Effects of atorvastatin on some inflammatory markers in patients with multiple sclerosis treated by interferon beta-1b

Farah Waleed Mahmood*, Shamil Hashim Othman**

*Ibn-Siena Teaching Hospital, Nineveh Health Directorate, Ministry of Health ,Iraq. **Department of pharmacology, College of Medicine, University of Mosul,Mosul, Iraq. Correspondence: Shamil.othman@yahoo.com

Received	Accepted	
12.12.2013	21.4.2014	

ABSTRACT

Objective: To investigate the effect of Atorvastatin vs. placebo on some inflammatory markers in patients with multiple sclerosis treated by interferone beta-1b.To achieve the aim of this study, a randomized control comparative trial was adopted.

Patients and Methods: A total of 100 patients with multiple sclerosis were recruited and investigated for some inflammatory markers which included, interleukin-2, tumor necrosis factor- α , C-reactive protein, and erythrocyte sedimentation rate. The patients were divided into 2 groups, namely the atorvastatin group which consisted of 50 patients and the placebo group which consisted of 50 patients. The patient groups were followed- up for 12 weeks during which the above parameters were measured before starting therapies and at the end of the follow-up period using commercially available kits. The patient groups were compared with the control group consisted of 50 apparently healthy subjects.

Results: The IL-2, TNF- α , CRP and ESR at baseline in both patient groups were found significantly elevated as compared with the control group (p< 0.001). The use of atorvastatinhas resulted in significant decrease on the above parameters with non-significant effects in the placebogroup. Atorvastatinappeared to be superior in compared with the placebo group.

Conclusion: The use of atorvastatinfor 12 weeks in patients withmultiple sclerosis treated by interferone-beta has beneficial effect on some inflammatory markers studied in this research(IL-2,TNF- α ,CRP and ESR).

Keywords: Multiple Sclerosis, Atorvastatin, Interferone-beta-1b.

الخلاصة

أهداف الدراسة: لدراسة تأثير عقار الاتور فستاتين والدواء الكاذب على بعض دلالات الالتهاب لدى المرضى المصابين بتصلب الأعصاب المتعدد المعالجين بالانتر فيرون-بيتا لتحقيق أهداف هذه الدراسة، تم اعتمادتصميم محاولة عشوائية ضابطة.

طريقة العمل: تم إشراك مائة مريض مصاب بتصلب الأعصاب المتعدد لغرض إجراء الاختبارات على بعض دلالات الالتهابفي مصل الدم والتي شملت (IL-2,TNF-α,CRP and ESR) تم تقسيم المرضى إلى مجموعتين متساويتين: مجموعة الاتور فستاتين و مجموعة الدواء الكاذب ضمت كل واحدة على 50 مريضا. تمت متابعة المرضى لمدة 12 أسبوعا، أجريت خلالها اختبارات المعايير أعلاه قبل وبعد انتهاء فترة المتابعة بواسطة عدة عمل متوفرة في السوق المحلية. تم مقارنة مجموعة المرضى مع مجموعة حموعة ملائر مع محموعة الدواء الكاذب ضمت كل واحدة على 50 مريضا. تمت متابعة المرضى لمدة 12 أسبوعا، أجريت خلالها اختبارات المعايير أعلاه قبل وبعد انتهاء فترة المتابعة بواسطة عدة عمل متوفرة في السوق المحلية. تم مقارنة مجموعة المرضى مع مجموعة ضابطة اشتملت على 50 شخصا سليما ظاهريا.

