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Abstract: This paper introduces a radial distribution feeder 

protection scheme based on certain features extraction from 

current signals measurement at the substation. The features 

are captured using the discrete wavelet transform (DWT). Two 

digital signals processing methods are used to introduce those 

features to the 1) fault detection 2) identification and 3) 

localization schemes; the first one is the energy method and the 

second one is the root mean square method. For the purpose of 

fault type identification, two systems are tested and compared, 

a Fuzzy Inference System (FIS) and Artificial Neural Network 

(ANN). Fault location scheme is then built based on ANNs. An 

effort is made to reduce the computational burden and the 

speed of detection provided by the fault detection and 

identification schemes. Since the short circuit faults are the 

most likely types of faults that can occur in power systems, the 

ten types of these faults taking into account different fault 

resistances are simulated in MATLAB environment and the 

protection scheme is built based on the idea of over current. 

The power quality disturbances such as switching transient 

events on the feeder is also taken into account in order to build 

a reliable and secure protection scheme.  
 

Index Terms: Distribution Feeder, Wavelets, Fault Detection, 

Fault Location, Cascade Neural Networks, Fuzzy Inference 

System  

 

I.  INTRODUCTION 

Distribution systems constitute the final stage of power 

delivery to consumers.  Their conductors can be of overhead 

or underground types or a mixture of the two. Owing to the 

exposure to the natural environment, the overhead 

distribution feeders are usually more prone to external fault 

causes such as rain, wind, lightning and interference with 

objects like trees and vehicles. Fault causes can also be 

internal such as insulation degradation and failure. The 

formation of  a conducting path between phase conductors 

and ground or between one another can cause a flow of a 

dangerously high amounts of currents that stress and 

damage the system components and may provide risk to 

human lives. The presence of such problems has led to the 

proposal of various fault detection, type and location 

techniques in an effort to reduce fault risk circumstances. 

the use of wavelet analysis provides the analysts a powerful 

tool for improving the old fault identification techniques by 

applying it as a pre-processing analysis tool. Wavelet 

transform introduces fast response, cost effectiveness and 

accuracy. A lot of the researches work made use of wavelet 

transform at higher stages where fault signatures can be 

more significant. 

The choice of the most desirable stage differs from one 

application to another and from one mother wavelet to 

another, it also depends on the length of the signal to be 

analysed. The large number of decompositions, filter length 

and the nature of the extracted feature can increase the time 

required by fault detection and classification systems [1]. 

Accurate fault analysis and system response have to 

introduce more time for the relaying process. Building a 

scheme for which good accuracy as well as fast response is 

desirable to improve digital relaying functionality. A lot of 

research papers has been introduced in this field. A study of 

fault features curried by voltage signals at the load end of a 

transmission line is presented in [2]. The detail and 

approximation coefficients extracted by the db4 mother 

wavelet filter at the level4 of decomposition stages reveals 

significant trends of voltage signals at the time of fault 

initiation, similar trends can be found in current signals 

measured at the substation at the same fault type 

circumstances. Such effects are the result of short circuit 

faults by which abrupt changes in the current signals usually 

take place. These characteristics have been utilized by many 

fault detection and classification studies; however Many of 

the mentioned studies involved transmission power systems. 

Application of such techniques on distribution  systems may 

require certain modifications to adapt with their complex 

nature such as non-homogeneity, the presence of loads, 

laterals and power quality disturbances. The reviewed fault 

type indication techniques are based mostly on artificial 

intelligence methods such as FIS [3]-[4] and an ANN [2], 

[5]-[9]. As regard to fault location techniques, four methods 

are usually introduced; these methods can be travelling 

wave based [10]-[11], impedance [12]-[13], ranking analysis 

according to a previously stored database [14]-[15], or 

artificial intelligence based [8], [16]-[19]. It can be seen that 

intelligent based techniques such as fuzzy, neural, genetic 

algorithms. etc. are dominating the field studies in the last 

few years. Their attributes of less complexity, better 

accuracy and faster response give them superiority over old 

complex techniques.  

