

Received 4-12-2016, Accepted 22-5-2017

7-Modular Character of The Covering group $\overline{\mathbf{S}}_{23}$

Ahmed Hussein Jassim
Math. Dept.
College of Science /Basrah University
e-mail: ahmedhussein1981@ymail.com

Abstract

: In this paper we find the modular characters of the covering group $\overline{\mathrm{S}}_{23}$ modulo $\mathrm{p}=7$ which can give the irreducible modular spin characters for S_{23} modulo $\mathrm{p}=7$, also we give the 7 -decomposition matrix of \bar{S}_{23}

Section (1)

Introduction(1.1):

The Symmetric group S_{n} has a covering group denoted by $\overline{S_{n}}$ of order $2(n!)$, the projective characters of S_{n} is called the spin characters of S_{n}, which are the ordinary characters of $\overline{S_{n}}$ indexed by the partitions of n with distinct parts.[I. Schur1911],[A.O. Morris 1962].

For $p=7$ Yaseen [A.K.Yaseen 1987] found the modular irreducible spin character of S_{n}, and $7 \leq n \leq 13$, for $n=14$ are found by Yaseen and Taban[A.K.Yaseen and S.A.Taban 1995], for $n=16,17$ and 18 are found by Taban[S.A.Taban 1998, 2001 and 2004 respectively], for $n=19$ by Najla'a[N.S.Abdullah 2009] for $n=20$ by Jenan [J. A. Resan 2010] and $n=21$ founded by A. H. Jassim [A. H. Jassim 2011]. Finally Nizar [N. M. Yacoob 2014] founded $n=22$.

Preliminaries(1.2):

For any group there are three kinds of characters ordinary, modular (for a given prime p), and projective (for S_{n} called spin). The decomposition matrix is the relation between the ordinary and modular characters for a given prime p.
The characters of $\overline{S_{n}}$ fall into two classes

1) The characters indexed by the partition of n
2) The characters indexed by the partition of n with distinct parts spin (modular).

Character of S_{n} can be written as a linear combination, with non-negative integer coefficients, of the irreducible spin (modular) characters [L. Dornhoff 1972]. Below some theorems we need to evaluate the decomposition matrix and modular spin characters for S_{n} :

1. Degree of the spin character $\langle\alpha\rangle=$ $\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle$ is:
$\operatorname{deg}\langle\alpha\rangle=2^{\left[\frac{n-m}{2}\right]} \frac{n!}{\Pi_{i=1}^{m}\left(\alpha_{i}^{\prime}\right)} \Pi_{1 \leq i<j \leq m}\left(\alpha_{i}-\right.$
$\left.\alpha_{j}\right) /\left(\alpha_{i}+\alpha_{j}\right) \quad$ [A.O.Morris 1962],
[A.O.Morris and A. K. Yaseen 1988].
2. Let B be the block of defect one and let b the number of p^{a}-conjugate characters to the irreducible ordinary character χ of G.Then [B. M. Puttaswamaiah and J. D. Dixon 1977]:
a) There exists a positive integer number N such that the irreducible ordinary characters of G are lying in the block B divided into two disjoint classes: $B_{1}=\left\{\chi \in B \mid b \operatorname{deg} x \equiv N \bmod p^{a}\right\}$, $B_{2}=\left\{\chi \in B \mid b \operatorname{deg} x \equiv-N \bmod p^{a}\right\}$.
b) Each coefficient of the decomposition matrix of the block B is 0 or 1 .
c) If α_{1} and α_{2} are not p-conjugate characters and belong to the classes (B_{1} and B_{2})respectively, then they have no irreducible modular character in common
d) For every irreducible ordinary character χ in B_{1}, there exists

Notation(1.3):

irreducible ordinary character φ in B_{2} such that they have one irreducible modular character in common with one multiplicity .
3. If C is a principal character of G for a prime p, then $\operatorname{deg} C \equiv 0 \bmod p^{A}$, where $\quad \mathrm{o}(G)=p^{A} m,(p, m)=1$ [S.A.Taban 1989],[J.F. Humphreys 1977].
4. If the decomposition matrix $D_{n-1, p}=$ $\left(d_{i j}\right)$ for S_{n-1} is known, then we can induce columns $\left(\psi_{j} \uparrow^{(r, \bar{r})} S_{n}\right)$ for S_{n} [A.K.Yaseen 1987], these columns are a linear combination with nonnegative coefficients from the columns of $D_{n, p}$ [G.D.James and A.Kerber 1981].
$(<\lambda>)^{n o} \quad(n o)$ mean the number of i.m.s. in $\langle\lambda\rangle$
i.m.s. Irreducible modular spin character.
m.s. Modular spin character.
p.i.s. Principle indecomposable spin character.
p.s. Principle spin character.

$\underline{\text { Decomposition matrix for } S_{23} \text { modulo } p=7}$

The decomposition matrix for S_{23} modulo $p=7$ of degree (156,105) [A.O.Morris 1962], [A.O.Morris and A.K.Yaseen 1988].There are 13 blocks, the block B_{1} of defect three, the blocks $B_{2} B_{3}, B_{4}$, and B_{5} are of defect two, B_{6}, B_{7}, B_{8}, are of defect one and B_{9}, B_{10}, \ldots ,B_{13} are of defect zero.

Section (2) blocks of defect one

In this section, we determine the Brauer trees of the blocks B_{6}, B_{8}, all i.m.s. are associate, in B_{7} all i.m.s. of the decomposition matrix for this block is double [A.K. Yaseen 1987].

Lemma (2.1):

Brauer tree for the block B_{8} is:

$$
\left.\begin{array}{cc}
\langle 16,4,2,1\rangle_{\ldots}\langle 11,9,2,1\rangle_{\ldots}\langle 9,8,4,2\rangle & \vdots \\
\langle 16,4,2,1\rangle^{\prime} \ldots\langle 11,9,2,1\rangle^{\prime} \ldots\langle 9,8,4,2\rangle^{\prime}
\end{array}\right\rangle\langle 9,7,4,2,1\rangle^{*}
$$

Proof:

- $\operatorname{deg}\left(\langle 11,9,2,1\rangle,\langle 11,9,2,1\rangle^{\prime},\langle 9,7,2,1\rangle^{*}\right) \equiv 294 \bmod 7^{3}$,
$\operatorname{deg}\left(\langle 16,4,2,1\rangle,\langle 16,4,2,1\rangle^{\prime},\langle 9,8,4,2\rangle,\langle 9,8,4,2\rangle^{\prime}\right) \equiv-294 \bmod 7^{3}$.
- By using inducing of p.i.s. for S_{22} to S_{23} we have on p.i.s. we have:
$D_{72} \uparrow^{(1,0)} S_{23}=d_{95}, D_{73} \uparrow^{(1,0)} S_{23}=d_{96}\left(\right.$ no sub sum of them $\equiv 0 \bmod 7^{3}$), and p.s.
$D_{74} \uparrow^{(1,0)} S_{23}=k_{1}, D_{75} \uparrow^{(1,0)} S_{23}=k_{2}, \quad D_{79} \uparrow^{(4,4)} S_{23}=k_{3}$.
$\langle 9,8,4,2,1\rangle$ and $\langle 9,8,4,2,1\rangle^{\prime}$ are p.i.s. of S_{24} (of defect 0 in $S_{24}, p=7$) we have:
$\langle 9,8,4,2,1\rangle \downarrow_{(1,0)} S_{23}=\langle 9,8,4,2\rangle+\langle 9,7,4,2,1\rangle^{*}=d_{99}$
$\langle 9,8,4,2,1\rangle^{\prime} \downarrow_{(1,0)} S_{23}=\langle 9,8,4,2\rangle^{\prime}+\langle 9,7,4,2,1\rangle^{*}=d_{100}$
Since $k_{3}=k_{1}+k_{2}-d_{99}-d_{100}$, either ($k_{1}-d_{99}$ and $k_{2}-d_{100}$) or $\left(k_{1}-d_{100}\right.$ and $k_{2}-d_{99}$)are p.s. In any case we have k_{2}, k_{3} are not p.i.s. so we take $d_{97}=k_{1}-d_{100}$, $d_{98}=k_{2}-d_{99}$. Hence, we have the Braure tree for this block B_{8}

Lemma (2.2):

Brauer tree for the block B_{7} is:

Proof:

- $\operatorname{deg}\left(\langle 10,9,3,1\rangle,\langle 10,9,3,1\rangle^{\prime},\langle 10,7,3,2,1\rangle^{*}\right) \equiv 249 \bmod 7^{3}$,

$$
\operatorname{deg}\left(\langle 17,3,2,1\rangle,\langle 17,3,2,1\rangle^{\prime},\langle 10,8,3,2\rangle,\langle 10,8,3,2\rangle^{\prime}\right) \equiv-294 \bmod 7^{3} .
$$

- By using inducing of p.i.s. for S_{22} to S_{23} we have on p.i.s.:
$D_{66} \uparrow^{(1,0)} S_{23}=d_{89}, D_{97} \uparrow^{(1,0)} S_{23}=d_{90}\left(\right.$ no sub sum of them $\left.\equiv 0 \bmod 7^{3}\right)$,
and p.s.
$D_{68} \uparrow^{(1,0)} S_{23}=k_{1}, D_{69} \uparrow^{(1,0)} S_{23}=k_{2}, \quad D_{70} \uparrow^{(1,0)} S_{23}=k_{3}, D_{93} \uparrow^{(2,6)} S_{23}=k_{4}$.
Since $\langle 10,8,3,2,1\rangle$ and $\langle 10,8,3,2,1\rangle^{\prime}$ are p.i.s. of S_{24} (of defect 0 in $S_{24}, p=7$) and:
$\langle 10,8,3,2,1\rangle \downarrow_{(1,0)} S_{23}=\langle 10,8,3,2\rangle+\langle 10,7,3,2,1\rangle^{*}=d_{93}$
$\langle 10,8,3,2,1\rangle^{\prime} \downarrow_{(1,0)} S_{23}=\langle 10,8,3,2\rangle^{\prime}+\langle 10,7,3,2,1\rangle^{*}=d_{94}$
then $k_{3}=d_{93}+d_{94}$, and since $k_{4}=k_{1}+k_{2}-d_{93}-d_{94}$, either $\left(k_{1}-d_{93}\right.$ and $\left.k_{2}-d_{94}\right)$ or $\left(k_{1}-d_{94}\right.$ and $k_{2}-d_{93}$)are p.s. In any case, we have k_{2}, k_{3} are not p.i.s. so we take $d_{91}=k_{1}-d_{94}, d_{92}=k_{2}-d_{93}$. Hence, we have the Braure tree for this block B_{7}

Lemma (2.3):

Brauer tree for the block B_{6} is:

$$
\langle 18,4,1\rangle^{*} \ldots _\langle 11,8,4\rangle^{*} _\langle 11,7,4,1\rangle=\langle 11,7,4,1\rangle^{\prime} \ldots\langle 11,5,4,2,1\rangle^{*} \text {. }
$$

Proof:

by $(4,4)$-inducing of p.i.s D_{9}, D_{17}, D_{23} of S_{22} to S_{23} we get on the Brauer tree of the block B_{6}.