النتائج: وجدت دلالات الالتهاب قيد الدراسة(IL-2,TNF-α,CRP and ESR)مرتفعة معنويا في كلا مجموعتي المرضدمقارنة مع مجموعة الضبط اظهر استعمال الاتورفستاتين تاثير مفيد على المعايير أعلاهمقارنة بالدواء الكاذب. الاستنتاج: إن استعمالعقار الاتورفستاتين لمدة 12 أسبو عالدى المرضى المصابين بتصلب الأعصاب المتعدد المعالجين بالانترفيرون-بيتا لديه تأثير ايجابي على بعض اختبارات دلالات الالتهاب قيد الدراسة. كلمات الدلالة: تصلب الأعصاب المتعدد، اتور فستاتين، انترفيرون-بيتا

M ultiple sclerosis (MS) is an inflammatory autoimmune disorder invading myelin sheath in central nervous system (CNS)¹. It is the most common nontraumatic cause of disability in young adults, affecting approximately 2.5 million people worldwide; its prevalence is not uniform, with a latitudinal gradient of prevalence present in most studies².

etiology The of MS is It likely results from unknown. complex interactions between environmental and genetic factors. which lead to an aberrant immune response and damage to the myelin sheath, oligodendrocytes, axons, and neurons³. MS is considered to be an inflammatory autoimmune CD4 T-cell mediated disorder based on immune alterations blood in the and cerebrospinal fluid (CSF) as well as the pathological features in the brain⁴. Autoreactive activated T-cells invade the blood brain barrier and initiate an inflammatory response that leads to myelin destruction and significant neurological disability⁵.

Cytokines have crucial functions in development, the differentiation and regulation of immune cells. As a result. dysregulation of cytokine production or action is thought to have a central the development role in of autoimmunity and autoimmune diseases such as MS⁶.An imbalance in cytokines exists in MS, with the proinflammatory T helper1 (Th1) cytokines predominating over the antiinflammatory and regulatory (Th2) dysregulation cytokines⁷. This in cytokine balance in individuals with MS is due to an increased Th1 immune response combined with a decreased Th2 response⁸. This imbalance is characterized predominately bv increased levels of interferon gamma interleukin (IFNγ), (IL)-2. interleukin (IL)- 12 and tumor necrosis factor alpha (TNF- α) and decreased levels of IL-4, IL-10, and transforming growth factor-beta $(TGF-\beta)^9$.

In addition to this imbalance in cvtokines. MS is characterized by increased levels of inflammatory markers which include serum soluble vascular adhesion molecule-1 (sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1), Creactive protein (CRP), erythrocyte sedimentation rate (ESR), neopterin, serum nitric oxide metabolites nitrate and nitrite and alpha 1-acid glycoprotein (AGP)¹⁰.

Interferon-beta is an immunemodulatory drug that modulates T-cell activation and reduces inflammatory mediators and reduces the relapse rate in relapsing remitting MS¹¹.

Experimental and clinical studies have demonstrated that statins can downregulate both acute and chronic inflammatory processes, reduce circulating CRP and proinflammatory cytokines levels¹². These data suggest the potential value of statins in the treatment of MS¹³. Thus, the present study aims to:

1) compare the concentrations of some cytokines and inflammatory

markers (IL-2, TNF- α , CRP, and ESR) between MS patients and healthy individuals.

2) evaluate the effect of 3 month use of statin (atorvastatin) versus placebo on the concentrations of the above parameters in MS patients treated by interferon beta-1b.

Patients and Methods

The study was conducted in Ibn-Siena Consultation Clinic of Neurology, Mosul, Iraq. The subjects included in this study were selected over the six-month period of 1st February to 1st June 2013. To achieve the aim of the present study, a randomized control trial (RCT), openlabeled design was adopted.

Out of one-hundred twenty patients recruited in this study, only one-hundred patients whose ages mean ±SD were 35.82±8.75 years complaining from relapsing remitting sclerosis (RRMS) multiple in remission phase diagnosed according to McDonald criteria 2010 receiving subcutaneous interferon beta-1b 250 µg every other day were completed the three months follow-up period.

The patients who were eligible to the study divided randomly into 2 equal groups. The first group consisted of fifty patients started to receive atorvastatin 20 mg (Aditor) manufactured by Advanced Pharmaceutical Industries-Jordan twice daily in addition to their usual interferon beta-1btreatment. The second group consisted of fifty patients started to receive placebo capsules (glucose powder) twice daily in addition to their usual interferon beta-1b treatment.