In this paper, the proposed scheme is divided into three 

parts, the first part is the detection scheme that is based on 

the wavelet analysis of a specific function along with the 

utilization of the moving frame signal processing technique 

to improve the speed of detection. The second and the third 

parts are the fault type classification and the fault 

localization schemes respectively. The effect of fault 

resistance that maybe encountered by the flow of short 

circuit current is considered in the analysis in order to 

account for the soil resistance of the  ground path or the 

possibility of non-zero resistance objects existence  between 

conductors during faults.  
 

II.  A GENERAL OVERVIEW OF WAVELET 

ANALYSIS 

In power system fault analysis, it is important to detect 

certain trends in the signals to be analyzed to improve the 

detection procedures. Wavelet transform (WT) has proven 
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to be the best choice for fault identification techniques; 

wherein, a variable windowing technique is utilized to 

analyze nonstationary signals (having localized changes 

which is the dominant behavior of faulty signals). In this 

technique, accuracies in both time and frequency can be 

gained as compared to short time Fourier transform (STFT) 

that has one fixed resolution in time and frequency which is 

regarded as a drawback.   
 

 
Fig. 1 Differences between Fourier transform (STFT) and wavelet 

transform (WT) 

  

The major advantage of this type of the  analysis, is its 

capability in revealing aspects like trends, breakdown points 

and discontinuities. the basis function used by Wavelet 

analysis is called wavelets, they are waveforms of finite 

duration with irregularity trends  and an average value of 

zero. Their wave-shapes help in revealing local sharp 

changes that the sine waves cannot. There are several types 

of Wavelet transform that originated from a basic type 

called continuous wavelet transform (CWT). the CWT is 

defined as the sum over all time of the analyzed signal 

multiplied by shifted and scaled versions of the basis 

function (Wavelet function Ψ) as follows : 

 

Ψ(a,b) = a-1/2
 Ψ(a-1(t  - b))                                                   (1)  

C(a,b) = -∞ʃ+∞ f(t) a-1/2
 Ψ(a-1(t-b)) dt                                    (2)  

 

Where, C: The coefficients that represent how closely the 

wavelet function is correlated with that part of the signal 

f(t), a:  scaling parameter, b: shifting parameter. 

 

Since Any signal processing method performed in a 

computer using real world data must be accomplished on a 

discrete signal, and since calculating CWT provides 

redundancy of values because of the small shifting and 

dilating steps, the choice of a finite number of scale and 

position steps based on a power of 2 (dyadic steps) has been 

introduced as follows : 
 

a = 2 
j ,b = µ 2 

j , W( j, µ) = Ʃ k f(k) 2
-j/2 Ψ ( 2

-j k - µ)      (3) 

                                                                       

Where, W(j, µ): The DWT coefficients as a function of 

the new scaling and shifting parameters (j) and (µ). k: 

discrete time steps. 

This approach is called the discrete wavelet transform 

(DWT) and can be realized using  a set of filters into which 

the signal is passed and out of which the coefficients are 

emerged. Multi Resolution Analysis (MRA), is the iterative 

process of decomposing the analyzed signal by the DWT 

filters into approximation and detail components. 

Approximations represents low frequency components of 

the signal whereas details represent high frequency 

components. The signal that enters the DWT filters will be 

decomposed according to the MRA as shown in Fig. 2. 
 
 

 
 

Fig. 2  DWT analysis 
 

Where, cA: Approximation coefficients, cD: Detail 

coefficients, h(k), g(k) : represents the low and high pass 

filter coefficients respectively.  

The structure reveals that the signal after being 

convolved with  filters is down sampled by 2 in order to 

avoid duplication of the samples at each stage. The result is 

equal amount of samples as that of input signal. The 

frequency division of the signal by an MRA analysis is 

shown in Fig. 3. The first decomposition stage will divide 

the signal in frequency domain into two halves, the second 

stage will further decompose the first stage approximations 

frequency range into two halves and so on: 
 

 
Fig. 3 Frequency band division by the DWT 

 

Where, fs: The sampling frequency that satisfies 

Nyquist’s sampling criteria which will be explained in detail 

in a later section. A1: first stage approximations, D1: first 

stage details. 
 

III- DISTRIBUTION FEEDER MODEL 

In order to perform fault test cases, MATLAB 

SimPowerSystems toolbox is usually utilized such that large 

power systems can be simulated accurately and 

measurement signals can be captured for the sake of storage 

and analysis. The general model of any feeder system is as 

shown in Fig. 4 where the loads can be localized at the end 

of the feeder or at specific tap points along the feeder length. 