Section (3) block of defect two

In this section, the decomposition matrices for blocks B_{2}, B_{3}, and B_{4} all i.m.s. are associate, and B_{5} all i.m.s. of the decomposition matrix is double [A.K.Yaseen 1987].

Lemma(3.1):

The decomposition matrix for the block B_{5} is $D_{23,7}{ }^{5}$ (as in appendix 2).

Proof:

By using (r, \bar{r})-inducing of p.i.s. for S_{22} to S_{23} we get:
$D_{8} \uparrow^{(3,5)} S_{23}=c_{1}, D_{11} \uparrow^{(3,5)} S_{23}=c_{2}, D_{15} \uparrow^{(3,5)} S_{23}=c_{3}, D_{48} \uparrow^{(1,0)} S_{23}=c_{4}, D_{25} \uparrow^{(3,5)} S_{23}=c_{5}$, $D_{33} \uparrow^{(3,5)} S_{23}=c_{6}, D_{35} \uparrow^{(3,5)} S_{23}=c_{7}, D_{37} \uparrow^{(3,5)} S_{23}=c_{8}, D_{43} \uparrow^{(3,5)} S_{23}=c_{9}$.

Now, on (7, α)-regular classes we have:

1) $\langle 14,5,3,1\rangle=\langle 14,5,3,1\rangle^{\prime}$.
2) $\langle 12,7,3,1\rangle=\langle 12,7,3,1\rangle^{\prime}$.
3) $\langle 10,7,5,1\rangle=\langle 10,7,5,1\rangle^{\prime}$.
4) $\langle 8,7,5,3\rangle=\langle 8,7,5,3\rangle^{\prime}$.
5) $\langle 10,5,4,3,1\rangle^{*}=\langle 10,7,5,1\rangle+\langle 17,5,1\rangle^{*}-\langle 10,8,5\rangle^{*}-\langle 12,10,1\rangle^{*}$.
6) $\langle 8,6,5,31\rangle^{*}=\langle 8,7,5,3\rangle+\langle 10,8,5\rangle-\langle 12,8,3\rangle^{*}+\langle 15,5,3\rangle+\langle 19,3.1\rangle$.
7) $\langle 14,5,3,1\rangle=\langle 12,7,3,1\rangle-\langle 10,7,5,1\rangle+\langle 8,7,5,3\rangle$.
8) $\langle 8,7,5,3\rangle=\langle 10,7,5,1\rangle-\langle 12,7,3,1\rangle+\langle 14,5,3,1\rangle$.

Approximation matrix contains at most 9 columns since there are 8 equations corresponding to the spin characters of S_{23} in B_{5} [A.K.Yaseen 1987], and Since c_{1}, \ldots, c_{9} are linearly independent, c_{i} $-\mathrm{c}_{\mathrm{j}}$ is not p.s to S_{23} for all $1 \leq \mathrm{i}<\mathrm{j} \leq 9$ then we get the decomposition matrix for B_{5}

Lemma(3.2):

The decomposition matrix for the block B_{4} is $D_{23,7}^{4}$ (as in appendix 2).

Proof:

By using (r, \bar{r})-inducing of p.i.s. for S_{22} to S_{23} we get:

$$
\begin{array}{lccc}
D_{45} \uparrow^{(4,4)} S_{23}=k_{1}, & D_{46} \uparrow^{(4,4)} S_{23}=k_{2}, & D_{84} \uparrow^{(1,0)} S_{23}=c_{5}, & D_{85} \uparrow^{(1,0)} S_{23}=c_{6}, \\
D_{48} \uparrow^{(4,4)} S_{23}=k_{3}, & D_{49} \uparrow^{(4,4)} S_{23}=k_{4}, & D_{86} \uparrow^{(1,0)} S_{23}=c_{11}, & D_{87} \uparrow^{(1,0)} S_{23}=c_{12}, \\
D_{51} \uparrow^{(4,4)} S_{23}=k_{5}, & D_{88} \uparrow^{(1,0)} S_{23}=c_{15}, & D_{89} \uparrow^{(1,0)} S_{23}=c_{16}, & D_{53} \uparrow^{(4,4)} S_{23}=k_{6} .
\end{array}
$$

Table(2)

	Ψ_{1}	Ψ_{2}	φ_{5}	φ_{6}	Ψ_{3}	Ψ_{4}	φ_{11}	φ_{12}	Ψ_{5}	φ_{15}	φ_{16}	Ψ_{6}	φ_{1}	φ_{2}
$\langle 19,4\rangle$	1												a	
$\langle 19,4\rangle^{\prime}$	1													a
$\langle 18,5\rangle$	1	1											b	
$\langle 18,5\rangle^{\prime}$	1	1												b
$\langle 14,5,4\rangle^{*}$		2	1	1									c	c
$\langle 13,5,4,1\rangle$			1		1								d	
$\langle 13,5,4,1\rangle^{\prime}$				1	1									d
$\langle 12,11\rangle$		1				1								
$\langle 12,11\rangle^{\prime}$		1				1								
$\langle 12,7,4\rangle^{*}$	2	2	1	1		2	1	1					f	f
$\langle 12,6,4,1\rangle$			1		1		1		1				g	
$\langle 12,6,4,1\rangle^{\prime}$				1	1			1	1					g
$\langle 12,5,4,2\rangle$					1				1				h	
$\langle 12,5,4,2\rangle^{\prime}$					1				1					h
$\langle 11,7,5\rangle^{*}$	2					2	1	1		1	1		i	i
$\langle 11,6,5,1\rangle$						2	1		1	1		1	j	
$\langle 11,6,5,1\rangle^{\prime}$						2		1	1		1	1		j
$\langle 11,5,4,3\rangle$									1			1	m	
$\langle 11,5,4,3\rangle^{\prime}$									1			1		m
$\langle 8,6,5,4\rangle$						2				1	1	1	n	
$\langle 8,6,5,4\rangle^{\prime}$						2				1	1	1		n
$\langle 7,6,5,4,1\rangle^{*}$										1	1		z	z
	k_{1}	k_{2}	c_{5}	c_{6}	k_{3}	k_{4}	c_{11}	c_{12}	k_{5}	c_{15}	c_{16}	k_{6}	Y_{1}	Y_{2}

On (7, α)-regular classes we have:

1) $\langle 12,7,4\rangle^{*}=\langle 19,4\rangle+\langle 19,4\rangle^{\prime}+\langle 12,6,4,1\rangle+\langle 12,6,4,1\rangle^{\prime}+\langle 12,11\rangle+\langle 12,11\rangle^{\prime}-\langle 12,5,4,2\rangle-$ $\langle 12,5,4,2\rangle^{\prime}$.
2) $\langle 11,7,5\rangle^{*}=\langle 18,5\rangle+\langle 18,5\rangle^{\prime}+\langle 11,6,5,1\rangle+\langle 11,6,5,1\rangle^{\prime}-\langle 11,5,4,3\rangle-\langle 11,5,4,3\rangle^{\prime}-$ $\langle 12,11\rangle-\langle 12,11\rangle^{\prime}$.
3) $\langle 14,5,4\rangle^{*}=\langle 12,7,4\rangle^{*}+\langle 7,6,5,4,1\rangle^{*}-\langle 11,7,5\rangle^{*}$.
4) $\langle 7,6,5,4,1\rangle^{*}=\langle 11,6,5,1\rangle+\langle 11,6,5,1\rangle^{\prime}+\langle 18,5\rangle+\langle 18,5\rangle^{\prime}+\langle 14,5,4\rangle^{*}-\langle 12,7,4\rangle^{*}-$ $\langle 11,5,4,3\rangle-\langle 11,5,4,3\rangle^{\prime}-\langle 12,11\rangle-\langle 12,11\rangle^{\prime}$.

So, there are 18 columns to the spin characters of S_{23} in B_{4}.
Since $\langle 19,4\rangle \neq\langle 19,4\rangle^{\prime}$ on $(7, \alpha)$-regular classes then k_{1} is split or there are two columns.
Suppose there are two columns such as Y_{1} and Y_{2} (table (2)). To describe columns Y_{1} and Y_{2} :

1. $\langle 19,4\rangle \downarrow S_{22}=\left(\langle 18,4\rangle^{*}\right)^{1}+\left(\langle 19,3\rangle^{*}\right)^{1}$ has 2 of i.m.s.(see appendix 1) so we have $a \in\{0,1\}$.
2. $\langle 18,5\rangle \downarrow S_{22}=\left(\langle 17,5\rangle^{*}\right)^{2}+\left(\langle 18,4\rangle^{*}\right)^{1}$ has 3 of i.m.s. so we have $b \in\{0,1\}$.
3. $\langle 14,5,4\rangle^{*} \downarrow S_{22}=(\langle 13,5,4\rangle)^{1}+\left(\langle 13,5,4\rangle^{\prime}\right)^{1}+(\langle 14,5,3\rangle)^{2}+\left(\langle 14,5,3\rangle^{\prime}\right)^{2}$ has 6 of i.m.s. we have $c \in\{0,1\}$, if $c=2$ so we have a contradiction.
4. $\langle 13,5,4,1\rangle \downarrow S_{22}=\left(\langle 12,5,4,1\rangle^{*}\right)^{1}+\left(\langle 13,5,3,1\rangle^{*}\right)^{2}+(\langle 13,5,4\rangle)^{1}$ has 4 of i.m.s. so we have $d \in\{0,1,2\}$.
5. $\langle 12,7,4\rangle^{*} \downarrow S_{22}=(\langle 11,7,4\rangle)^{2}+\left(\langle 11,7,4\rangle^{\prime}\right)^{2}+(\langle 12,6,4\rangle)^{2}+\left(\langle 12,6,4\rangle^{\prime}\right)^{2}+$ $(\langle 12,7,3\rangle)^{5}+\left(\langle 12,7,3\rangle^{\prime}\right)^{5}$ has 18 of i.m.s. so we have $f \in\{0,1, \ldots, 4\}$.
6. $\langle 12,6,4,1\rangle \downarrow S_{22}=\left(\langle 11,6,4,1\rangle^{*}\right)^{2}+\left(\langle 12,5,4,1\rangle^{*}\right)^{1}+\left(\langle 12,6,3,1\rangle^{*}\right)^{4}+(\langle 12,6,4\rangle)^{2}$ has 9 of i.m.s. so we have $g \in\{0,1, \ldots, 5\}$.
7. $\langle 12,5,4,2\rangle \downarrow S_{22}=\left(\langle 11,5,4,2\rangle^{*}\right)^{1}+\left(\langle 12,5,3,2\rangle^{*}\right)^{2}+\left(\langle 12,5,4,1\rangle^{*}\right)^{1}$ has 4 of i.m.s. so we have $h \in\{0,1,2\}$.
8. $\langle 11,7,5\rangle^{*} \downarrow S_{22}=(\langle 10,7,5\rangle)^{4}+\left(\langle 10,7,5\rangle^{\prime}\right)^{4}+(\langle 11,6,5\rangle)^{2}+\left(\langle 11,6,5\rangle^{\prime}\right)^{2}+$ $(\langle 11,7,4\rangle)^{2}+\left(\langle 11,7,4\rangle^{\prime}\right)^{2}$ has 16 of i.m.s. so we have $i \in\{0,1, \ldots, 4\}$.
9. $\langle 11,6,5,1\rangle \downarrow S_{22}=\left(\langle 10,6,5,1\rangle^{*}\right)^{6}+\left(\langle 11,6,4,1\rangle^{*}\right)^{2}+(\langle 11,6,5\rangle)^{2}$ has 10 of i.m.s. so we have $j \in\{0,1, \ldots, 4\}$.
10. $\langle 11,5,4,3\rangle \downarrow S_{22}=\left(\langle 10,5,4,3\rangle^{*}\right)^{2}+\left(\langle 11,5,4,2\rangle^{*}\right)^{1}$ has 3 of i.m.s. so we have $m \in\{0,1\}$.
11. $\langle 8,6,5,4\rangle \downarrow S_{22}=\left(\langle 7,6,5,4\rangle^{*}\right)^{2}+\left(\langle 8,6,5,3\rangle^{*}\right)^{5}$ has 7 of i.m.s. so we have $n \in\{0,1,2\}$.
12. $\langle 7,6,5,4,1\rangle^{*} \downarrow S_{22}=(\langle 7,6,5,3,1\rangle)^{1}+\left(\langle 7,6,5,3,1\rangle^{\prime}\right)^{1}+\left(\langle 7,6,5,4\rangle^{*}\right)^{2}$ has 4 of i.m.s. so we have $z \in\{0,1\}$.