The study was approved by the ethical committee of Nineveh Health Directorate and all patients signed a written informed consent form. Fifty apparently healthy volunteers, matched for age, BMI and gender with the patients, were considered as a control group.

About 10 mL of venous blood was withdrawn, using a disposable syringe at about 8.00 to 10.00 am from the two MS patient groups and control subjects prior to start taking any drug (atorvastatin or placebo) and after three months of the drug use. 1ml of the blood was added to EDTA tube to calculate ESR. The remaining blood (9ml) allowed clotting in a plain tube at room temperature and then the serum was separated by centrifugation at 3000 rpm for 10 minutes and kept frozen at -20°C to be analyzed later on.

Determination of IL-2 and TNF- α concentrations was done using ELISA technique by commercially available kit.Serum CRP was measured by slide agglutination, using CRP Latex Test Kit.The recommended method for ESR measurement was Westergren method.

Statistical methods: Data are presented as mean \pm SD.Unpaired ttest was used to compare between age and sex and inflammatory parameters of the control and those of the patients. Paired t-test was used to compare between the studied inflammatory parameters before and after therapy. Mann whitney test was used to compare the effect of atorvastatin vs placebo. Results considered significant at *p* value equal or less than 0.05.

Results

The characteristics of the patients and controls were presented in table 1.

Table 2 shows that the serum levels of IL-2, TNF- α , CRP and ESR were significantly higher (*p*<0.01) in patients with MS allocated to interferon plus atorvastatin group before starting therapy as compared with the control group.By comparing the mean concentrations of IL-2, TNF- α , CRP and ESR in patients with MS before and after therapy, there was a significant decrease (p<0.01) in serum IL-2, TNF- α , CRP and ESR levels after three months use of interferon plus atorvastatin.

Table 3 shows that the serum IL-2,TNF- α , CRP and ESRlevels in patients with MS allocated to interferon plus placebo group were significantly higher (p<0.01) before starting therapy as compared with the control subjects.By comparing the mean concentrations of IL-2,TNF- α , ESR and CRPin patients with MS before and after therapy, there was no significant difference in the mean

concentrations of IL-2, TNF- α , ESR and CRP after three months use of interferon plus placebo.

Table 4 illustrates the comparative effect of interferon plus atorvastatin and interferon plus placeboafter three months. Interferon plus atorvastatin appeared to produce more significant decrease (p<0.01) for IL-2, TNF- α , ESR and CRP with regard to its effects on cytokines and the markers of inflammation as compared to Interferon plus placebo therapy

Parar	meters	Controls	Interferon + atorvastatin	Interferon + placebo	P-value
		n=50	n=50	n=50	
Age(year)		35.82±8.75	35.30±8.62	37.56±7.50	NS
Gender Male Female	No. (%) No. (%)	16 (32.0%) 34 (68.0%)	17 (34.0%) 33 (66.0%)	10 (20.0%) 40 (80.0%)	NS
BMI(kg/m ²)		25.44±3.63	25.45±3.72	26.23±3.93	NS

Table 1. Characteristics of multiple sclerosis patients and control group

NS: Non significant difference from control group

Parameters	Controls	Interferon +	Interferon +
	n=50	atorvastatin before treatment	atorvastatin after treatment
	n 50	n=50	n=50
IL-2 (ng/l)	25.26+24.22	722 80 1220 04	499.65+220.20
	25.36±24.22	722.89±230.04	488.65±229.29
TNF-α (ng/l)	22.11.11.66		1 4 4 50 1 100 55
	23.11±11.66	302.51±117.60	144.79±122.55
CRP (mg/l)			
	7.20±3.20	18.59±12.96	6.24±1.18
ESR (mm/H)			
	11.70±6.00	28.24±15.38	11.88±9.92

Table 2. Comparison of IL-2 , TNF- α , CRP and ESR among control and multiple sclerosis patients on interferon plus atorvastatin (before and after) therapy.

a) p<0.01 vs control

b) p < 0.01 vsinterferon + atorvastatinafter treatment

Table 3. Comparison of IL-2, TNF- α , CRP and ESR between control & multiple sclerosis patients on interferon plus placebo (before and after) therapy.