The equivalent circuit models for the three phase 

transformer, line conductors, and loads are provided within 

the toolbox. Since the electrical model of the three phase 

distribution line is dependent on its phase impedance and 

shunt admittance matrices as shown in Fig. 5, these matrices 

has to be computed in order to substitute for their values 

throughout the equivalent MATLAB model for the line. The 

computations are dependent on Carson’s equations utilizing 

the geometric data of the line as given in [20]. The test 

feeder is of overhead radial type and its topology is provided 

in Fig. 6. Because the shunt admittances in overhead short 

distribution feeders can be neglected [20], the series 

impedance matrix only is required for simulating short and 

overhead type distribution feeders. The system data required 

to build the equivalent simulation model are provided in the 

appendix, where the parameters of the line are computed 

and provided in [21]. The feeder simulation model is 

provided in Fig. 7. A number of switches are provided in the 

model to test for the various switching transient events. A 

bank of power factor improving capacitors were introduced 
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at node 20 to test for the oscillatory transient events. A test 

for the harmonics provided by an energization of a no 

loaded transformer is also introduced by means of an 

equivalent model that is available within the toolbox for 

simulating such situation.  

 

IV. DIGITAL SIGNAL PROCESSING REQUIREMENTS 

In order to build a fast and reliable fault detection and 

identification scheme, the following considerations must to 

be taken into account: 
 

A. Sampling Frequency 
        

According to the Nyquist’s sampling theorem, for a 

correct representation of a signal in the discrete state, the 

sampling frequency (ƒs ) has to be equal to or larger than 

double the highest frequency content of the signal. The 

bandwidth of fault transient frequencies is usually between 

0.1Hz -1 kHz, therefore ƒs has to be  larger than or equal to 

2 kHz [22]. For accuracy purposes ƒs is chosen to be      

12.8 kHz and is calculated as follows:  

The number of samples per cycle must be of a power of  

2 which is a requirement of wavelet transform, the chosen 

number of samples per cycle is 256. As a result, ƒs will be 

equal to the fundamental frequency of the signal (50 Hz) 

multiplied by 256 which will give 12.8 kHz [23]. 

B. Frame Size         

       The frame size at which discretised current signals will 

be analysed is chosen to be of a quarter of cycle length, i.e. 

of 64 samples. 
 

C. Choosing the Suitable Mother Wavelet     

By applying a test on a number of faulty and healthy 

signals, the best mother wavelet for the analysis can be 

found [24]. A simple routine for the test is built within  

MATLAB m-file. The test is done using a set of 

Deaubichies mother wavelets of  orders ranging from 2-10 

(of respective filter lengths of 4-20). The flow chart of the 

method is shown in Fig. 8. The error between the original 

and the reconstructed signal is measured by the norm 

formula given in (4). The resultant mother wavelet is the 

one having the least error value. 
 

 


N

K
enorm

1
()( ( Sk –ŝk ) 

2 ) 1/2                            (4) 
       

Where, S: The original signal, ŝ: the reconstructed 

signal, k: The individual signal sample number, N: the 

length of signal. The test results shown in Table I reveal that 

the best choice is the Db2 mother wavelet. 

 

 
 

Fig. 4 Feeder system general model 
 

 
 

Fig. 5 Feeder line electrical model 

 

 
 

Fig. 6 Feeder Topology 

 

 
 

Fig. 7 Feeder simulation model 
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Fig. 8. Best mother wavelet test flow chart 
 

TABLE  I   
AVERAGE ERROR VALUES FOR A COLLECTION OF DEAUBICHIES MOTHER WAVELETS 

Db2 Db3 Db4 Db5 Db6 Db7 Db8 Db9 Db10 

1.284e-08 1.399e-07 2.443e-08 3.764e-08 2.217e-08 2.454e-08 5.720e-08 3.827e-07 6.506e-08 

 
 

D. Framing Technique 

Since the framing of samples can increase or decrease 

the processing speed. The moving frame method is used in 

this work to  fasten the detection speed to the least possible 

amount of time. This method is based on entering one 

sample at a time to the analysis window (the frame) and at 

the same time leaving one sample  behind and so forth as 

shown in Fig. 9. As a result of introducing this technique, 

the speed of detection has been improved widely as shown 

in Figs. 10 & 11 for which the fault detection speed for a 15 

Ohm 725 m far from source fault is simulated.  
 

