

Determination of pKa for some Schiff bases derived from benzaldehyde and amino phenols by conductivity measurement

M. Gh. A. E. AL-Dabbagh Department of Chemistry / College of Education University of Mosul

 Received
 Accepted

 24 / 04 / 2012
 06 / 06 / 2012

الخلاصة:

يعنى هذا البحث بتقدير الـ pKa لبعض قواعد شيف بواسطة الطريقة التوصيلية, حضرت الايمينات قيد الدراسة عن طريق تفاعلات البنزالديهايد مع p,m,o امينو فينول باستخدام الطريقة القياسية. وقد تم التاكد من هيئاتها التركيبية بالاعتماد على قياسات الاشعة فوق البنفسجية وتحت الحمراء بالاضافة الى درجات الانصهار.

لوحظ عمليا" في هذه الدراسة ان الاصرة الهيدروجينية قد تساهم في نقصان قيمة الـ benzylidene -o-hydroxy aniline. ل pKa لوحظ ان لوجود مجموعة الفينول في مواقع p,m من جهة الامين الاولي لقواعد شيف التأثير الواضح على قيم الـ pKa المستحصلة.

اخيراً تم حساب المتغيرات الثرموداينميكية لتفاعلات تأين قواعد شيف التي 'تظهر الاشارة الموجبة لقيم ΔG و ΔG بينما تمتلك قيم ΔS الاشارة السالبة والتي تم مناقشتها بالتفصيل.

Abstract:

The aim of this work is concerned with the determination of pka for some Schiff bases by conductivity method. These imines are prepared by reactions of benzaldehyde with o,m,p-amino phenols by standard method.

The structures of these imines are confirmed by using some physical methods, namely, U.V,I.R and melting points.

Experimentally it is observed, that intramolecular hydrogen bonding may contribute in decreasing pka value of benzylidene-ohydroxyaniline. The presence of phenolic groups at m and p-positions of

primary amine side of the Schiff bases, have a noticeable influence on the collected pka values.

The thermodynamic of ionization reactions of these Schiff bases are determined. These showed a positive sign values of ΔG° and ΔH° thermodynamic parameters. Also ΔS° value has a negative sign. These positive and negative signs values are discussed in detail.

Keywords: Schiff bases,conductivity, ionization constant, pka and thermodynamic

Introduction:

Schiff bases are named⁽¹⁾ with numerous methods, as ketimines when are derived from ketones and aldimines when are derived from aldehydes. These molecules have intensive importance, as theirs capability to form metal complexes. They have applications in various fields, as pharmaceutical^(2,3,4), biological^(5,6,7) analytical^(8,9) and industrial^(7,10,11) applications.

Conductometric method⁽¹²⁾ had used extensively for determination of pka for many compounds. Ives⁽¹³⁾ used this method to calculate the pka of mono basic acids on the basis of determination of the equivalent conductances at the infinity dilution of their acid solutions.

Several workers had used the same method for determination of pka values for aliphatic and aromatic acids⁽¹⁴⁾, oximes and phenol derived from benzoyl acetone and dimedone⁽¹⁵⁾, formyl⁽¹⁶⁾ pipyridine and others⁽¹⁷⁾.

The lack of pka values for benzylidene-o,m,p-substituted anilines encourage the author to deal with such important topic, using conductivity method.

Experimental part:

Chemicals:

All compounds used in this study were supplied from (Fluka), (BDH) and (Molckula) companies. These were used directly without any extra purification process.

Preparation of Schiff Bases:

Schiff bases compounds were prepared according to a standard method⁽¹⁸⁾, by reactions of equivalent amounts of the benzaldehyde and the primary aromatic amines. The last were in a forms of ortho, meta and para amino phenols. These reactions were carried out in(10-20)ml ethanol solvent. The final mixtures were refluxed for about 1.5hr, cooling and recovery of the products. Purifications of products were performed by recrystallization in ethanol, followed by drying the final products. The melting points of Schiff bases were measured as shown in Table(1).