Take $a=1$, since the restriction of the following intersections:
$\langle 19,4\rangle \downarrow S_{22} \cap\langle 14,5,4\rangle^{*} \downarrow S_{22}, \quad\langle 19,4\rangle \downarrow S_{22} \cap\langle 13,5,4,1\rangle \downarrow S_{22}, \quad\langle 19,4\rangle \downarrow S_{22} \cap\langle 12,6,4,1\rangle \downarrow S_{22}$, $\langle 19,4\rangle \downarrow S_{22} \cap\langle 12,5,4,2\rangle \downarrow S_{22},\langle 19,4\rangle \downarrow S_{22} \cap\langle 11,6,5,1\rangle \downarrow S_{22},\langle 19,4\rangle \downarrow S_{22} \cap\langle 11,5,4,3\rangle \downarrow S_{22}$,
$\langle 19,4\rangle \downarrow S_{22} \cap\langle 8,6,5,4\rangle \downarrow S_{22}$ and $\langle 19,4\rangle \downarrow S_{22} \cap\langle 7,6,5,4,1\rangle \downarrow S_{22}$, has no i.m.s in the intersections, so we have $c=d=g=h=j=m=n=z=0$.

- $\langle 19,4\rangle \downarrow S_{22} \cap\langle 18,5\rangle \downarrow S_{22}$ has 2 of i.m.s for S_{22}

$$
\begin{array}{rlrl}
\therefore\langle 19,4\rangle \cap\langle 18,5\rangle & =\Psi_{1}+\varphi_{1} & \text { if } b=1, \\
& =\Psi_{1} & & \text { if } b=0 .
\end{array}
$$

- $\langle 19,4\rangle \downarrow S_{22} \cap\langle 12,7,4\rangle^{*} \downarrow S_{22}$ has 2 of i.m.s for S_{22}

$$
\begin{aligned}
\therefore\langle 19,4\rangle \cap\langle 12,7,4\rangle^{*} & =\Psi_{1}+\varphi_{1} & & \text { if } f \in\{1,2,3,4\}, \\
& =\Psi_{1} & & \text { if } f=0 .
\end{aligned}
$$

- $\langle 19,4\rangle \downarrow S_{22} \cap\langle 11,7,5\rangle^{*} \downarrow S_{22}$ has 2 of i.m.s for S_{22}
$\therefore\langle 19,4\rangle \cap\langle 11,7,5\rangle^{*}=\Psi_{1}+\varphi_{1} \quad$ if $i \in\{1,2,3,4\}$, $=\Psi_{1} \quad$ if $i=0$.

Then, we have:
$\left.\left.Y_{1}=\langle 19,4\rangle+b\langle 18,5\rangle+f\langle 12,7,4\rangle^{*}+i<11,7,5\right\rangle^{*} ; Y_{2}=\langle 19,4\rangle^{\prime}+b\langle 18,5\rangle^{\prime}+f<12,7,4\right\rangle^{*}+$ $i<11,7,5>^{*}$; such that $\mathrm{b} \in\{0,1\}, \mathrm{f} \in\{0,1,2,3,4\}, \mathrm{i} \in\{0,1,2,3,4\}$.

Since inducing m.s. is m.s. [J. F. Humphreys 1977], so we have

- $\left(\langle 17,5\rangle^{*}-\langle 19,3\rangle^{*}\right) \uparrow^{(4,4)} S_{23}=\langle 18,5\rangle+\langle 18,5\rangle^{\prime}-\langle 19,4\rangle-\langle 19,4\rangle^{\prime}$,
$\therefore b \geq a \Rightarrow b=a=1$ \qquad (3.1).
- $\left(\langle 12,7,3\rangle-\langle 19,3\rangle^{*}\right) \uparrow^{(4,4)} S_{23}=\langle 12,7\rangle-\langle 19,4\rangle-\langle 19,4\rangle^{\prime}$, $\therefore f \geq a$.(3.2).
- $\left(\langle 19,3\rangle^{*}-\langle 12,7,3\rangle+\langle 12,10\rangle^{*}+\langle 12,6,3,1\rangle^{*}\right) \uparrow^{(4,4)} S_{23}=\langle 19,4\rangle+\langle 19,4\rangle^{\prime}-\langle 12,7,4\rangle^{*}+$ $\langle 12,11\rangle+\langle 12,11\rangle^{\prime}+\langle 12,6,4\rangle+\langle 12,6,4\rangle^{\prime}$,
$\therefore a \geq f$..(3.3).
$\Rightarrow f=a=1$ (3.4) $($ from $(3.2) \&(3.3))$.
- $\left(\langle 19,3\rangle^{*}-\langle 10,7,5\rangle+\langle 10,6,5,1\rangle^{*}\right) \uparrow^{(4,4)} S_{23}=\langle 19,4\rangle+\langle 19,4\rangle^{\prime}-\langle 11,7,5\rangle^{*}+\langle 11,6,5,1\rangle+$ $\langle 11,6,5,1\rangle^{\prime}$,
$\therefore a \geq i \Rightarrow i=a=1$.(3.5),

From (3.1), (3.4), and (3.5) we get on $a=b=f=i=1$ so k_{1} splits.
Since $\langle 18,5\rangle \neq\langle 18,5\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then either k_{2} is split or there are two columns, we take $b=1(a=0)$ and since:

$$
\begin{aligned}
& \langle 18,5\rangle \downarrow S_{22} \cap\langle 13,5,4,1\rangle \downarrow S_{22}, \quad\langle 18,5\rangle \downarrow S_{22} \cap\langle 12,6,4,1\rangle \downarrow S_{22}, \quad\langle 18,5\rangle \downarrow S_{22} \cap\langle 12,5,4,2\rangle \downarrow S_{22}, \\
& \langle 18,5\rangle \downarrow S_{22} \cap\langle 11,6,5,1\rangle \downarrow S_{22},\langle 18,5\rangle \downarrow S_{22} \cap\langle 11,5,4,3\rangle \downarrow S_{22},\langle 18,5\rangle \downarrow S_{22} \cap\langle 8,6,5,4\rangle \downarrow S_{22}
\end{aligned}
$$

and $\langle 18,5\rangle \downarrow S_{22} \cap\langle 7,6,5,4,1\rangle^{*} \downarrow S_{22}$, has no i.m.s in the intersections, so we have $d=g=h=j=$ $m=n=z=0$, then we have:
$\left.Y_{1}=\langle 18,5\rangle+c\langle 14,5,4\rangle^{*}+f\langle 12,7,4\rangle^{*}+i<11,7,5\right\rangle^{*} ; Y_{2}=\langle 18,4\rangle^{\prime}+c\langle 14,5,4\rangle^{*}+$ $f<12,7,4>^{*}+i<11,7,5>^{*}$; such that $\mathrm{c} \in\{0,1\}, \mathrm{f} \in\{0,1,2,3,4\}$, and $\mathrm{i} \in\{0,1,2,3,4\}$,

And same discussion, we have on $b=c=f=1$, so we have:
$\mathrm{Y}_{1}=\langle 18,4\rangle+\langle 14,5,4\rangle^{*}+\langle 12,7,4\rangle^{*}+i\langle 11,7,5\rangle^{*}, \mathrm{Y}_{2}=\langle 18,4\rangle^{\prime}+\langle 14,5,4\rangle^{*}+\langle 12,7,4\rangle^{*} i\langle 11,7,5\rangle^{*}$ which is not p.s. since $\operatorname{deg} Y_{1} \not \equiv 0 \bmod 7^{3}$ and deg $Y_{2} \not \equiv 0 \bmod 7^{3}, \forall i \in\{0,1, \ldots, 4\}$, so $\boldsymbol{k}_{\mathbf{2}}$ splits.

Since $\langle 12,11\rangle \neq\langle 12,11\rangle^{\prime}$ on $(7, \alpha)$ - regular classes and since
$\langle 12,11\rangle \downarrow S_{22}=\left(\langle 12,10\rangle^{*}\right)^{2}$ and from table(2) then k_{4} must splits .
Since $\langle 12,5,4,2\rangle \neq\langle 12,5,4,2\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then k_{3} or k_{5} splits or there are another two columns.

Suppose there are other two columns Y_{1}, Y_{2} see table (1).
Let $h \in\{1,2\}$ and same discussion we have on $h=d=g$, then k_{3} is splits.
the second probability leads to the first probability then either k_{3} or k_{5} splits suppose k_{5} splits, since $\langle 11,5,4,3\rangle \neq\langle 11,5,4,3\rangle^{\prime}$ on (7, α)- regular classes then k_{6} splits or there are other two columns but $\langle 8,6,5,4\rangle \neq\langle 8,6,5,4\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then either k_{6} splits or there are other two columns these in two cases we get contradiction.

If k_{6} splits and $\langle 8,6,5,4\rangle \neq\langle 8,6,5,4\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then we must find another two columns so we have contradiction, then k_{3} must is splits.

Since $\langle 11,5,4,3\rangle \neq\langle 11,5,4,3\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then k_{5} or k_{6} splits or there are other two columns.

Suppose there are two columns. Let $m=1$ and same discussion we have on $n=j=m$. then k_{6} splits. Since $\langle 8,6,5,4\rangle \neq\langle 8,6,5,4\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then so k_{5} must splits so we get the decomposition matrix for B_{4}

Lemma(3.3):

Decomposition matrix for the block B_{3} is $D_{23,7}{ }^{3}$ (as in appendix 2).