  
 

Fig. 9  The moving frame technique representation of samples 

 

E. Signal Features Representation 

1) Energy of Samples: 
 

E = 

N

i 1
| Si |2                                          (5) 

 

2) RMS of  Samples [25]: 
 

SRMS = ( 

N

i 1
| Si |2 ) 1/2                              (6) 

 

Where, Si: Signal samples 
 

 

F. Signals Specifications during healthy and Faulty 

conditions 

 

It is found that during healthy conditions, the signals 

detail and approximation coefficient values are within 

normal limits. The detail and approximation coefficients are 

having  small values as compared to faulty situations. These  

 

 

trends can be utilized to detect, classify and localize faults. 

An example of such changes in signals extracted features is 

shown in Fig. 12. 
 

V. THE PROPOSED FEEDER PROTECTION SCHEME 
 

The protection algorithm is dependent on three 

sequential phases, which are: 
 

A. The Fault Detection Phase 

The requirement of a detection scheme has led to the 

utilization of a certain function to reduce computational 

demands and detection time due to its concentration effects 

of fault transients [1], this function is given in (7): 
 

f [n] = ( a[n] 2 + b[n] 2+ c[n] 2 ) 1/2                                       (7) 
 

According to the tests, it is found that the major sources 

of Transient events that can affect the detection procedure 

during healthy conditions are the switching transients, such 

as the energization of  a capacitor bank, a no loaded 

transformer or the main feeder. As a result, by DWT 

decomposing the mentioned  function to the first level 

details and approximations by Db2 filters, the healthy 

system condition can be distinguished from faulty one 

overcoming such disturbances. The analysis performed on 

f[n] is provided in Fig. 13. The flow chart of the fault 

detection procedure is shown in Fig. 14. The values of the 

thresholds mentioned in the figures are as follows: 

 

For Energy method: Threshold1 =3.3e+7; Threshold2 

=33 

For RMS method: Threshold1 =1000; Threshold2 =1 
 

B.  Fault Type Classification phase 

Two systems are tested and compared  to identify fault  

types, the  first one utilizes a fuzzy inference  system  (FIS)   

and the second utilizes an artificial neural network (ANN). 
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The flow chart of the fault type classification scheme is 

provided in Fig. 15. 

 

1) FIS Application 
 

A Mamdani type FIS is chosen to classify fault types. In 

order to build the system, the following points must be taken 

into account:   

 The inputs must be chosen based on observations of 

the relationships between healthy and faulty phase 

current samples DWT extracted features.  

 The chosen features must be manipulated by certain 

processing functions to facilitate the classification 

procedure. 

 The sample space of inputs and output  must cover 

the all possible values.  

  Membership function shapes and ranges must be 

decided.  

 The rules are formulated  based on  the behaviour of 

input features with related outputs for different fault 

types.  

The inputs are chosen to be the normalized energy or 

RMS representation of detail components of current 

samples, the resultant are 4 inputs. The inputs processing is 

shown in Fig. 16 where Db2 is chosen for the DWT. The 

system structure, membership functions, specifications and 

rules are  provided in Figs. 17, 18, 19 and Tables II and III 

respectively. 
 

2) ANN application:  
 

A cascade forward  NN is used to represent fault type. 

This type of network is a feedforward net with additional 

weight connections between layers, adding them will 

improve the network performance. Simulation data is 

provided for various fault cases regarding different nodes of 

the feeder and different fault resistances ranging from 0 to 

20 Ohm. To build the network the following points must be 

followed: 
 

 Choose the features to be extracted from the current 

signals and feed it to the ANN. 

 The provided data for the network must be divided 

into training, validation and test sets. A specific 

neural network toolbox built-in function called 

divide random is used such that the provided set of 

simulated fault cases extracted features are divided 

randomly to 80% training and 20% validation data 

with an individual set is provided to test for the 

network generalization. 