The I.R. spectra of products under study were measured in the range between (400-4000) cm⁻¹ and with KBr disc method. Also the U.V. spectra of products were measured with concentration $(10^{-4}$ M) against a blank.

Preparation of conductivity water:

The usual distilled water was distillated twice to get conductivity water which has specific conductivity value of 1 to 1.2×10^{-6} ohm⁻¹.cm⁻¹.

Preparation of Sodium Hydroxide solution:

A standard 10⁻³M of potassium hydrogen phthalate was prepared. This solution was titrated with sodium hydroxide using ph.ph indicator.After evaluation of concentration of unknown NaOH, finally diluted to 10⁻³M.

Preparation of Schiff Bases Solutions:

At the beginning a 10^{-3} M stock solution for each acid Schiff base was prepared. This solution was diluted to prepare a set of solutions having various concentrations (2,4,6,8)x10⁻⁴. The conductivities for all solutions were measured at temperatures range(20-60) °C.

Preparation of the Sodium Salts of Schiff Bases:

10ml of 10^{-3} M solution of acid Schiff bases was taken and titrated versus 10^{-3} of NaOH, using ph.ph indicator. The final mixture was diluted to 50ml with 50% ethanol-water solvent. From the final solution other solutions mixtures were prepared of concentrations (0.4,0.8,1.2,1.6)x10⁻⁴.

The conductivites were measured at a range of temperatures (20-60)°C.

Instrumentations:

- 1. The melting points were measured by using Sturart melting point apparatus, model smp30.
- 2. The desired temperatures under study were fixed by using a water Memmert thermostat model L200.
- 3. The I.R. spectra of solid Schiff bases compounds were measured by KBr disk method and by using a computerized Bruker Tensor-27.
- 4. The U.V. spectra of ethanolic solutions of Schiff bases compounds were measured by a double beam computerized U.V.1800 Shimadzu spectrophotometer and using a matched 1x1x3 cm³ silica cells.
- 5. The conductivites were measured by using Wissenschaftlichtechnisches werkstatten model D8120-Weilheim.

Symbol	Structure	°C	I.R	.spectra o	cm ⁻¹	U.V. spectra λ _{nm} (ε _{max})	
Symbol	Structure	m.p. C	ОН	C=N	Arom	in ethanol	
Ι	HO H C C	89-91	3328.78	1625.18	1574.10	435(374),420(373),272(1988)	
II	H C	222decomp.	3374.60	1622.95	1539.74	407(650)	
III		78-80	3327.25	1625.20	1574.26	435(840),422(840),280(895)	

 Table (1):Melting points,I.R.and U.V.spectral data for benzylidene-o,m,p-hydroxy aniline

Results and Discussion:

Conductometric method had used as important sensitive, fast and accurate method for determination of pka of the mentioned acids. Previously was used in many studies to determination of pka for different acids.⁽¹⁹⁾

For that reason the equivalent conductance for acid electrolytes must be calculated by using the following equation:

 $\Lambda = \frac{1000 \text{ K}}{C}$

.....(1)

 Λ =the equivalent conductance of the electrolyte at any concentration.

K=the specific conductance.

C=the molar concentration.

There are two types of electrolytes, the strong electrolytes which give straight lines when the relationship is drawn between the equivalent conductance of electrolytes at constant temperature against square root of concentration and the weak electrolytes which give curve at the same temperature.

The equivalent conductance of sodium chloride was taken from reference⁽²⁰⁾ at (20,30,40,50,60)°C. Similarly, also with respect of hydrochloride acid. Finally, the relationship was drawn between Λ_0 against the mentioned temperatures as in the Figure (1). Table (2) shows Λ_0 values with temperature range between (20-60) °C.

 Table(2): The equivalent conductance at infinite dilution for sodium chloride and hydrochloric acid electrolyte.