Proof:

By using (r, \bar{r})-inducing of p.i.s. for S_{22} to S_{23} we get:
$D_{45} \uparrow^{(6,2)} S_{23}=k_{1}, \quad D_{46} \uparrow^{(6,2)} S_{23}=k_{2}, \quad D_{90} \uparrow^{(1,0)} S_{23}=c_{5}, \quad D_{91} \uparrow^{(1,0)} S_{23}=c_{6}$,
$D_{49} \uparrow^{(6,2)} S_{23}=k_{3}, \quad D_{50} \uparrow^{(6,2)} S_{23}=k_{4}, \quad D_{59} \uparrow^{(5,3)} S_{23}=k_{5}, \quad D_{60} \uparrow^{(5,3)} S_{23}=k_{6}$,
$D_{52} \uparrow^{(6,2)} S_{23}=k_{7}, \quad D_{53} \uparrow^{(6,2)} S_{23}=k_{8}$.
Table(3)

	Ψ_{1}	Ψ_{2}	φ_{5}	φ_{6}	Ψ_{3}	Ψ_{4}	Ψ_{5}	Ψ_{6}	Ψ_{7}	Ψ_{8}	φ_{1}	φ_{2}
$\langle 20,3\rangle$	1										a	
$\langle 20,3\rangle^{\prime}$	1											a
$\langle 17,6\rangle$	1	1									b	
$\langle 17,6\rangle^{\prime}$	1	1										b
$\langle 14,6,3\rangle^{*}$		2	1	1							c	c
$\langle 13,10\rangle$		1			1						d	
$\langle 13,10\rangle^{\prime}$		1			1							d
$\langle 13,7,3\rangle^{*}$	2	2	1	1	2	2					e	e
$\langle 13,6,3,1\rangle$			1			1	1				f	
$\langle 13,6,3,1\rangle^{\prime}$				1		1	1					f
$\langle 13,5,3,2\rangle$							1				g	
$\langle 13,5,3,2\rangle^{\prime}$							1					g
$\langle 12,6,3,2\rangle$						1	1	1			h	
$\langle 12,6,3,2\rangle^{\prime}$						1	1	1				h
$\langle 10,7,6\rangle^{*}$	2				2	2			2		i	i
$\langle 10,6,5,2\rangle$					2	1		1	1	1	j	
$\langle 10,6,5,2\rangle^{\prime}$					2	1		1	1	1		j
$\langle 10,6,4,3\rangle$								1		1	m	
$\langle 10,6,4,3\rangle^{\prime}$								1		1		m
$\langle 9,6,5,3\rangle$					2				2	1	n	
$\langle 9,6,5,3\rangle^{\prime}$					2				2	1		n
$\langle 7,6,5,3,2\rangle^{*}$									2		z	z
	k_{1}	k_{2}	c_{5}	c_{6}	k_{3}	k_{4}	k_{5}	k_{6}	k_{7}	k_{8}	Y_{1}	Y_{2}

Now, on (7, α)-regular classes we have:

1) $\langle 7,6,5,3,2\rangle^{*}=\langle 10,7,6\rangle^{*}-\langle 13,7,3\rangle^{*}+\langle 14,6,3\rangle^{*}$;
2) $\langle 10,7,6\rangle^{*}=\langle 10,6,5,2\rangle+\langle 10,6,5,2\rangle^{\prime}-\langle 10,6,4,3\rangle-\langle 10,6,4,3\rangle^{\prime}-\langle 13,10\rangle-\langle 13,10\rangle^{\prime}+$ $\langle 17,6\rangle+\langle 17,6\rangle^{\prime} ;$
3) $\langle 13,7,3\rangle^{*}=\langle 13,6,3\rangle+\langle 13,6,3\rangle^{\prime}+\langle 13,10\rangle+\langle 13,10\rangle^{\prime}+\langle 20,3\rangle+\langle 20,3\rangle^{\prime}-\langle 13,5,3,2\rangle-$ $\langle 13,5,3,2\rangle^{\prime}$ and,
4) $\langle 14,6,3\rangle^{*}=\langle 13,10\rangle+\langle 13,10\rangle^{\prime}+\langle 13,6,3,1\rangle+\langle 13,6,3,1\rangle^{\prime}-\langle 13,5,3,2\rangle-\langle 13,5,3,2\rangle^{\prime}-$ $\langle 10,7,4\rangle^{*}+\langle 20,3\rangle+\langle 20,3\rangle^{\prime}$.

So there are 18 columns to the spin characters of S_{23} in B_{3}.
Since $\langle 20,3\rangle \neq\langle 20,3\rangle^{\prime}$ on $(7, \alpha)$-regular classes then k_{1} is split or there are two columns.
Suppose there are two columns such as Y_{1} and Y_{2} (Table (3)). To describe columns Y_{1} and Y_{2} :

1. $\langle 20,3\rangle \downarrow S_{22}=\left(\langle 19,3\rangle^{*}\right)^{1}+\left(\langle 20,2\rangle^{*}\right)^{1}$ has 2 of i.m.s.(see appendix 1) so we have $a \in\{0,1\}$.
2. $\langle 17,6\rangle \downarrow S_{22}=\left(\langle 16,6\rangle^{*}\right)^{2}+\left(\langle 17,5\rangle^{*}\right)^{2}$ has 4 of i.m.s. so we have $b \in\{0,1,2\}$.
3. $\langle 14,6,3\rangle^{*} \downarrow S_{22}=(\langle 13,6,3\rangle)^{1}+\left(\langle 13,6,3\rangle^{\prime}\right)^{1}+(\langle 14,5,3\rangle)^{2}+\left(\langle 14,5,3\rangle^{\prime}\right)^{2}+$ $(\langle 14,6,2\rangle)^{2}+\left(\langle 14,6,2\rangle^{\prime}\right)^{2}$ has 10 of i.m.s. we have $c \in\{0,1,2,3\}$.
4. $\langle 13,10\rangle \downarrow S_{22}=\left(\langle 12,10\rangle^{*}\right)^{2}+\left(\langle 13,9\rangle^{*}\right)^{2}$ has 4 of i.m.s. so we have $d \in\{0,1,2\}$.
5. $\langle 13,7,3\rangle^{*} \downarrow S_{22}=(\langle 12,7,3\rangle)^{5}+\left(\langle 12,7,3\rangle^{\prime}\right)^{5}+(\langle 13,6,3\rangle)^{1}+\left(\langle 13,6,3\rangle^{\prime}\right)^{1}+$ $(\langle 13,7,2\rangle)^{5}+\left(\langle 13,7,2\rangle^{\prime}\right)^{5}$ has 22 of i.m.s. so we have $e \in\{0,1, \ldots, 6\}$.
6. $\langle 13,6,3,1\rangle \downarrow S_{22}=\left(\langle 12,6,3,1\rangle^{*}\right)^{4}+\left(\langle 13,5,3,1\rangle^{*}\right)^{2}+\left(\langle 13,6,2,1\rangle^{*}\right)^{3}+(\langle 13,6,3\rangle)^{1}$ has 10 of i.m.s. so we have $f \in\{0,1, \ldots, 7\}$.
7. $\langle 13,5,3,2\rangle \downarrow S_{22}=\left(\langle 12,5,3,2\rangle^{*}\right)^{2}+\left(\langle 13,4,3,2\rangle^{*}\right)^{1}+\left(\langle 13,5,3,1\rangle^{*}\right)^{2}$ has 5 of i.m.s. so we have $g \in\{0,1,2,3,4\}$.
8. $\langle 12,6,3,2\rangle \downarrow S_{22}=\left(\langle 11,6,3,2\rangle^{*}\right)^{3}+\left(\langle 12,5,3,2\rangle^{*}\right)^{2}+(\langle 12,6,3,1\rangle)^{4}$ has 9 of i.m.s. so we have $h \in\{0,1, \ldots, 6\}$.
9. $\langle 10,7,6\rangle^{*} \downarrow S_{22}=(\langle 9,7,6\rangle)^{4}+\left(\langle 9,7,6\rangle^{\prime}\right)^{4}+(\langle 10,7,5\rangle)^{4}+\left(\langle 10,7,5\rangle^{\prime}\right)^{4}$ has 16 of i.m.s. so we have $i \in\{0,1,2, \ldots, 4\}$.
10. $\langle 10,6,5,2\rangle \downarrow S_{22}=\left(\langle 9,6,5,2\rangle^{*}\right)^{6}+\left(\langle 10,6,4,2\rangle^{*}\right)^{3}+\left(\langle 10,6,5,1\rangle^{*}\right)^{6}$ has 15 of i.m.s. so we have $j \in\{0,1,2, \ldots, 9\}$.
11. $\langle 10,6,4,3\rangle \downarrow S_{22}=\left(\langle 9,6,4,3\rangle^{*}\right)^{2}+\left(\langle 10,5,4,3\rangle^{*}\right)^{2}+\left(\langle 10,6,4,2\rangle^{*}\right)^{3}$ has 7 of i.m.s. so we have $m \in\{0,1,2, \ldots, 5\}$.
12. $\langle 9,6,5,3\rangle \downarrow S_{22}=\left(\langle 8,6,5,3\rangle^{*}\right)^{5}+\left(\langle 9,6,4,3\rangle^{*}\right)^{2}+\left(\langle 9,6,5,2\rangle^{*}\right)^{6}$ has 13 of i.m.s. so we have $n \in\{0,1,2, \ldots, 8\}$.
13. $\langle 7,6,5,3,2\rangle^{*} \downarrow S_{22}=$ $(\langle 7,6,4,3,2\rangle)^{1}+\left(\langle 7,6,4,3,2\rangle^{\prime}\right)^{1}+(\langle 7,6,5,3,1\rangle)^{1}+\left(\langle 7,6,5,3,1\rangle^{\prime}\right)^{1}$ has 4 of i.m.s. so we have $z \in\{0,1\}$.