 The inputs will be pre-processed by another built-in 

functions such as map min-max that transforms input 

data such that all their values will fall in the interval 

[-1,1], the other function is remove constant rows 

that removes duplicated input values. The targets will 

have the same processing functions in order to 

transform the provided targets to useful values for 

the network use, after that the network outputs will 

be reverse processed to provide the same user 

provided output data. The provision of such 

functions is to improve network learning capabilities. 

    Decide the number of neurons and the structure of 

the hidden layer. 

    Train the network by a chosen training function to 

have the least mean squared error (MSE). Levenberg 

Marquardt (trainlm) and Bayzian regularization 

(trainbr) training functions has been tested for the 

energy and RMS  types of inputs.  
 

After performing a number of tests, the ANN input 

features are chosen as the first stage analyzed current 

samples Db2 related details and approximations represented 

by an energy once and RMS second as. As a result, the  

ANN will have 8 inputs. The ANN input calculations is 

shown in Fig. 20, the specifications of the tested  ANNs are 

provided in Table IV. 
 

C. The Fault Localization Phase 

A modular type ANN of cascade forward nets is used for 

determining fault locations. The Fault types are divided into 

four classes, for each class an individual fault location ANN 

is used. For this arrangement, the network performance can 

be improved  greatly. The same inputs of fault type ANN 

described in the fault type classification phase are used for 

fault localization procedure. The flow chart of the fault 

location process is shown in Fig. 21, the specifications and 

the tested ANNs are provided in       Table V. 

 

   

                                                                                         
 

                     Fig. 10 The Fault detection for the regular framing  technique             Fig. 11 The Fault detection for the moving frame  technique 
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Fig. 12 DWT related first stage db2 decomposition coefficients during healthy and faulty conditions 

 

       
 
                     Fig. 13  f[n] analysis structure            Fig. 14 A flowchart for the fault detection procedure   Fig. 15  Fault type identification flow chart 

 

 
 

Fig. 16  FIS inputs calculations 

 
 

       
                            

                                Fig. 17  FIS structure                                         Fig. 18 An input variable membership functions 

 

 
 

Fig. 19 Output variable membership functions 
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TABLE  II 
 FIS SPECIFICATIONS 

Input Variable 

Membership 

Functions 

Na, Nb, Nc Ng 

Mf Type No. of Mfs Names Range Parameters No. of Mfs Names Range Parameters 

Trapezoidal 
Mf 

2 Zero 0-0.4 0,0,0.35,0.4 2 Zero 0-0.01 0,0,0.008,0.01 

One 0.35-1 0.35,0.4,1,1 One 0.008-1 0.008,0.01,1,1 

Output 

Variable 

Membership 

Functions 

Type No. of Mfs Names Range Parameters 

Triangular Mf 10 A-G 0-1.5 0, 1, 1.5 

B-G 1.5-2.5 1.5, 1, 2.5 

C-G 2.5-3.5 2.5, 2, 3.5 

AB-G 3.5-4.5 3.5, 4, 4.5 

AC-G 4.5-5.5 4.5, 5, 5.5 

BC-G 5.5-6.5 5.5, 6, 6.5 

AB 6.5-7.5 6.5, 7, 7.5 

AC 7.5-8.5 7.5, 8, 8.5 

BC 8.5-9.5 8.5, 9, 9.5 

ABC 9.5-10.5 9.5, 10, 10.5 

AND method Min 

Implication Min 

Aggregation Max 

Deffuzification Centroid 

 
TABLE III  
FIS RULES 

Antecedent Consequent 

If Na is One AND Nb is Zero AND Nc is Zero AND Ng is One A_G 

If Na is Zero AND Nb is One AND Nc is Zero AND Ng is One B_G 

If Na is Zero AND Nb is Zero AND Nc is One AND Ng is One C_G 

If Na is One AND Nb is One AND Nc is Zero AND Ng is One A_B_G 

If Na is One AND Nb is Zero AND Nc is One AND Ng is One A_C_G 

If Na is Zero AND Nb is One AND Nc is One AND Ng is One B_C_G 

If Na is One AND Nb is One AND Nc is Zero AND Ng is Zero A_B 

If Na is One AND Nb is Zero AND Nc is One AND Ng is Zero A_C 

If Na is Zero AND Nb is One AND Nc is One AND Ng is Zero B_C 

If Na is One AND Nb is One AND Nc is One AND Ng is Zero A_B_C 

 
 