Parameters	Controls	Interferon +	Interferon +
rarameters	Controis		
		placebo	placebo
	n=50	before treatment	after treatment
		n=50	n=50
IL-2 (ng/l)			
	25.36±24.22	725.02±201.11*	722.14±199.27
			,,
TNF-α			
(ng/l)			
	23.11±11.66	405.75±131.15*	402.63±134.33
CRP (mg/l)			
	7.20±3.20	12.84±15.38*	13.20±15.42
	7.20-5.20	12.04-15.50	15.20-15.42
ECD			
ESR			
(mm/H)			
	11.70±6.00	31.22±12.22*	31.32±11.68

* p<0.01 vs control

Parameters	Interferon +	Interferon +	P-value
	atorvastatin	placebo	
	n=50	n=50	
IL-2 (ng/l)			
	-231.89±181.61	-2.87±21.88	<0.01*
TNF-α (ng/l)			
	-157.72±136.75	-3.12±14.77	<0.01*
CRP (mg/l)			
	-6.72±17.84	0.36±3.29	<0.01*
ESD (mm/H)			
ESR (mm/H)	-16.36±10.98	0.10±4.46	<0.01*

Table 4. Difference of percentage variation between multiple sclerosis patients on interferon plus atorvastatin and interferon plus placebo therapies.

*Significant differences using Mann Whitney test

Discussion

The current study was performed to assess the level of some cytokines and inflammatory Th1 markers in MS patients and to test whether atorvastatinuse can reduce these markers. The two MS groups and control group participate in this study were tested statistically for the absence of significant differences between the studied groups in concerning age, gender and body mass index (BMI) to exclude any effect of these parameters on the results of the study.

In this study. serum concentrations of IL-2 and TNF-awere found significantly higher in patients with MS in both drug groups than the control subjects. This is not surprising as pro-inflammatory cytokines such as IL-1, TNF- α , IL-2, IFN- γ are believed to contribute to the tissue injury in MS, while anti-inflammatory cytokines produced by Th2 cells (IL-4, IL-10) have been shown to down regulate the immune response ¹⁴; and the results of the current study were in agreement with a previous study published in 2010¹⁵. Despite clinically inactive disease and immunomodulator therapy, higher TNF- α and IL-2 of the patients

suggested a continuous subclinical immune activity that could not be suppressed by treatment 16 .

C-reactive protein is а generalized marker for inflammation, and elevated serum levels of CRP have been extensively studied in relation to cardio pathology. However, elevated levels of CRP have more recently been linked to pathologies CNS characterized by CNS inflammation including Alzheimer's disease and Parkinson's disease; this suggests that CRP may also play a role in modulating MS¹⁷. Actually many investigators have used CRP as an inflammatory marker in assessing inflammation in MS patients^{18,19}. In this study. CRP was found higher than the control and this was in agreement with a previous study of 30 RRMS patients on interferon beta in whomCRP levels were higher than the subjects²⁰.Conversely control the current result disagreed with a study published in 2011 which did not report any difference in CRP level between MS and control $group^{21}$.

The current study found that ESR level in MS patients was higher than control subjects. One previous study demonstrated that ESR may be moderately elevated in MS patients²²; another study reported that ESR increased during relapses, and became significantly lower after intravenous glucocorticoid treatment²³. While, and in contrast to our result, another study did not found any differencesin ESR between MS patients and healthy subjects²⁴.