Take $a=1$, and since :
$\langle 20,3\rangle \downarrow S_{22} \cap\langle 14,6,3\rangle^{*} \downarrow S_{22}, \quad\langle 20,3\rangle \downarrow S_{22} \cap\langle 13,10\rangle \downarrow S_{22}, \quad\langle 20,3\rangle \downarrow S_{22} \cap\langle 13,6,3,1\rangle \downarrow S_{22}$, $\langle 20,3\rangle \downarrow S_{22} \cap\langle 13,5,3,2\rangle \downarrow S_{22},\langle 20,3\rangle \downarrow S_{22} \cap\langle 12,6,3,2\rangle \downarrow S_{22},\langle 20,3\rangle \downarrow S_{22} \cap\langle 10,6,5,2\rangle \downarrow S_{22}$,
$\langle 20,3\rangle \downarrow S_{22} \cap\langle 10,6,4,3\rangle \downarrow S_{22},\langle 20,3\rangle \downarrow S_{22} \cap\langle 9,6,5,3\rangle \downarrow S_{22}$ and, $\langle 20,3\rangle \downarrow S_{22} \cap\langle 7,6,5,3,2\rangle^{*} \downarrow S_{22}$,
has no i.m.s in the intersections, so we have $c=d=f=g=h=j=m=n=z=0$, then have:
$Y_{1}=\langle 20,3\rangle+b\langle 17,6\rangle+e\langle 13,7,3\rangle^{*}+i\langle 10,7,6\rangle^{*} ;$
$\left.\left.Y_{2}=\langle 20,3\rangle^{\prime}+b\langle 17,6\rangle^{\prime}+e<13,7,3\right\rangle^{*}+i<10,7,6\right\rangle^{*} ;$
such that $\mathrm{b} \in\{0,1,2\}, \mathrm{e} \in\{0,1,2, \ldots, 6\}, \mathrm{i} \in\{0,1,2,3,4\}$,
and same discussion we have on $a=b=e=i=1$, so k_{1} splits .
Since $\langle 17,6\rangle \neq\langle 17,6\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then either k_{2} is split or there are two columns, we take $b \in\{1,2\}$ and Since:
$\langle 17,6\rangle \downarrow S_{22} \cap\langle 13,6,3,1\rangle \downarrow S_{22}, \quad\langle 17,6\rangle \downarrow S_{22} \cap\langle 13,5,3,2\rangle \downarrow S_{22}, \quad\langle 17,6\rangle \downarrow S_{22} \cap\langle 12,6,3,2\rangle \downarrow S_{22}$, $\langle 17,6\rangle \downarrow S_{22} \cap\langle 10,6,5,2\rangle \downarrow S_{22},\langle 17,6\rangle \downarrow S_{22} \cap\langle 10,6,4,3\rangle \downarrow S_{22},\langle 17,6\rangle \downarrow S_{22} \cap\langle 9,6,5,3\rangle \downarrow S_{22}$
and $\langle 17,6\rangle \downarrow S_{22} \cap\langle 7,6,5,3,2\rangle^{*} \downarrow S_{22}$, has no i.m.s in the intersections, so we have $f=g=h=j=$ $m=n=z=0$, so we have:
$\left.Y_{1}=b\langle 17,6\rangle+\mathrm{c}\langle 14,6,3\rangle^{*}+\mathrm{d}\langle 13,10\rangle+e\langle 13,7,3\rangle^{*}+i<10,7,6\right\rangle^{*} ;$
$Y_{2}=b\langle 17,6\rangle^{\prime}+\mathrm{c}\langle 14,6,3\rangle^{*}+d\langle 13,10\rangle^{\prime}+e\langle 13,7,3\rangle^{*}+i\langle 10,7,6\rangle^{*} ;$
such that $\mathrm{b} \in\{1,2\}, \mathrm{c} \in\{0,1,2,3\}, \mathrm{d} \in\{0,1,2\}, \mathrm{e} \in\{0,1, \ldots, 6\}$ and $\mathrm{i} \in\{0,1, \ldots, 4\}$,
and same discussion we have on $b=c=d=e$ and $i \in\{0,1,2\}$.
But $\operatorname{deg} \mathrm{Y}_{1} \equiv 0 \bmod 7^{3}$ and $\operatorname{deg} \mathrm{Y}_{2} \equiv 0 \bmod 7^{3}$ only when $c=d=e=b$ and $i=0$, so k_{2} splits.
Since $\langle 13,10\rangle \neq\langle 13,10\rangle^{\prime}$ on ($7, \alpha$)- regular classes then either k_{3} is split or there are two columns, we take $d \in\{1,2\}$ and since:
$\langle 13,10\rangle \downarrow S_{22} \cap\langle 13,6,3,1\rangle \downarrow S_{22},\langle 13,10\rangle \downarrow S_{22} \cap\langle 13,5,3,2\rangle \downarrow S_{22},\langle 13,10\rangle \downarrow S_{22} \cap\langle 12,6,3,2\rangle \downarrow S_{22}$, $\langle 13,10\rangle \downarrow S_{22} \cap\langle 10,6,4,3\rangle \downarrow S_{22}$, and $\langle 13,10\rangle \downarrow S_{22} \cap\langle 7,6,5,3,2\rangle^{*} \downarrow S_{22}$,

Has no i.m.s in the intersections so we have $f=g=h=m=z=0$.
So we have:
$Y_{1}=\mathrm{c}\langle 14,6,3\rangle^{*}+\mathrm{d}\langle 13,10\rangle+e\langle 13,7,3\rangle^{*}+i\langle 10,7,6\rangle^{*}+\mathrm{j}\langle 10,6,5,2\rangle+\mathrm{n}\langle 9,6,5,3\rangle ;$
$\left.Y_{2}=\mathrm{c}\langle 14,6,3\rangle^{*}+\mathrm{d}\langle 13,10\rangle^{\prime}+e\langle 13,7,3\rangle^{*}+i<10,7,6\right\rangle^{*}+\mathrm{j}\langle 10,6,5,2\rangle^{\prime}+\mathrm{n}\langle 9,6,5,3\rangle^{\prime} ;$
such that $\mathrm{c} \in\{0,1,2,3\}, \mathrm{d} \in\{1,2\}, \mathrm{e} \in\{0,1, \ldots, 6\}, \mathrm{i} \in\{0,1, \ldots, 4\}, \mathrm{j} \in\{0,1, \ldots, 9\}$ and $\mathrm{i} \in\{0,1, \ldots, 4\}$.
and same discussion we have on $d=e=i, c \in\{0,1,2\}, j \in\{2,4\}, n=j$.
But the $\operatorname{deg} \mathrm{Y}_{1} \equiv 0 \bmod 7^{3}$ and $\operatorname{deg} \mathrm{Y}_{2} \equiv 0 \bmod 7^{3}$ only when $c=0, d=e=i=1$ and $i=n=$ 2 , or $c=0, d=e=i=2$ and $i=n=4$ so k_{3} splits.

Since $\langle 13,5,3,2\rangle \neq\langle 13,5,3,2\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then k_{5} splits or there are other two columns.

Suppose there are two columns, we take $g \in\{1,2,3,4\}$ and same discussion we have on $g=h=$ f then k_{5} splits.

Since $\langle 13,6,3,1\rangle \neq\langle 13,6,3,1\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then k_{4} splits or there are other two columns.

Suppose there are two columns, and we take $f \in\{1,2, \ldots, 7\}$ and same discussion we have on $e=h=i=j=f$, then k_{4} splits.

Since $\langle 12,6,3,2\rangle \neq\langle 12,6,3,2\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then k_{6} splits or there are other two columns.

Suppose there are two columns, and we take $h \in\{1,2, \ldots, 6\}$, and we get $\operatorname{deg} Y_{1} \not \equiv 0 \bmod 7^{3}$ and deg $\mathrm{Y}_{2} \not \equiv 0 \bmod ^{3}$ when $i \neq 0$ and same discussion we have on $m=j=h$, then k_{6} splits.

Since $\langle 10,6,4,3\rangle \neq\langle 10,6,4,3\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then k_{8} splits or there are other two columns.

Suppose there are two columns,
$Y_{1}=j\langle 10,6,5,2\rangle++m\langle 10,6,4,3\rangle+n\langle 9,6,5,3\rangle ;$
$Y_{2}=j\langle 10,6,5,2\rangle^{\prime}+m\langle 10,6,4,3\rangle^{\prime}+n\langle 9,6,5,3\rangle^{\prime} ;$
such that $j \in\{0,1, \ldots, 9\}, m \in\{1,2, \ldots, 5\}$, and $n \in\{0,1, \ldots, 8\}$.
Let $m \in\{1,2, \ldots, 5\}$, and since:

- $\left(\langle 9,6,5,2\rangle^{*}-\langle 9,6,4,3\rangle^{*}+\langle 7,6,4,3,2\rangle\right) \uparrow^{(5,3)} S_{23}=\langle 10,6,5,2\rangle+\langle 10,6,5,2\rangle^{\prime}+\langle 9,6,5,3\rangle+$ $\langle 9,6,5,3\rangle^{\prime}-\langle 10,6,4,3\rangle-\langle 10,6,4,3\rangle^{\prime}-\langle 9,6,5,3\rangle-\langle 9,6,5,3\rangle^{\prime}+\langle 7,6,5,3,2\rangle^{*}$, $\therefore j \geq m$
- $\left(\langle 9,6,4,3\rangle^{*}+\langle 7,6,4,3,2\rangle-\langle 9,6,5,2\rangle^{*}+\langle 13,7,2\rangle+\langle 13,9\rangle^{*}\right) \uparrow^{(5,3)} S_{23}=\langle 10,6,4,3\rangle+$ $\langle 10,6,4,3\rangle^{\prime}+\langle 9,6,5,3\rangle+\langle 9,6,5,3\rangle^{\prime}+\langle 7,6,5,3,2\rangle^{\prime}-\langle 10,6,5,2\rangle-\langle 10,6,5,2\rangle^{\prime}-\langle 9,6,5,3\rangle-$ $\langle 9,6,5,3\rangle^{\prime}+\langle 13,7,3\rangle^{*}+\langle 13,10\rangle+\langle 13,10\rangle^{\prime}$, $\therefore m \geq j$.(3.7).
$\Rightarrow m=j$ \qquad
Then we have deg $\mathrm{Y}_{1} \equiv 0 \bmod ^{3}$ and $\operatorname{deg} \mathrm{Y}_{2} \equiv 0 \bmod 7^{3}$ only when $j=m=n$ so k_{8} splits.
Since $\langle 9,6,5,3\rangle \neq\langle 9,6,5,3\rangle^{\prime}$ on $(7, \alpha)$ - regular classes then so k_{7} must splits so we get the decomposition matrix for B_{3}

Lemma (3.4):

Decomposition matrix for the block B_{2} is $D_{23,7}{ }^{2}$ (see appendix 2).

Proof:

By using (1,0)-inducing of p.i.s. for S_{22} to S_{23} we get:
$D_{3} \uparrow^{(1,0)} S_{23}=k_{1}, \quad D_{13} \uparrow^{(1,0)} S_{23}=k_{2}, \quad D_{11} \uparrow^{(1,0)} S_{23}=c_{5}, \quad D_{12} \uparrow^{(1,0)} S_{23}=c_{6}$,
$D_{9} \uparrow^{(1,0)} S_{23}=c_{7}, \quad D_{10} \uparrow^{(1,0)} S_{23}=c_{8}, \quad D_{25} \uparrow^{(1,0)} S_{23}=c_{9}, \quad D_{26} \uparrow^{(1,0)} S_{23}=c_{10}$,
$D_{5} \uparrow^{(1,0)} S_{23}=c_{11}, \quad D_{6} \uparrow^{(1,0)} S_{23}=c_{12}, \quad D_{27} \uparrow^{(1,0)} S_{23}=k_{3}, \quad D_{28} \uparrow^{(1,0)} S_{23}=k_{4}$,
$D_{7} \uparrow^{(1,0)} S_{23}=c_{13}, \quad D_{8} \uparrow^{(1,0)} S_{23}=c_{14}, \quad D_{39} \uparrow^{(1,0)} S_{23}=k_{5}, \quad D_{43} \uparrow^{(1,0)} S_{23}=c_{17}$,
$D_{3} \uparrow^{(1,0)} S_{44}=c_{18}$,
Now we have $k_{5}=k_{3}+k_{4}-c_{11}-c_{12}$ either $k_{3}-c_{11}, k_{4}-c_{12}$ are principal.
Let $c_{15}=k_{4}-c_{12}$ and $c_{16}=k_{3}-c_{11}$.
Table(4)