 
 

Fig. 20 ANN Fault type input calculations 

 
TABLE IV 

FAULT TYPE ANN SPECIFICATIONS AND A COMPARISON BETWEEN DIFFERENT ANNS HAVING DIFFERENT TRAINING FUNCTIONS 

AND INPUT TYPES 
 

Type of ANN Cascade forward net 

No. of hidden neurons 25 

Network structure 8-20-5-1 

Hidden layer transfer function Tan sigmoid 

Output layer transfer function Linear 

Training method Backpropagation training 

Performance function Mean squared error (MSE) 

Testing various training functions & 

input types 

Energy inputs RMS inputs 

Trainlm Trainbr Trainlm Trainbr 

training  performance 4e-4 7e-4 1e-4 1.4e-3 

Best validation performance 7e-4 9.8e-4 1.3e-4 1.5e-3 

Test performance 3.26e-4 5.5e-4 5.9e-5 8.6e-4 

Training regression 0.99997 0.99996 0.99999 0.99992 

Validation regression 0.99995 0.99993 0.99997 0.9999 

Epochs 449 346 162 431 
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Fig. 21 ANN Fault location indication flow chart 

 

TABLE V 

 FAULT LOCATION ANNS SPECIFICATIONS AND A COMPARISON BETWEEN THE DIFFERENT ANNS HAVING DIFFERENT TRAINING 
FUNCTIONS AND INPUT TYPES 

 

Type of ANNs Cascade forward net 

Hidden layer transfer function Tan sigmoid 

Output layer transfer function Linear 

Performance function Mean squared error (MSE) 

LG ANN No. of hidden neurons 48 

Network structure 8-8-16-16-8-1 

Testing various training 

functions & input types 

Energy RMS 

Trainlm Trainbr Trainlm Trainbr 

training  performance 1e-2 1e-2 1e-2 1e-2 

Best validation performance 1.16e-2 1.105e-2 1.169e-2 1.47e-2 

Test performance 0.0101 0.0103 0.0115 0.0111 

Epochs 988 1257 862 596 

Training regression 0.9999 0.9999 0.9999 0.9998 

Validation regression 0.9998 0.9998 0.9997 0.9997 

LLG ANN No. of hidden neurons 56 

Network structure 8-8-16-16-16-1 

Testing various training 

functions & input types 

Energy RMS 

Trainlm Trainbr Trainlm Trainbr 

Training  performance 1e-1 1e-2 8e-3 5.4e-3 

Best validation performance 1.37e-2 1.04e-2 9.79e-3 7.24e-3 

Test performance 0.018 0.0112 0.0102 0.008 

Epochs 476 387 370 412 

Training regression 0.9998 0.99988 0.99988 0.9999 

Validation regression 0.9997 0.99984 0.99984 0.9998 

 

LL ANN 

 

No. of hidden neurons 56 

Network structure 8-8-16-16-16-1 

Testing various training 

functions & input types 

Energy RMS 

Trainlm Trainbr Trainlm Trainbr 

Training  performance 1e-2 1e-2 4.6e-3 7.3e-3 

Best validation performance 1.3e-2 1.27e-2 9.75e-3 8.84e-3 

Test performance 0.019 0.0126 0.05 0.02 

Epochs 780 1558 346 227 

Training regression 0.9998 0.9999 0.9999 0.9998 

Validation regression 0.9998 0.9978 0.9998 0.9998 

LLL ANN No. of hidden neurons 34 

Network structure 8-8-16-8-1 

Testing various training 

functions & input types 

Energy RMS 

Trainlm Trainbr Trainlm Trainbr 

Training  performance 8.5e-3 9.75e-3 9.97e-3 5.4e-3 

Best validation performance 1.7e-2 1.4e-2 2e-2 1.3e-2 

Test performance 0.018 0.03 0.025 0.028 

Epochs 297 303 135 146 

Training regression 0.99989 0.99985 0.99984 0.9999 

Validation regression 0.99956 0.99946 0.99918 0.9995 
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VI.  TEST RESULTS AND DISCUSSION 