Temperatures (°C)	Λο NaCl ohm ⁻¹ cm ² equiv ⁻¹	Λο HCl ohm ⁻¹ cm ² equiv ⁻¹
20	117.102	390.204
30	145.189	452.651
40	173.276	515.098
50	201.363	577.545
60	229.45	639.992

Different concentrations of solutions for the organic acids were prepared, the conductances for these solutions were determined and their equivalent conductances were calculated, as shown in Table (3).

Compound	M x10-3	Equivalent conductance:ohm ⁻¹ cm ² equiv ⁻¹ .						
Name		20°c	30°c	40°c	50°c	60°c		
	0.0141	31.50	42.50	65.00	80.00	112.50		
Dangylidana a	0.0200	16.75	22.50	31.25	46.25	62.50		
belizylidelle-0-	0.0245	8.75	12.83	16.50	20.00	26.67		
nyuroxyannine	0.0283	5.19	7.63	10.63	12.38	15.63		
	0.0316	3.35	4.20	5.25	6.30	8.30		
	0.0141	40.00	62.50	85.00	135.00	180.00		
Deneralidana	0.0200	15.00	22.25	22.50	35.00	53.75		
budrovyonilino	0.0245	6.33	8.42	10.42	16.00	19.17		
nyuroxyannine	0.0283	3.38	4.88	6.63	8.88	11.50		
	0.0316	2.10	2.80	3.60	4.50	7.10		
	0.0141	30.00	45.00	77.50	107.50	145.00		
Dennylidene n	0.0200	11.00	17.50	29.00	40.50	65.00		
hydroxyaniline	0.0245	6.25	9.33	16.50	23.16	36.00		
	0.0283	3.25	5.00	9.00	14.75	22.00		
	0.0316	1.50	1.80	3.25	4.50	6.50		

Table (3): The equivalent conductances of benzylidene-o,m,p-hydroxy aniline at
different temperatures.

Similarly Table (4) show the equivalent conductance at various temperatures and concentrations of the sodium salt of organic acids under study.

Compound	M x10-3 1	Equi	Equivalent conductance:ohm ⁻¹ cm ² equiv ⁻¹ .							
Name		20°c	30°c	40°c	50°c	60°c				
	6.3200	202.5	210	250	325	400				
Sodium salt of	8.9000	107.5	125	150	187.50	250				
benzylidene-o-	10.9000	76.67	91.67	116.67	150	191.67				
hydroxy aniline	12.6000	60.63	71.88	90.63	109.38	137.50				
	14.1000	47.50	60	77.5	100	122.50				
	6.3200	100	150	175	210	275				
Sodium salt of	8.9000	67.50	88.75	120	137.50	175				
benzylidene-m-	10.9000	52.50	61.67	75	108.33	150				
hydroxy aniline	12.6000	47.50	55.63	68.75	93.75	131.25				
	14.1000	41.50	45.50	65	90	110				
	6.3200	82.50	202.50	412.50	600	900				
Sodium salt of	8.9000	68.75	111.25	218.75	400	500				
benzylidene-p-	10.9000	48.33	75.83	125	166.67	208.33				
hydroxy aniline	12.6000	40.63	60	81.25	106.25	162.50				
1	14.1000	34.50	50	60	97.50	135				

 Table (4): The equivalent conductances for sodium salt of benzylidene-o,m,phydroxy aniline at different temperatures

The relationship between Λ against square root of the molar concentrations of electrolytic solutions of the sodium salt of the organic acids at five temperatures gave a straight lines which appears in Figure(2), the intercept of equation represents the equivalent conductance at the infinity dilution of acid salt and a different temperatures.

Figure (2):The relationship between Λ versus√M for sodium salt of Benzylidene-O-hydroxyaniline at different temperatures (♦ 20, ■30, ▲40, X 50, *60) ^OC

Figure (3):The relationship between Λ versus√M for sodium salt of Benzylidenem-hydroxyaniline at different temperatures. (♦ 20, ■30, ▲40, X 50, *60) ^OC

Determination of pKa for some Schiff bases derived from benzaldehyde and ...