$\langle 22,1\rangle$	1															
$\langle 22,1\rangle^{\prime}$	1															
$\langle 15,8\rangle$	1	2														
$\langle 15,8\rangle^{\prime}$	1	2														
$\langle 15,7,1\rangle^{*}$	4	4	1	1												
$\langle 15,5,2,1\rangle$			1		1											
$\langle 15,5,2,1\rangle^{\prime}$				1		1										
$\langle 15,4,3,1\rangle$					1											
$\langle 15,4,3,1\rangle^{\prime}$						1										
$\langle 14,8,1\rangle^{*}$	4	4	1	1			1	1								
$\langle 12,8,2,1\rangle$	2		1		1		1		1							
$\langle 12,8,2,1\rangle^{\prime}$	2			1		1		1		1						
$\langle 11,8,3,1\rangle$					1				1		1					
$\langle 11,8,3,1\rangle^{\prime}$						1				1		1				
$\langle 10,8,4,1\rangle$									1		1		1			
$\langle 10,8,4,1\rangle^{\prime}$										1		1		1		
$\langle 9,8,5,1\rangle$	2						1	1	1				1		1	1
$\langle 9,8,5,1\rangle^{\prime}$	2						1	1		1				1	1	1
$\langle 8,7,5,2,1\rangle^{*}$							1	1					1	1	1	1
$\langle 8,7,4,3,1\rangle^{*}$													1	1	1	1
$\langle 8,5,4,3,2,1\rangle$														1		
$\langle 8,5,4,3,2,1\rangle$																1
	k_{1}	k_{2}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	c_{15}	c_{16}	c_{17}	c_{18}

Now k_{1} is split to c_{1} and c_{2} [A.O.Morris and A.K.Yassen 1988].
Since $\langle 15,8,1\rangle$ and $\langle 15,8,1\rangle^{\prime}$ are projective indecomposable spin characters of S_{24} (of defect 0 in $\left.S_{24}, p=7\right)$ and :
$\langle 15,8,1\rangle \downarrow S_{3}=\langle 15,8\rangle+\langle 15,7,1\rangle^{*}+\langle 14,8,1\rangle^{*}$,
$\langle 15,8,1\rangle^{\prime} \downarrow S_{3}=\langle 15,8\rangle^{\prime}+\langle 15,7,1\rangle^{*}+\langle 14,8,1\rangle^{*}$.
and since $\left(\frac{1}{2}\right) \mathrm{k}_{2}$ is a principal character of S_{23} [G.D.James and A.Kerber 1981] then $\left(\frac{1}{2}\right) \mathrm{k}_{2}$ must split to c_{3} and c_{4}.

Case: $c_{3} \not \subset c_{1}$:
Suppose c_{3} is subtracted from c_{1}, then;

$$
\left(c_{1}-c_{3}\right) \downarrow_{(1,0)} S_{22}=D_{1}+D_{14}-D_{13}
$$

is not p.s. for S_{22} (see appendix1) hence: c_{3} is not subtracted from c_{1}. Since c_{1}, c_{2} are associated columns and c_{3}, c_{4} are associated columns, then c_{4} is not subtracted from c_{2}, so we get the decomposition matrix for B_{2}

Section (4) block of defect three

All i.m.s. of the decomposition matrix for the block B_{1} are double we have $\langle\beta\rangle=\langle\beta\rangle^{\prime}$ on (7, α) -regular classes.

Theorem (4.1):

Decomposition matrix for S_{23} is [appendix 2].

Proof:

We determine all except the block B_{1}. Now we find the decomposition matrix for the block B_{1} By using (r, \bar{r})-inducing of p.i.s. of S_{22} to S_{23} we get on:

| $D_{1} \uparrow^{(2,6)} S_{23}=c_{1}$, | $D_{54} \uparrow^{(1,0)} S_{23}=c_{2}$, | $D_{5} \uparrow^{(2,6)} S_{23}=c_{3}$, | $D_{7} \uparrow^{(2,6)} S_{23}=c_{4}$, |
| :--- | :--- | :--- | :--- | :--- |
| $D_{72} \uparrow^{(5,3)} S_{23}=c_{5}$, | $D_{13} \uparrow^{(2,6)} S_{23}=c_{6}$, | $D_{11} \uparrow^{(2,6)} S_{23}=2 c_{7}$, | $D_{17} \uparrow^{(2,6)} S_{23}=c_{8}$, |
| $D_{56} \uparrow^{(1,0)} S_{23}=2 c_{9}$, | $D_{57} \uparrow^{(1,0)} S_{23}=c_{10}$, | $D_{58} \uparrow^{(1,0)} S_{23}=c_{11}$, | $D_{23} \uparrow^{(2,6)} S_{23}=c_{12}$, |
| $D_{25} \uparrow^{(2,6)} S_{23}=2 c_{13}$, | $D_{29} \uparrow^{(2,6)} S_{23}=c_{14}$, | $D_{31} \uparrow^{(2,6)} S_{23}=c_{15}$, | $D_{74} \uparrow^{(5,3)} S_{23}=c_{16}$, |
| $D_{33} \uparrow^{(2,6)} S_{23}=c_{17}$, | $D_{35} \uparrow^{(2,6)} S_{23}=c_{18}$, | $D_{37} \uparrow^{(2,6)} S_{23}=c_{19}$, | $D_{61} \uparrow^{(1,0)} S_{23}=c_{20}$, |
| $D_{62} \uparrow^{(1,0)} S_{23}=c_{21}$, | $D_{43} \uparrow^{(2,6)} S_{23}=2 c_{22}$, | $D_{3} \uparrow^{(2,6)} S_{23}=k_{1}$, | $D_{9} \uparrow^{(2,6)} S_{23}=k_{2}$, |
| $D_{15} \uparrow^{(2,6)} S_{23}=k_{3}$, | $D_{19} \uparrow^{(2,6)} S_{23}=k_{4}$, | $D_{21} \uparrow^{(2,6)} S_{23}=k_{5}$, | $D_{27} \uparrow^{(2,6)} S_{23}=k_{6}$, |
| $D_{39} \uparrow^{(2,6)} S_{23}=k_{7}$, | $D_{41} \uparrow^{(2,6)} S_{23}=k_{8}$. | $D_{55} \uparrow^{(1,0)} S_{23}=k_{9}$ | |

Now we have
$k_{1}=c_{2}+c_{7}+c_{13}, k_{2}=c_{5}+c_{7}, k_{3}=c_{7}+c_{9}, k_{4}=c_{10}+c_{13}, k_{5}=c_{11}+2 c_{13}, k_{6}=c_{13}+c_{16}$, $k_{7}=c_{20}+c_{22}, k_{8}=c_{21}+c_{22}$ and $k_{9}=c_{6}+c_{9}$.

Since $\left(c_{3}-c_{4}\right) \downarrow_{(2,6)} S_{22},\left(c_{1}-c_{6}\right) \downarrow_{(1,0)} S_{22},\left(c_{11}-c_{18}\right) \downarrow_{(1,0)} S_{22}, \quad\left(c_{14}-c_{17}\right) \downarrow_{(1,0)} S_{22}$ and $\left(\mathrm{c}_{15}-c_{18}\right) \downarrow_{(1,0)} S_{22}$, are not p.s., so $c_{4} \not \subset c_{3}, c_{6} \not \subset c_{1}, c_{18} \not \subset c_{11}, c_{17} \not \subset c_{14}$ and $c_{18} \not \subset c_{15}$, so we get the approximation matrix.

$<23>^{*}$	1																						
$<21,2>$	1	1																					
$\langle 21,2\rangle^{\prime}$	1	1																					
$<20,2,1\rangle^{*}$		1	1																				
$\langle 18,3,2\rangle^{*}$			1	1																			
$<17,4,2\rangle^{*}$			1	1	1																		
$<16,7>$	1	1				1																	
$\langle 16,7\rangle^{\prime}$	1	1				1																	

$<16,6,1>^{*}$	2	1	1			1	1															
$<16,5,2>^{*}$			1		1		1	1														
$<16,4,3>^{*}$					1			1														
$<15,6,2\rangle^{*}$	2					1	1	1	1													
$<14,9>$	1					1				1												
$<14,9>^{\prime}$	1					1				1												
$<14,7,2>^{*}$	4	2				2			2	2	2											
$<14,6,2,1>$								1	1		1	1										
$<14,6,2,1>^{\prime}$								1	1		1	1										
$<14,4,3,2\rangle$								1				1										
$<14,4,3,2\rangle^{\prime}$								1				1										
$<13,9,1>^{*}$	2					1	1			1			1									
$<13,8,2\rangle^{*}$	4	2	1			1	1	1	1	2	2		1	1								
$<13,7,2,1\rangle$	2	1						1	1	1	2	1		1	1							
$\langle 13,7,2,1\rangle^{\prime}$	2	1						1	1	1	2	1		1	1							
$<13,4,3,2,1>^{*}$												1			1							
$<12,9,2>^{*}$	2		1		1		1	1					1	1		1						
$<11,10,2>^{*}$					1											1						
$<11,9,3\rangle^{*}$			1	1	1			1						1		1	1					
$<11,7,3,2\rangle$								1			1	1		1	1		1	1				
$\langle 11,7,3,2\rangle^{\prime}$								1			1	1		1	1		1	1				
$<11,6,3,2,1>^{*}$											1	1			1			1				
$<10,9,4\rangle^{*}$			1	1										1			1		1			
$<10,7,4,2>$											1			1	1	1	1	1	1	1		
$<10,7,4,2\rangle^{\prime}$											1			1	1	1	1	1	1	1		
$<10,6,4,2,1>^{*}$											1				1			1		1		
$<9,8,6\rangle^{*}$	2	2	1							2	2			1					1		2	
$<9,7,6,1>$	2	1								1	1		1	1	1				1		1	1
$<9,7,6,1>^{\prime}$	2	1								1	1		1	1	1				1		1	1
$<9,7,5,2>$	2									2	1		1	1	1	1			2	1	2	1
$<9,7,5,2>^{\prime}$	2									2	1		1	1		1			2	1	2	1
$<9,7,4,3>$																1			1	1	1	
$<9,7,4,3>^{\prime}$																1			1	1	1	
$<9,6,5,2,1>^{*}$										2	1								2	1	2	
$<9,6,4,3,1>^{*}$															1				2	1	1	1
$<9,5,4,3,2>^{*}$															1							1
$<8,7,6,2>$													1						1			1
$<8,7,6,2\rangle^{\prime}$													1						1			1
$<8,6,4,3,2>^{*}$																			2		2	1
$<7,6,4,3,2,1\rangle$																					1	
$<7,6,4,3,2,1>^{\prime}$																					1	
	c_{1}	c_{2}	\boldsymbol{c}_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	c_{15}	c_{16}	c_{17}	C_{18}	c_{19}	c_{20}	c_{21}	c_{22}

From lemmas and theorems above we can find the 7-Modular Projective (spin) Characters of The symmetric group S_{23}.