Because of their immunomodulatory properties, statins are investigation currently under as treatment for MS. This concept was first tested in 1999 by Stanislaus et al., who showed that lovastatin reduced mononuclear-cell infiltration into the brain and attenuated the clinical signs experimental autoimmune of encephalomyelitis (EAE), the animal model of multiple sclerosis²⁵. The attenuation of EAE by statins was attributed to the up-regulation of Th2 cytokines such as IL-4, IL-10 and transforming growth factor-b1 (TGFb1)²⁶. Statins improve proliferation and survival of oligodendrocyte precursors in vitro and improve myelination in vivo²⁷. Oral atorvastatin was shown to prevent or reverse chronic or relapsing paralysis due to demyelination in a murine model. This was associated with a shift from Th-1type immune responsetowards Th-2 type responses in vivo. These results suggest a possible role of statins in inflammatory phase of MS and other Th-1 mediated autoimmune diseases including diabetes and rheumatoidarthritis²⁸.

Current study found that three months use of atorvastatin produced beneficial effect in MS patientsthrough significant decrease in IL-2, TNF- α , CRP and ESR.These results are in agreement with a previous study reported that simvastatin has shown to increase IFN- γ , IL-12 and IL-4 expression and to decrease TNF- α and IL-10 in T cells in vitro²⁹. Another study found that mean levels of two Th2 cytokine (IL-4 and IL-10) increased after addition of atorvastatin to interferon-beta-1b; but failed to significance³⁰.In reach statistical contrast to this, aplacebo-controlled randomized trialfound non-significant difference between simvastatin and placebo group at 12 months duration and concluded that there is no beneficial effect of simvastatin 80 mg as add-on therapy to interferon beta- $1a^{31}$. Another study also concluded that atorvastatin 40 mg/day added to interferon beta-1b did not have a beneficial effect on relapsing-remitting MS compared to interferon beta-1b monotherapy over а 12-month period³².

In conclusion, the addition of atorvastatinfor three months to interferon beta-1b treatment has a beneficial effects on markers of disease activity such asIL-2,TNF- α , ESR and CRP in patients with MS.

References

1. Fatehi F, Shaygannejad V, Mehr L, et al. Optical coherence tomography versus visual evoked potential in multiple sclerosis patients.Ir J neurol 2012;11:12-15.

2. Taylor BV, Pearson JF, Clarke G, et al. MS prevalence in New Zealand, an ethnically and latitudinally diverse country. MultScler 2010;16:1422– 1431.

3. Tullman MJ. Overview of the epidemiology, diagnosis, and disease progression associated with multiple sclerosis.Am J Manag Care 2013;19:15-20.

4. Greenstein JI. Current concepts of the cellular and molecular pathophysiology of multiple sclerosis. Develop Neurobiol 2007;67:1248–1265.

5. Achiron A, Gurevich M, Magalashvili D, et al. Understanding autoimmune mechanisms in multiple sclerosis using gene expression microarrays. Clin DevImmunol 2004; 11:299–305.

6. Dhib-Jalbut S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 2002;58:3–9.

7. Alexander JS, Harris MK, Wells SR, et al. Alterations in serum MMP-8, MMP-9, IL-12p40 and IL-23 in multiple sclerosis patients treated with interferon-beta1b. MultScler 2010; 16:801–809.

8. Zhang GX, Baker CM, Kolson DL et al. Chemokines and chemokine receptors in the pathogenesis of multiple sclerosis. MultScler 2000; 6:3–13.

9. Clerici M, Saresella M, Trabattoni D, et al. Single-cell analysis of cytokine production shows different immune profiles in multiple sclerosis patients with active or quiescent disease.J Neuroimmunol 2001;121:88–101.

10. Weinstock-Guttman B, Baier M, Park Y, et al. Low fat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins LeukotEssent Fatty Acids 2005;73:397-404.

11. Holmoy T, Vartdal F. The immunological basis for treatment of multiple sclerosis. Scand J Immunol 2007;66:374–382.

12. Lefer DJ. Statins as potent antiinflammatory drugs. Circulation 2002;106:2041-2042.

13. Paul F, Waiczies S, Wuerfel J, et al. Oral high-dose atorvastatin treatment in relapsing-remitting multiple sclerosis. PLOS ONE 2008; 3(4):e1928.

