty} a_n = 0$ and $\lim_{n \to \infty} \phi(a_n) = b$. Therefore, $\lim_{n \to \infty} L_{a_n} = 0$ and $\lim_{n \to \infty} L_{\phi(a_n)} = L_b$. This implies that $L_b \in S(\hat{\phi})$. Similarly, we can proof that $R_b \in S(\hat{\phi})$.

2. Fundamental Results

In this section we prove our fundamental following results:

Theorem 2.1

Let $\phi: A \to B$ be a homomorphism with dense range from normed algebra A into normed algebra B then $S(\hat{\phi})$ is a closed ideal of M(B). **Proof:**

Clearly $S(\hat{\phi})$ is a closed linear subspace of M(B). Let $G \in S(\hat{\phi})$ and $Z \in \hat{\phi}(M(A))$. There exists a sequence $\{F_n\}$ in M(A) such that $\{F_n\} \rightarrow 0$ and $\{\hat{\phi}(F_n)\} \rightarrow G$. Note that, $Z = \hat{\phi}(F)$ for some $F \in M(A)$. Hence, $\{FF_n\} \rightarrow 0$ and $\{\hat{\phi}(FF_n)\} = \hat{\phi}(F)\hat{\phi}(\{F_n\}) \rightarrow ZG \in S(\hat{\phi})$. similarly,

 $\{FF_n\} \rightarrow 0$ and $\{\varphi(FF_n)\} = \varphi(F)\varphi(\{F_n\}) \rightarrow ZG \in S(\varphi)$. Similarly $GZ \in S(\hat{\varphi})$. Therefore, $S(\hat{\varphi})$ is an ideal of $\hat{\phi}(M(A))$. Hence, $\hat{\phi}(M(A))S(\hat{\phi}), S(\hat{\phi})\hat{\phi}(M(A)) \subseteq S(\hat{\phi})$ and this implies

$$\widehat{\phi}(M(A)) \overline{S(\hat{\phi})} \subseteq \overline{S(\hat{\phi})}$$
 and $\overline{S(\hat{\phi})} \overline{\phi}(M(A)) \subseteq \overline{S(\hat{\phi})}$.
Thus $M(B)S(\hat{\phi}) \subseteq S(\hat{\phi})$ and $S(\hat{\phi})M(B) \subseteq S(\hat{\phi})$ as required.

Theorem 2.2

Let $\phi: A \to B$ be a dense range homomorphism from complete normed nonassociative algebra A into complete normed nonassociative algebra B such that B is semisimple and M(B) is also semisimple, the spectral radius $\rho_{M(B)}$ is continuous on M(B) and the spectral radius $\rho_{M(A)}$ is continuous at zero, then ϕ is automatically continuous. **Proof:**

According to the proposition (1.2) there exists homomorphism with dense range $\hat{\phi}: M(A) \to M(B)$ given by the relation $\phi F = \hat{\phi}(F)\phi$.

For every $G \in S(\hat{\phi})$ There exists a sequence $\{F_n\} \subseteq M(A)$ such that $\{F_n\} \to 0$ in M(A) and $\hat{\phi}(\{F_n\}) \to G$ in M(B). Since $\rho_{M(A)}$ is continuous at zero by assumption, we have $\rho_{M(A)}(F_n) \to 0$, then $\rho_{M(B)}(\hat{\phi}(F_n)) \to 0$.