Figure (4): The relationship between Λ versus√M for sodium salt of Benzylidene-P-hydroxyaniline at different temperatures. (♦ 20, ■30, ▲40, X 50, *60) ^OC

On the other hand,the relationships between equivalent conductances of organic acids under study,versus \sqrt{M} , show a curved shapes. These finding insist⁽²²⁾ (Figures 5,6 and 7) that Λ_o for each acid cannot determined by this method.

Figure (5): The relationship between Λ versus \sqrt{M} for Benzylidene-ohydroxyaniline at different temperatures

Another alternative method^(21,22,23) according to Kohlrausch assumption was used as in the following equation as:

 $\Lambda_0 + \Lambda_{0=} \Lambda_{0+} \Lambda_0$ (2) NaA HCI HA NaCl

 $\Lambda_0 = \Lambda_0 + \Lambda_0 - \Lambda_0$(3)

HA NaA HCl NaCl

This facilitates the evaluation of Λ_0 HA at any desired temperature.

Tables (5,6,7) showed the equivalent conductances Λ_{0} , Kav and pKa values of acids under study.

t(°c)	Conc x10 ⁻⁴ (M)	A ohm ⁻¹ cm ² equiv ⁻¹ .	$\Lambda_{0} \ { m ohm^{-1}} \ { m cm^{2}} \ { m equiv^{-1}}.$	α X10 ⁻³	K _{aX10} -7 Mole.L ⁻¹	K _{avX10} -7 Mole.L ⁻¹	pK _{av}
	2	31.50		54.7065	6.3319		
	4	16.75	575.8	29.0899	3.4863	2.4443	6.6118
20	6	8.75		15.1962	1.4069		
	8	5.19		9.0135	0.6559		
	10	3.35		5.8179	0.3405		
	2	42.50		72.6123	11.3706		6.3495
	4	22.50		38.4418	6.1471		
30	6	12.83	585.3	21.9204	2.9476	4.4724	
	8	7.63		13.0360	1.3775		
	10	4.20		7.1758	0.5187		
40	2	65.00	630.6	101.6260	22.9916	0.0112	6.0963
40	4	31.25	039.0	48.8587	10.0396	0.0112	

Table(5): The equivalent conductance and pka of Benzylidene-o-hydroxyaniline at different temperatures.

Determination of pKa for some Schiff bases derived from benzaldehyde and ...

	6	16.50		25.7974	4.0988		
	8	10.63		16.6198	2.2470		
	10	5.25		8.2083	0.6793		
50	2	80.00		106.9233	25.6020		6.0067
	4	46.25	748.2	61.8150	16.2912	9.8479	
	6	20.00		26.7308	4.4048		
	8	12.38		16.5464	2.2270		
	10	6.30		8.4202	0.7150		
	2	112.50		129.2064	38.3424		5.8545
	4	62.50		71.7813	22.2045	13.9793	
60	6	26.67	870.7	30.6305	5.8071		
	8	15.63		17.9511	2.6252		
	10	8.30		9.5326	0.9174		

 Table(6): The equivalent conductance and pka of

 Benzylidene-m-hydroxyaniline at different temperatures.