14. Imitola J, Chitnis T, Khoury SJ. Cytokines in multiple sclerosis: from bench to bedside. Pharmacol Ther 2005;106:163-77.

15. Tasdemir N, Karaca EE, Ece A, et al. Multiple sclerosis: Relationships between cytokines, MRI lesion burden, visual evoked potentials and disability

scores. Eur J Gen Med 2010;7:167-173.

16. Burns SA, Archer RL, Chavis JA, et al. Mitoxantrone repression of astrocyte activation: Relevance to multiple sclerosis.Brain Res 2012; 1473:236-241.

17. Coric J, Pasic A, Panjeta M, et al. Evaluation of high sensitivity Creactive protein assay in cerebrospinal fluid on the Dimension RxL analyzer. J Heal Sci 2012;21:13-16.

18. Sellner J, Greeve I andMattle HP. Atorvastatin decreases high sensitivity C-reactive protein in multiple sclerosis.MultScler2008;14:981–984.

19. Hon GM, Hassan MS, Rensburg SJ, et al. Immune cell membrane fatty acids and inflammatory marker, C-reactive protein in patients with multiple sclerosis. Br J Nutr 2009; 19:1–7.

20. Palavra F, Marado D, Mascarenhas-Melo F, et al. New markers of early cardiovascular risk in multiple sclerosis patients: Oxidized-LDL correlates with clinical staging. Dis Markers 2013;34:341-348.

21. Fjeldstad AS, McDaniel J, Witman MA, et al. Vascular function and multiple sclerosis. J Neuro 2011; 258:2036–2042.

22. Scolding N. The differential diagnosis of multiple sclerosis.J NeurolNeurosurg Psychiatry 2001; 71:9-15.

23. Glass-Marmor L, Paperna T, Galboiz Y, et al. Immunomodulation by chronobiologically- based glucocorticoids treatment for multiple sclerosis relapses. J Neuroimmunol 2009;210:124-127.

24. Aksungar FB, Topkaya AE, Yildiz Z, et al. Coagulation status and biochemical and inflammatory markers in multiple sclerosis. J Clin Neurosci 2008;15:393-397.

25. Stanislaus R, Pahan K, Singh AK, et al. Amelioration of experimental allergic encephalomyelitis in Lewis

rats by lovastatin. Neurosci Lett 1999;269:71–74.

26. Paintlia AS, Paintlia MK, Singh AK, et al. Regulation of gene expression associated with acute experimental autoimmune encephalomyelitis by lovastatin. J Neurosci Res 2004;77:63–81.

27. Paintlia AS, Paintlia MK, Khan M et al. HMG-CoA reductase inhibitor augments survival and differentiation of oligodendrocyte progenitors in animal model of multiple sclerosis. FASEB J 2005;19:1407–1421.

28. Yonssef S, Stuve O, Patarroyo JC, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002;420:78-84.

29. NeuhausO, Strasser-Fuchs S, Fazekas F, et al. Statins as

immunomodulators: comparison with interferon-beta 1b in MS. Neurology 2002;59:990–997.

30. Sellner J, Greeve I, Findling O, et al. Effect of interferon-beta and atorvastatin on Th1/Th2 cytokines in multiple sclerosis. NeurochemInt 2008;53:17-21.

31. Sorensen PS, Lycke J, Eralinna JP, et al. Simvastatin as add-on therapy to interferon β -1a for relapsing-remitting multiple sclerosis (SIMCOMBIN study): a placebo-controlled randomised phase 4 trial. Lancet Neurol 2011;10:691-701.

32. Kamm CP, El-Koussy M, Humpert S, et al. Atorvastatin added to interferon β for relapsing multiple sclerosis: a randomized controlled trial. J Neurol 2012;259: 2401-2413.