A Fault protection routine written in MATLAB 

environment is used to mimic digital relay processing 

functions. By running such program, the fault protection 

scheme  can be tested. The test interval consists of 6 cycles, 

All the faults and sudden events are initiated at the second 

cycle from the interval. The fault type and location systems 

accuracies, comparisons between the systems involved, test 

cases on healthy and faulty conditions and speed of 

detection are introduced in this section. For the test cases, 

system condition is declared through an instant message box 

that contain information of the fault type and location in 

case of fault detection. Faults test cases have been taken at 

locations 725 m, 1250 m, 1575 m distant from source which 

are represented by L1, L2, and L3 respectively. The fault 

resistance is regarded as 5 Ohms. This yield about 30 test 

cases such that each test location will have 3 LG, 3 LLG,    

3 LL, and 1 LLL fault test cases. 

 

A. Fault Type 

Testing the FIS with the energy normalized inputs once and 

RMS inputs second reveals the same results; on the other 

hand, the neural network with the least value of test 

performance is found to be the one with the energy inputs 

and trainlm training function as shown in Table IV. A 

comparison between the FIS and the mentioned ANN to 

verify which system is better to accurately classify fault 

types is introduced in Table VI, in which, the successful 

predictions out of 30 fault type systems test cases are 

shown. The results show the ability of the ANN to classify 

all fault types as compared to the FIS. 

 
TABLE VI 

A COMPARISON  BETWEEN THE FIS  AND  ANN  FAULT TYPE 
SYSTEMS ACCURACIES MEASURED BY THE NUMBER OF 

SUCCESSFUL PREDICTIONS OF TEST CASES 
 

General 

Fault Types 

FIS ANN 

L1 L2 L3 L1 L2 L3 

LG 3 3 3 3 3 3 

LLG 2 2 2 3 3 3 

LL 3 3 3 3 3 3 

LLL 1 0 0 1 1 1 

 

B. Fault Location 

Table V shows that for LG and LLL ANNs, the best 

networks according to the values of the test performances 

are those of energy inputs and trainlm training functions; 

whereas for LLG and LL faults, the best ones are those 

having  trainbr training functions with RMS inputs for LLG 

and energy inputs of  LL fault types. Since the energy input 

ANNs in fault type classification scheme and most of the 

fault location constituent ANNs are having the least values 

of test performances, these types of ANNs are chosen for 

the overall proposed scheme. Table VII shows the 30 test set  

cases fault location predictions error percentages calculated 

as given in (8) [13]: 

 

Err % = ( ( A – P ) / Le ) Х 100 %                                      (8)   

 

Where, A: the actual fault location, P: the predicted fault 

location, Le: total length of feeder. 

 

 

 

 

 
TABLE VII 

 THE FAULT LOCATION SET OF ANNS PREDICTION RESULTS 

MEASURED BY THE PERCENTAGE OF ERROR 
 

Fault location individual ANNs  Average (Err%) 
LG _ANN  (9 cases) 0.775% 

LLG _ANN (9 cases) 0.74% 

LL _ANN (9 cases) 0.13% 

LLL _ANN (3 cases) 0.883% 

 

C. Test Cases on Healthy and Faulty Conditions 

1) Healthy States: 
 

 Normal Operation 
 

 
 

 
 

Fig. 22  Normal system operation 

 

 Capacitor Switching 

 
 

  
 

Fig. 23 Capacitor bank energization event 
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 Transformer Energization 

 

 
 

Fig. 24 An energization of a no loaded transformer 

 

 Energizing the Main Feeder 

 
 

 
 

Fig. 25 An energization event of the main feeder 
 

2) Faulty States: 

The results of 12 fault cases simulated at locations L1, 

L2, and L3 with an Rf = 5 Ohms are shown in the 

following figures where the trip signal is initiated and the 

main substation circuit breaker is opened, then the fault 

type and location is declared in the respective message 

boxes. 