t(°c)	Conc x10 ⁻⁴ (M)	Λ ohm ⁻¹ cm ² equiv ⁻¹ .	$\begin{array}{c} \Lambda_{0} \\ \text{ohm}^{-1} \text{ cm}^{2} \\ \text{equiv}^{-1}. \end{array}$	α X10 ⁻³	K _{aX10} -7 Mole.L ⁻¹	K _{avX10} -7 Mole.L ⁻¹	pKav
	2	40.00		96.9227	20.8039		
	4	15.00		36.3460	5.4832		
20	6	6.33	412.7	15.3380	1.4335	5.7044	6.2438
	8	3.38		8.1899	5.4103		
	10	2.10		5.0884	2.6025		
	2	62.50		127.1359	37.0341		
	4	22.25		45.2604	8.5828		
30	6	8.42	491.6	17.1277	1.7908	9.7060	6.0130
	8	4.88		9.9268	0.7962		
	10	2.80		5.6957	0.32627		
	2	85.00		160.8934	61.7011		5.8333
	4	22.50		42.5894	7.5783	14.6807	
40	6	10.42	528.3	19.7236	2.3810		
	8	6.63		12.5497	1.2759		
	10	3.60		6.8143	0.4675		
	2	135.00		239.6592	151.0891		
	4	35.00		62.1339	16.4650		
50	6	16.00	563.3	28.4040	4.9822	35.0399	5.4554
	8	8.88		15.7642	2.0199		
	10	4.50		7.9886	0.6433		
	2	180.00		275.3557	209.2762		
	4	53.75		82.2243	2.9465		
60	6	19.17	653.7	29.3254	5.3156	49.5539	5.3049
	8	11.5		17.5922	2.5202		
	10	7.1		10.8613	1.1927		

t(°c)	Conc x10 ⁻⁴ (M)	Λ ohm ⁻¹ cm ² equiv ⁻¹ .	Λ_{o} ohm ⁻¹ cm ² equiv ⁻¹ .	α X10 ⁻³	K _{aX10} -7 Mole.L ⁻¹	K _{avX10} -7 Mole.L ⁻¹	рК _{av}
	2	30		75.5477	12.3478		
	4	11		27.7008	3.1568		
20	6	6.25	397.1	15.7391	1.5100	3.5395	6.4511
	8	3.25		8.1843	0.5403		
	10	1.5		3.7774	0.1432		
	2	45		78.0437	13.2128		
	4	17.5		30.3503	3.8001		6.4131
30	6	9.33	576.6	16.1811	1.5968	3.8631	
	8	5.00		8.6715	0.6068		
	10	1.8		3.1217	0.0775		
	2	77.5		83.1902	15.0973		6.3587
	4	29.0		31.1292	4.0005	4.3779	
40	6	16.50	931.6	17.7115	1.9161		
	8	9.00		9.6608	0.7539		
	10	3.25		3.4886	0.1221		
	2	107.5		84.0041	15.4078		
	4	40.5		31.6480	4.1371		
50	6	23.16	1279.7	18.0979	2.0014	4.5494	6.3420
	8	14.75		11.5261	1.0752		
	10	4.5		3.5164	0.1241		
	2	145		84.3023	15.5223		
	4	65		37.7907	5.9370		
60	6	36	1720	20.9302	2.6845	5.1225	6.2905
	8	22		12.7907	1.3258		
	10	6.5		3.7791	0.1434		

 Table(7): The equivalent conductance and pka of

 Benzylidene-p-hydroxyaniline at different temperatures.

From tables (5,6,7), the following conclusions were deduced:

- 1- The acidity of any acid was increased by increasing temperature. This means that more protons were liberated from any acid by elevation of temperature between (20-60) ⁶C. The last is accompanied by decreasing pka value of acid.
- 2- At any constant temperature the aciditiy was increased in the following order m>o>p, with exception of benzylidene-o-hydroxy aniline at temperature 293K.This may be due to the stronger hydrogen bonding exist at such temperature.

This order can be accepted if we considered the two opposing effect of phenolic group, namely the inductive and resonance effects. It seems possible that resonance effect of (o-OH) group is more effective as compared with inductive effect, beside the hydrogen bonding. Hence these three last effects might be responsible on decreasing the acidity of ophenolic acid as compared with m-phenolic acid at any temperature.

Determination of pKa for some Schiff bases derived from benzaldehyde and ...

The lower acidity of benzylidene-p-hydroxy aniline at any temperature can be accepted due to the stronger donation property of phenolic group at p-position supported by the σp value of (-0.37) of Hammet equation.