Appendix 1

The decomposition matrix for the spin characters of $S_{22}, p=7$

${ }^{\text {(22) }}$	1																																								
${ }^{\text {(22) }}$			1																																						
[21,1)*	1		1	1	1																																				
${ }^{(19,2,1\rangle}$				1		1	1																																		
${ }^{(19,2,1\rangle^{\prime}}$					1			1																																	
${ }^{(18,3,1\rangle}$						1	${ }^{1}$		1																																
${ }^{(18,3,1\rangle^{\prime}}$								1		1																															
${ }^{(17,4,1\rangle}$						${ }^{1}$	1		1		1																														

〈17，4，1）＇						1		1		1																																		
〈16，5，1〉			1		1				1		1																																	
〈16，5，1）＇				1		1				1		1																																
$\langle 15,7\rangle^{*}$	1	1	1	1									1	1																														
〈15，6，1）	2		1								1		1		1																													
$\langle 15,6,1\rangle^{\prime}$		2		1								1		1		1																												
〈15，5，2＞									1		1				1		1																											
$\langle 15,5,2\rangle^{\prime}$										1		1				1		1																										
〈15，4，3＞									1								1																											
〈15，4，3）${ }^{\prime}$										1								1																										
$\langle 14,8\rangle^{*}$	1	1											1	1					1	1																								
〈14，7，1〉	4		1	1									2		2				2		1	1																						
$\langle 14,7,1\rangle^{\prime}$		4	1	1										2		2				2	1	1																						
$\langle 14,5,2,1\rangle$									R	R					1	1	1	1			1	1	1	1																				
$\langle 14,4,3,1\rangle\rangle$																	1	1					1	1																				
〈13，8，1＞	2		1	1							1		1		1				2		1	1			1																			
〈13，8，1）${ }^{\prime}$		2	1	1								1		1		1				2	1	1				1																		
〈12，9，1〉									1		1														1		1																	
$\langle 12,9,1\rangle^{\prime}$										1		1														1		1																
〈12，8，2）	2		1	1	1				1		1				1		1		1		1	1			1		1		1															
$\langle 12,8,2\rangle^{\prime}$		2	1	1		1				1		1				1		1		1	1	1				1		1		1														
$\langle 12,7,2,1\rangle$	2	2	1	1											1	1	1	1	1	1	2	2	1	1					1	1	1	1												
〈12，4，3，2，																							1								1													
〈12，4，3，2，																								1								1												
〈11，10，1）									1																		1																	
$\langle 11,10,1\rangle^{\prime}$										1																		1																
〈11，8，3＞					1		1		1								1										1		1				1											
$\langle 11,8,3\rangle^{\prime}$						1		1		1								1										1		1				1										
〈11，7，3，1〉																	1	1			1	1	1	1					1	1	1	1	1	1	1	1								
〈11，5，3，2，																					1		1								1				1									
〈11，5，3，2，																						1		1								1				1								
〈10，8，4〉					1		1																						1				1				1							
$\langle 10,8,4\rangle^{\prime}$						1		1																						1				1				1						
$\langle 10,7,4,1\rangle\rangle$																					1	1					1	1	1	1	1	1	1	1	1	1	1	1	1	1				
〈10，5，4，2，																					1										1				1				1					
〈10，5，4，2，																						1										1				1				1				
（9，8，5）	2		1	1	1				－										2		1	1							1								1				2			
（9，8，5）＇		2	1	1		1														2	1	1								1								1				2		
$\langle 9,7,5,1\rangle^{*}$	2	2	1	1															2	2	2	2			1	1	1	1	1	1	1	1					1	1	1	1	2	2	1	1
＜9，5，4，3，1）																															1								1				1	
〈9，5，4，3，1）																																1								1				1
$\langle 8,7,6,1\rangle^{*}$			1	1																	1	1			1	1																	1	1
$\langle 8,7,5,2\rangle^{*}$																			1	1	1	1			1	1	1	1									1	1	1	1	1	1	1	1
$\langle 8,7,4,3)^{*}$																											1	1									1	1	1	1	1	1		
〈8，6，5，2，1）																			2		1																2		1		2			
（8，6，5，2，1）																				2		1																2		1		2		
〈8，6，4，3，1）																																					2		1		2		1	
（8，6，4，3，1）																																						2		1		2		1
（8，5，4，3，2）																																									1		1	
＜ $8,5,4,3,2\rangle$																																										1		1
〈 $7,5,4,3,2$ ，																																									1	1		
	${ }^{\text {D }}$	D_{2}	D_{3}	D_{4}	${ }^{5}$	D_{6}	${ }^{\text {D }}$	${ }^{\text {D }}$	${ }^{\text {D }}$	D_{10}	D_{11}	D_{12}	${ }^{13}$	D_{14}	${ }^{\text {D }}$ 15	${ }^{\text {D }}$ 16	D_{17}	D_{18}	D_{19}	D_{20}	${ }^{\text {D } 21}$	${ }^{\text {D2 }}$	D_{23}	D_{24}	${ }^{25}$	${ }^{26}$	D_{27}	${ }^{2 z}$	D_{2}	${ }^{\text {d }}$	${ }^{31}$	D_{32}	${ }^{33}$	${ }^{3}$	${ }^{\text {b }}$ 3	${ }^{D_{36}}$	${ }^{\text {D }} 3$	${ }^{38}$	${ }^{5}{ }^{3}$	D_{40}	D_{41}	$D_{\text {d2 }}$	${ }^{43}$	${ }^{44}$

The spin characters	The decomposition matrix for the block $\boldsymbol{B}_{\mathbf{2}}$								
$\langle 19,3\rangle^{*}$	1								
$\langle 17,5\rangle^{*}$	1	1							
$\langle 14,5,3\rangle$		1	1						
$\langle 14,5,3\rangle^{\prime}$		1	1						
$\langle 13,5,3,1\rangle^{*}$			1	1					

$\langle 12,10\rangle^{*}$		1			1				
$\langle 12,7,3\rangle$	1	1	1		1	1			
$\langle 12,7,3\rangle^{\prime}$	1	1	1		1	1			
$\langle 12,6,3,1\rangle^{*}$			1	1		1	1		
$\langle 12,5,3,2\rangle^{*}$				1			1		
$\langle 10,7,5\rangle$	1				1	1		1	
$\langle 10,7,5\rangle^{\prime}$	1				1	1		1	
$\langle 10,6,5,1\rangle^{*}$					2	1	1	1	1
$\langle 10,5,4,3\rangle^{*}$							1		1
$\langle 8,6,5,3\rangle^{*}$					2			2	1
$\langle 7,6,5,3,1\rangle$								1	
$\langle 7,6,5,3,1\rangle^{\prime}$								1	
	D_{45}	D_{46}	D_{47}	D_{48}	D_{49}	D_{50}	D_{51}	D_{52}	D_{53}

The spin characters	The decomposition matrix for the block B_{3}								
$\langle 20,2\rangle^{*}$	1								
$\langle 16,6\rangle^{*}$	1	1							
$\langle 14,6,2\rangle$		1	1						
$\langle 14,6,2\rangle^{\prime}$		1	1						
$\langle 13,9\rangle^{*}$		1		1					
$\langle 13,7,2\rangle$	1	1	1	1	1				
$\langle 13,7,2\rangle^{\prime}$	1	1	1	1	1				
$\langle 13,6,2,1\rangle^{*}$			1		1	1			
$\langle 13,4,3,2\rangle^{*}$						1			
$\langle 11,6,3,2\rangle^{*}$					1	1	1		
$\langle 10,6,4,2\rangle^{*}$					1		1	1	
$\langle 9,7,6\rangle$	1			1	1				1
$\langle 9,7,6\rangle^{\prime}$	1			1	1				1
$\langle 9,6,5,2\rangle^{*}$				2	1			1	2
$\langle 9,6,4,3\rangle^{*}$								1	1
$\langle 7,6,4,3,2\rangle$									1
$\langle 7,6,4,3,2\rangle^{\prime}$									1
	D_{54}	D_{55}	D_{56}	D_{57}	D_{58}	D_{59}	D_{60}	D_{61}	D_{62}

The spin characters	Decomposition matrix for the block $B_{\mathbf{4}}$		
$\langle 18,4\rangle^{*}$	1		
$\langle 11,7,4\rangle$	1	1	
$\langle 11,7,4\rangle^{\prime}$	1	1	
$\langle 11,6,4,1\rangle^{*}$		1	1
$\langle 11,5,4,2\rangle^{*}$			1
	D_{63}	D_{64}	D_{65}

The spin characters	Decomposition matrix for the block \boldsymbol{B}_{6}					
$\langle 16,4,2\rangle$	1					
$\langle 16,4,2\rangle^{\prime}$		1				
$\langle 11,9,2\rangle$	1		1			

The spin characters	Decomposition matrix for the block					
$\langle 17,3,2\rangle$	1					
$\langle 17,3,2\rangle^{\prime}$		1				
$\langle 10,9,3\rangle$	1		1			
$\langle 10,9,3\rangle^{\prime}$		1		1		
$\langle 10,7,3,2\rangle^{*}$			1	1	1	1
$\langle 10,6,3,2,1\rangle$					1	
$\langle 10,6,3,2,1\rangle$						1
	D_{66}	D_{67}	D_{68}	D_{69}	D_{70}	D_{71}

The spin characters	Decomposition matrix for the block \boldsymbol{B}_{7}		
$\langle 16,3,2,1\rangle^{*}$	1		
$\langle 10,9,2,1\rangle^{*}$	1	1	
$\langle 9,8,3,2\rangle^{*}$		1	1

$\langle\mathbf{1 1}, \mathbf{9}, \mathbf{2}\rangle^{\prime}$		$\mathbf{1}$		$\mathbf{1}$		
$\left\langle\mathbf{9 , 7 , 4 , 2 \rangle ^ { * }}\right.$			$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\langle\mathbf{9 , 6 , 4 , 2 , 1}\rangle$					$\mathbf{1}$	
$\langle\mathbf{9 , 6 , 4 , 2 , 1}\rangle^{\prime}$						$\mathbf{1}$
	\boldsymbol{D}_{72}	\boldsymbol{D}_{73}	\boldsymbol{D}_{74}	\boldsymbol{D}_{75}	\boldsymbol{D}_{76}	\boldsymbol{D}_{77}

$\langle\mathbf{9}, \mathbf{7}, \mathbf{3}, \mathbf{2}, \mathbf{1}\rangle$			$\mathbf{1}$
$\langle\mathbf{9}, \mathbf{7}, \mathbf{3}, \mathbf{2}, \mathbf{1}\rangle^{\prime}$			$\mathbf{1}$
	D_{78}	D_{79}	$\boldsymbol{D}_{\mathbf{8 0}}$

| $\begin{array}{l}\text { The spin } \\ \text { characters }\end{array}$ | $\begin{array}{c}\text { Decomposition matrix } \\ \text { for the block }\end{array}$ | |
| :--- | :---: | :---: | :---: |
| $\boldsymbol{B}_{\mathbf{8}}$ | | |$]$

The spin characters	The decomposition matrix for the block $\mathrm{B}_{\mathbf{9}}$					
$\langle 13,5,4\rangle$	I					
$\langle 13,5,4\rangle^{\prime}$		1				
$\langle 12,6,4\rangle$	1		1			
$\langle 12,6,4\rangle^{\prime}$		1		1		
$\langle 11,6,5\rangle$			1		1	
$\langle 11,6,5\rangle^{\prime}$				1		1
$\langle 7,6,5,4\rangle^{*}$					1	1
	D_{84}	D_{85}	D_{86}	D_{87}	D_{88}	D_{89}