 

 

 

 

 
 

 A_G Fault at L1 

 

 
 

 
 

Fig. 26  A_G fault at L1 

 

 B_G Fault at L2 

 
 

 
 

 
 
 

Fig. 27  B_G fault at L2 
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 C_G Fault at L3 
 

 
 

 
 

 
 

Fig. 28  C_G fault at L3 
 
 

 A_B_G Fault at L1  
 

 
 

 

 
 

  
 

 

Fig. 29 A_B_G fault at L1    
 

 

 A_C_G fault  at L2 

 
 

 
 

 
 

 

Fig. 30  A_C_G fault  at L2 

 

 B_C_G Fault at L3 

 
 

    
 

 
 

 

Fig. 31  B_C_G fault at L3 
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 A_B Fault at L1 

 

 

 
 

 
 

Fig. 32  A_B fault at L1 

 

 A_C Fault at L2 

 
 

 
 

 
 

Fig. 33  A_C fault at L2 
 

 

 B_C Fault at L3 

 
 

   
 

 
Fig. 34  B_C fault at L3 

 

 A_B_C Fault at L1 

 
 

 
 

                              

Fig. 35  A_B_C fault at L1 
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 A_B_C Fault at L2 

 
 

 
 

 
Fig. 36  A_B_C fault at L2 

 

 A_B_C Fault at L3 

 
 

 

 
 

Fig. 37  A_B_C fault at L3 

 

VII.  CONCLUSIONS 

Test results on the proposed Fault detection, classification 

and location schemes prove the following: 

1) By utilizing the DWT, faults can successfully be 

detected, classified and localized utilizing only the 

first stage decompositions of the current samples by 

mother wavelet db2 related filters.  

2) The Analysis of the function f[n] has proven its 

ability to detect faults accurately within small time 

intervals without the need for the three phase and 

zero sequence currents analysis that impose a lot of 

unnecessary processing in case of healthy states. 

3) Since the energization of a capacitor bank or the 

main feeder associated transients has major effects 

on the detail coefficients of DWT decomposed 

current signals that can cause false indication of 

faults, The use of two thresholds in the detection 

phase results in better discrimination between 

healthy and faulty conditions. 

4) The comparison between the two proposed fault type 

classification systems has led to the conclusion that 

utilizing an FIS can accurately classify single phase 

to ground and phase to phase faults, but can create 

false indications in some cases of phase to phase to 

ground and three phase faults; on the other hand the 

ANN proves to classify all fault types accurately. 

5)  The use of cascade forward neural networks shows 

good capability to classify and locate faults taking 

into account the complicated  variation of  DWT 

extracted current features with distance and  fault 

resistances. 

6) Two types of training functions has been tested for 

the cascade forward fault type and location 

networks. The trainlm function in most cases proves 

to have faster convergence and better test 

performance than the trainbr function. The results of 

the energy and RMS inputs tests has shown than the 

RMS input ANNs can converge in less number of 

epochs than the Energy input ones but can have less 

generality.  

7) The energy representation of features is chosen for 

the proposed scheme while trainlm training function 

is chosen for all ANNs except for LLG and LL fault 

location ANNs. 

8) The overall proposed scheme proves to have fast and 

secure functionality along with good fault 

information accuracy. As a result the dispatched 

maintenance crew can find the faulty type and 

section of feeder conductors in order to fix them and 

reduce outage time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

\ 
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VIII. APPENDIX 
Substation Source Transformer T1 

33 kV Turns ratio 33/11 kV 

 Type YG-YG 

 Rating 10 MVA 

 R 0.002 p.u 

 X 0.08 p.u 

Conductor 

specifications 
Phase Conductor Neutral 

Conductor 

Type Size Type Size 

ACSR 336,400 26/7 ACSR 4/0 

6/1 
 

Phase Inductance Matrix in H/km 

0.0017768 0.0008269 0.0006344 

0.0008269 0.0017277 0.0006982 

0.0006344 0.0006982 0.0017555 

Phase Resistance Matrix in Ω/km 

0.28434 0.0969 0.09538 

0.0969 0.2899 0.09817 

0.09538 0.09817 0.28676 

Length 2 km 

Node 5 Load 160 kW, Unity P.F 

Node 10 Load 2 MW, Unity P.F 

Node 15 Load 500 kW, Unity P.F 

Node 20 Load 1000 kVA, 0.8 P.F 

Node 20 

Capacitor bank 

600 kVAr 

Distribution 

transformer 

T2,T3 

Turns ratio 11/0.4 kV 

Type YG-YG 

Rating 1 MVA 

R 0.002 p.u 

X 0.08 p.u 
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