These interesting results encourage the worker to deal with thermodynamic of ionization reactions of acids, namely, ΔG^0 , ΔH^0 and ΔS^0 .

 Δ H° values are calculated from integrated Vant Hoff equation at all temperatures by using the following equation:

InKa=constant $-\Delta H^{o}/RT^{(24)}$

.....(4)

Ka =ionization constant.

R=the gas constant =8.314 J.K⁻¹.mole^{-1.}

T=absolute temperature.

According to this equation a linear plot was obtained on drawing $Ink_a versus T^{-1}$ with a slope equal $(-\Delta H/R)$ as shown in Figure (8).

Figure(8): The relationship between InK_{av} against 1/T of benzylidene- ♦ 0, ■m, ▲ p -hydroxy aniline compounds.

The positive values of heats (enthalpies) (ΔH°) indicated the ionization reactions were endothermic. These results were accepted theortically.

The change in free energy ΔG^0 for ionization reactions of acids were calculated by equation^(25,26):

 $\Delta G^0 = -RTInK. \dots (5)$

The positive values of ΔG^0 listed as in Table (8) indicate that ionization reactions are nonspontaneous. These expected results could be accepted because all organic acids under study have covalent bonding. Thus it was difficult to ionize phenol group as compared with the ionic bonding.

 ΔS^0 values were calculated by Gibbs equation:

 $\Delta G^{0} = \Delta H^{0} - T \Delta S^{0}$

Compound Name	Temp K°	K _{avX10} -7 Mole.L ⁻¹	Ink _{av}	Δ G° J.mol ⁻¹	Δ H° J.mol ⁻¹	Δ S° J.mol ⁻¹ .K ⁻¹	 Δ G° J.mol ⁻¹	 Δ H° J.mol ⁻¹	 Δ S° J.mol ⁻¹ .K ⁻¹
	293	2.4443	-15.2243	37086.43	35144.20	6.6288-		37476.29	
Benzylidene-	303	4.4724	-14.6202	36830.36	34821.85	6.6287-			
o-hydroxy	313	8.0112	-14.0373	36529.01	38603.81	6.6288-	36981.786		6.62876-
aniline	323	9.8479	-13.8308	37141.53	39282.62	6.6288-			
	333	13.9793	13.4805-	37321.60	39528.97	6.6287-			
	293	5.7044	-14.3769	35022.16	24768.54	34.9953-	34480.886	23527.36	-34.9953
Benzylidene-	303	9.7060	-13.8453	34878.28	24274.70	34.9953-			
m-hydroxy	313	14.6807	-13.4316	34952.81	23999.29	-34.9953			
aniline	323	35.0399	-12.5616	33733.20	22429.72	34.9953-			
	333	49.5539	-12.2150	33817.98	22164.55	34.9953-			
	293	3.5395	-14.8541	36184.62	65048.81	-98.5126			
Benzylidene-	303	3.8631	-14.7666	37199.16	67048.48	-98.5126			
p-hydroxy	313	4.3779	-14.6415	38101.31	68935.75	-98.5126	38160.364	68994.80	98.5126-
aniline	323	4.5494	-14.6031	39215.49	71035.05	-98.5126			
	333	5.1225	-14.4845	40.101.24	72905.92	98.5126-			

 Table (8): The thermodynamic parameters and pka of benzylidene-o,m,p-hydroxyaniline at different temperatures.

Table(8) shows that the ΔS^0 values have negative signs. This means that, the ionization products are less random as compared with organic reactants. This was possible for bases having a hydrogen bonding stated before.

All these results were in agreement with other earlier study in the same field (16,17,27).

Conclusions:

- 1. The conductivities of phenolic acids were increased with increasing of temperatures.
- 2. The conductivities of phenolic sodium salts of Schiff bases were increased with increasing of temperatures.
- 3. Generally the acidity of acid phenols was increased with increasing of temperatures.
- 4. At any constant temperature the acidity of acid phenols was increased in the following order m>o>p, with exception of benzylidene–o-hydroxy aniline at temperature293K. This may be due to the stronger hydrogen bonding exist at such temperature.