On the other hand, again by continuity of $\rho_{M(B)}$ we have $\rho_{M(B)}(\hat{\phi}(F_n)) \rightarrow \rho_{M(B)}(G)$. Hence,

 $\rho_{M(B)}(G) = 0....(2)$

Since $\hat{\phi}: M(A) \to M(B)$ is a dense range homomorphism by theorem(2.1) $S(\hat{\phi})$ is an ideal in M(B). Thus for every $Z \in M(B)$, $GZ \in S(\hat{\phi})$. By (2) we get $\rho_{M(B)}(GZ) = 0$. Since M(B) is semisimple, we have:

rad $M(B) = \{G \in M(B) : \rho_{M(B)}(GZ) = 0 \text{ for every } Z \in M(B)\} = \{0\}.$

Therefore, $G \in rad M(B)$. So $S(\hat{\phi}) \subseteq rad M(B)$. Hence, we have $S(\hat{\phi}) = \{0\}$ and according the proposition (1.3)(2) we get $L_{S(\phi)} \cup R_{S(\phi)} \subseteq S(\hat{\phi})$ and this imply $L_{S(\phi)} = R_{S(\phi)} = 0$. Thus, $S(\phi) \subseteq Ann(B)$ and since Ann(B) = 0 then $S(\phi) = 0$. By closed graph theorem we get ϕ continuous.

3. An application example

We recall from [8] that, the intersection of full subalgebras of an associative algebra A is another full subalgebra of A it follows that for any nonempty subset S of A there is a smallest full subalgebra of A which contains S. This subalgebra will be called the full subalgebra of A generated by S.

Now let A be a nonassociative algebra. The full subalgebra of L(A) generated by $L_A \cup R_A$ will be called the full multiplication algebra of A and will be denoted by FM(A).

Consider the set W(A) of those elements a in A for which L_a and R_a belong to the Jacobson radical of FM(A), W(A) is a subspace of A so it contains a largest subspace invariant under the algebra of operators FM(A). This last subspace, which is clearly a two-sided ideal of A, will be called the weak radical of A and denoted by w-Rad(A).

Let A be nonassociative algebra and let C be any subalgebra of L(A) such that $L_A \cup R_A \subset C \subset FM(A)$. As in the definition of weak radical we can consider the largest C -invariant subspace of A consisting of elements a such that L_a and R_a lie in the Jacobson radical of C. This subspace will be called the C-radical of A and denoted by C - Rad(A). The ultra-weak radical of A (uw-Rad(A)) is defined as the sum of all the C-radicals of A when C runs through the set of all subalgebras of L(A) satisfying $L_A \cup R_A \subset C \subset FM(A)$.

Proposition 3.1

Let ϕ be a homomorphism from a complete normed nonassociative algebra A into a complete normed nonassociative algebra B. Assume that the ultra-weak radical of B is zero. Then T is continuous. **Proof:** (see[3],[8]).

References

- [1] Bachar, J.M., Radical Banach Algebras and Automatic Continuity, Lecture Notes in Math. 975, Springer Verlag, Berlin Heidelberg New York, 1983.
- [2] Bonsall, F.F., Duncan, J., Complete Normed Algebras, Springer Verlag, Berlin Heidelberg New York, 1973.
- [3] Cedilnik, A., Rodriguez, A., Continuity of Homomorphisms into Complete Normed Algebraic Algebras, J. of Algebra, 264(2003), 6-14.
- [4] Dales, H.G., Banach Algebras and Automatic Continuity, London Math., Soc. Monographs 24, Clarendom press, Oxford, 2000.
- [5] Honary, T.GH., Automatic Continuity of Homomorphisms Between Banach Algebras and Fréchet Algebras, Bull. Iranian Math. Soc., 32(2006), No.2, 1-11.
- [6] Palmer, T.W., Banach Algebras and the General Theory of *-Algebras, Cambridge University press, 1994.
- [7] Rodriguez, A., An Approach to Jordan Banach Algebras From the Theory of Nonassociative Complete Normed Algebras, Ann. Sci. Univ. Clermont Ferrand II. Math., 27(1991), 1-57.
- [8] Rodriguez, A., The Uniqueness of the Complete Algebra Norm Topology in Complete Normed Nonassociative Algebras, J. Funct. Anal., 60(1985), 1-15.
- [9] Sinclair, A.M., Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser., Vol. 21, Cambridge University Press, Cambridge, 1976.