References:

- 1) R.W.Layer., Chem. Rev., 63:489 (1963).
- 2) A.Kulshrestha and S.Baluja., Scholars Research Library., 2(3):221-224 (2010).
- **3)** S.Aureus, E.Coli, Styphi, C.Albicans, Rhizopussp, A.Niger, Organic Chemistry International, Article, ID, (2010), 648589, 7pages.
- 4) N.Raman, J.D. Raja and A.Sakthival., J. Chem. Sci., Vol. 119: 303-310 (2007).
- 5) K.Kiranmai, Y. Prashanthi, N. J. P. Subhashini and Shivaraj., J. Chem. Pharm. Res., 2(1):375-384 (2010).
- 6) Suparna Ghosh, Suman Malik, Bharti Jain and N. Ganesh, Asian., J. Exp. Sci., Vol. 23, No. 1:189-192 (2009).
- 7) Shalin Kumar, Durga Nath Dhar and P.N. Saxena., Journal of Scientific and Industrial Research., Vol. 68: 181-187(2009).
- 8) P.J. Clark, I.E. Treble and P.C. Vden., Polyhedron., 1:785 (1982).
- 9) R.A. Khalil, A. H. Jalil and A. Y. Abd–Alrazzak., J. Iran. Chem. Soc., Vol. 6, No. 2: 345-352 (2009).
- **10**) A.A. Isse, A. Gennaro and E. Vianello., J. Electronal. Chem., 444: 241-245 (1998).
- 11) A.R. Oki and D.J. Hodgson., Inorg. Chem. Acta., 170: 65 (1990).
- 12) A. Albert and E.P. Serjeant., "The Determination of Ionization constant". 3rd ed, Chapman and Hall, London, NewYork; 128-207 (1984).

- **13**) D. J. G. Ives., J. Chem. Soc., 731 (1933).
- 14) Samik Nag and Dipankar Datta., Ind. J. Chem., Vol. 46A: 1263-1265 (2007).
- **15**) A.S.P.Azzouz and F.H. Maree., J. Edu. Sci., 21(1), 1 (2008).
- **16**) A.S.P. Azzouz and H.J. Al-Mula., Al-Anbar J. Pure Sciences., 4(2), 59 (2010).
- 17) A.S.P. Azzouz and M.A. Hussien., J. Edu. Sci., 24(4), 1 (2011).
- 18) E.D.S. Pati, "The Chemistry of Carbon Nitrogen Double Bond". John Wiley and Sons, New York, pp. 50-86, 162-164, 365-385 (1979).
- **19**) A.S.P.Azzouz and S.S.Othman., J.Edu.Sci., 26:86 (1997).
- **20)** R.C. Weast, "Hand Book of Chemistry and Physics". 55th. Published by CRC Press, pp. 132-134 (1974),.
- 21) G.M.Barrow, "Physical Chemistry". 5th ed. McGraw –Hill Book Company, Inc., New York, pp.306-313, (1988).
- **22**) A. Martin, "Physical Pharmacy". 4th ed. Lea and Febiger, London, p.260 (1993).
- **23**) J.F.J. Dippy, S.R.C. Hughes and J.W. Laxton., J. Chem. Soc., 1470 (1954).
- 24) A.S.P. Azzouz and Kh.I. Al-Niemi., J. Edu. Sci., 16, 59 (2004).
- **25**) J. Hine, "Physical Organic Chemistry". McGraw-Hill Book Company, Inc., London, p.33 (1962).
- 26) ليلى محمد نجيب، محمود شاكر سعيد، "الكيمياء الفيزيائية"، دار الكتب للطباعة والنشر، جامعة الموصل (1989).
- 27) N.A. Al-Azzawi, Ph.D. Thesis, College of Education, University of Mosul, Iraq(1998).