The blocks of defect 0 are:

$$
\langle 13,6,3\rangle=\mathrm{D}_{90},\langle 13,6,3\rangle^{\prime}=\mathrm{D}_{91},\langle 12,5,4,1\rangle^{*}=\mathrm{D}_{92},\langle 10,8,3,1\rangle^{*}=\mathrm{D}_{93}
$$

Appendix 2
The decomposition matrix for the spin characters of $S_{23}, p=7$

$<23>^{*}$	1																					
$<21,2\rangle$	1	1																				
$<21,2\rangle^{\prime}$	1	1																				
$<20,2,1\rangle^{*}$		1	1																			
$<18,3,2\rangle^{*}$			1	1																		
$\langle 17,4,2\rangle^{*}$			1	1	1																	
$\langle 16,7\rangle$	1	1				1																
$<16,7\rangle^{\prime}$	1	1				1																
$<16,6,1\rangle^{*}$	2	1	1			1	1															
$<16,5,2>^{*}$			1		1		1	1														
$<16,4,3\rangle^{*}$					1			1														
$<15,6,2\rangle^{*}$	2					1	1	1	1													
$\langle 14,9\rangle$	1					1				1												
$<14,9\rangle^{\prime}$	1					1				1												
$<14,7,2\rangle^{*}$	4	2				2			2	2	2											
$\langle 14,6,2,1\rangle$								1	1		1	1										
$\langle 14,6,2,1\rangle^{\prime}$								1	1		1	1										
$<14,4,3,2\rangle$								1				1										
$\langle 14,4,3,2\rangle^{\prime}$								1				1										
$<13,9,1\rangle^{*}$	2					1	1			1			1									
$<13,8,2\rangle^{*}$	4	2	1			1	1	1	1	2	2		1	1								
$\langle 13,7,2,1\rangle$	2	1						1	1	1	2	1		1	1							
$\langle 13,7,2,1\rangle^{\prime}$	2	1						1	1	1	2	1		1	1							
$<13,4,3,2,1\rangle^{*}$												1			1							
$\langle 12,9,2\rangle^{*}$	2		1		1		1	1					1	1		1						
$<11,10,2>^{*}$					1											1						
$<11,9,3\rangle^{*}$			1	1	1			1						1		1	1					
$<11,7,3,2\rangle$								1			1	1		1	1		1	1				
$\langle 11,7,3,2\rangle^{\prime}$								1			1	1		1	1		1	1				
$<11,6,3,2,1\rangle^{*}$											1	1			1			1				

$<10,9,4\rangle^{*}$			1	1										1			1		1			
$<10,7,4,2\rangle$											1			1	1	1	1	1	1	1		
$\langle 10,7,4,2\rangle^{\prime}$											1			1	1	1	1	1	1	1		
$<10,6,4,2,1\rangle^{*}$											1				1			1		1		
$<9,8,6\rangle^{*}$	2	2	1							2	2			1					1		2	
$<9,7,6,1\rangle$	2	1								1	1		1	1	1				1		1	1
$<9,7,6,1>^{\prime}$	2	1								1	1		1	1	1				1		1	1
$<9,7,5,2>$	2									2	1		1	1	1	1			2	1	2	1
$<9,7,5,2>^{\prime}$	2									2	1		1	1		1			2	1	2	1
$\langle 9,7,4,3\rangle$																1			1	1	1	
$<9,7,4,3>^{\prime}$																1			1	1	1	
$\langle 9,6,5,2,1\rangle^{*}$										2	1								2	1	2	
$<9,6,4,3,1\rangle^{*}$															1				2	1	1	1
$<9,5,4,3,2\rangle^{*}$															1							1
$\langle 8,7,6,2\rangle$													1						1			1
$<8,7,6,2>^{\prime}$													1						1			1
$<8,6,4,3,2>^{*}$																			2		2	1
$<7,6,4,3,2,1\rangle$																					1	
$\langle 7,6,4,3,2,1\rangle^{\prime}$																					1	
	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	d_{7}	d_{8}	d_{9}	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}	d_{16}	d_{17}	d_{18}	d_{19}	d_{20}	d_{21}	d_{22}

The spin	The decomposition matrix for the block $\boldsymbol{B}_{\mathbf{2}}$																	
<22,1)	4																	
$\langle\mathbf{2 2 , 1})^{\prime}$		4																
$\langle 15,8\rangle$	1		2															
$\langle 15,8\rangle^{\prime}$		1		2														
$\langle 15,7,1\rangle^{*}$	5	5	2	2	1	1												
$\langle 15,5,2,1\rangle$					1		1											
$\langle 15,5,2,1\rangle^{\prime}$						1		1										
$\langle 15,4,3,1\rangle$							1											
$\langle 15,4,3,1\rangle^{\prime}$								1										
$\langle 14,8,1\rangle^{*}$	5	5	2	2	1	1			1	1								
$\langle 12,8,2,1\rangle$	8				1		1		1		1							
$\langle\mathbf{1 2 , 8 , 2 , 1}\rangle^{\prime}$		8				1		1		1		1						
$\langle 11,8,3,1\rangle$							1				1		1					
$\langle\mathbf{1 1 , 8 , 3 , 1}\rangle^{\prime}$								1				1		1				
$\langle 10,8,4,1\rangle$											1		1		1			
$\langle\mathbf{1 0 , 8 , 4 , 1}\rangle^{\prime}$												1		1		1		
$\langle 9,8,5,1\rangle$	8								1	1	1				1		1	1
$\langle\mathbf{9 , 8 , 5 , 1}\rangle^{\prime}$		8							1	1		1				1	1	1
$\langle 8,7,5,2,1\rangle^{*}$									1	1					1	1	1	1
$\langle 8,7,4,3,1\rangle^{*}$															1	1	1	1
$\langle 8,5,4,3,2,1\rangle$																	1	
$\langle 8,5,4,3,2,1\rangle^{\prime}$																		1
	d_{2}	d_{2}	d_{2}	d_{26}	d_{27}	${ }_{2}$	$\mathrm{d}_{2} \mathrm{~d}$	${ }^{\text {d }}$	d_{3}	${ }^{\text {d }} 3$	${ }_{3}{ }_{3}$	${ }^{\text {d }}$	${ }^{\text {d }}$	d_{36}	${ }^{\text {d }} 3$	d_{38}	d_{39}	d_{40}

$\left\langle 17,6{ }^{\prime}\right.$		1		1														
$\langle 14,6,3\rangle^{*}$			1	1	1	1												
$\langle 13,10\rangle$			1				1											
$\langle 13,10\rangle^{\prime}$				1				1										
$\langle 13,7,3\rangle^{*}$	1	1	1	1	1	1	1	1	1	1								
$\langle 13,6,3,1\rangle$					1				1		1							
$\langle 13,6,3,1\rangle^{\prime}$						1				1		1						
$\langle 13,5,3,2\rangle$											1							
$\langle 13,5,3,2\rangle^{\prime}$												1						
$\langle 12,6,3,2\rangle$									1		1		1					
$\langle 12,6,3,2\rangle^{\prime}$										1		1		1				
$\langle 10,7,6\rangle^{*}$	1	1					1	1	1	1					1	1		
$\langle 10,6,5,2\rangle$							2		1				1		1		1	
$\langle 10,6,5,2\rangle^{\prime}$								2		1				1		1		1
$\langle 10,6,4,3\rangle$													1				1	
$\langle 10,6,4,3\rangle^{\prime}$														1				1
$\langle 9,6,5,3\rangle$							2								2		1	
$\langle 9,6,5,3\rangle^{\prime}$								2								2		1
$\langle 7,6,5,3,2\rangle^{*}$															1	1		
	d_{41}	d_{42}	d_{43}	d_{44}	d_{45}	d_{46}	d_{47}	d_{48}	d_{49}	d_{50}	d_{51}	d_{52}	d_{53}	d_{54}	d_{55}	d_{56}	d_{57}	d_{58}

The spin characters	The decomposition matrix for the block $\boldsymbol{B}_{\mathbf{4}}$																	
$\langle 19,4\rangle$	1																	
$\langle 19,4\rangle^{\prime}$		1																
$\langle 18,5\rangle$	1		1															
$\langle 18,5\rangle^{\prime}$		1		1														
$\langle 14,5,4\rangle^{*}$			1	1	1	1												
$\langle 13,5,4,1\rangle$					1		1											
$\langle 13,5,4,1\rangle^{\prime}$						1		1										
$\langle 12,11\rangle$			1						1									
$\langle 12,11\rangle^{\prime}$				1						1								
$\langle 12,7,4\rangle^{*}$	1	1	1	1	1	1			1	1	1	1						
$\langle 12,6,4,1\rangle$					1		1				1		1					
$\langle 12,6,4,1\rangle^{\prime}$						1		1				1		1				
$\langle 12,5,4,2\rangle$							1						1					
$\langle 12,5,4,2\rangle^{\prime}$								1						1				
$\langle 11,7,5\rangle^{*}$	1	1							1	1	1	1			1	1		
$\langle 11,6,5,1\rangle$									2		1		1		1		1	
$\langle\mathbf{1 1 , 6 , 5 , 1}\rangle^{\prime}$										2		1		1		1		1
$\langle 11,5,4,3\rangle$													1				1	
$\langle 11,5,4,3\rangle^{\prime}$														1				1
$\langle 8,6,5,4\rangle$									2						1	1	1	
$\langle 8,6,5,4\rangle^{\prime}$										2					1	1		1
$\langle 7,6,5,4,1\rangle$															1	1		
	d_{59}	d_{60}	d_{61}	d_{62}	d_{63}	d_{64}	d_{65}	d_{66}	d_{67}	d_{68}	d_{69}	d_{70}	d_{71}	d_{72}	d_{73}	d_{74}	d_{75}	d_{76}

The spin characters	The decomposition matrix for the block $\boldsymbol{B}_{\mathbf{5}}$								
$\langle 19,3,1\rangle^{*}$	1								
$\langle 17,5,1\rangle^{*}$	1	1							

$\langle 15,5,3\rangle^{*}$		1	1						
$\langle 14,5,3,1\rangle$			1	1					
$\langle\mathbf{1 4 , 5 , 3 , 1}\rangle^{\prime}$			1	1					
$\langle\mathbf{1 2 , 1 0 , 1})^{*}$		1			1				
$\langle 12,8,3\rangle^{*}$	1	1	1		1	1			
$\langle 12,7,3,1\rangle$			1	1		1	1		
$\langle\mathbf{1 2 , 7 , 3 , 1}\rangle^{\prime}$			1	1		1	1		
$\langle 12,5,3,2,1)^{*}$				1			1		
$\langle 10,8,5\rangle^{*}$	1					1		1	
$\langle 10,7,5,1\rangle$					1	1	1	1	1
$\langle\mathbf{1 0 , 7 , 5 , 1}\rangle^{\prime}$					1	1	1	1	1
$\langle 10,5,4,3,1\rangle^{*}$							1		1
$\langle 8,7,5,3\rangle$					1			1	1
$\langle 8,7,5,3\rangle^{\prime}$					1			1	1
$\langle 8,6,5,3,1\rangle^{*}$								2	1
	d_{77}	d_{78}	d_{79}	d_{80}	d_{81}	d_{82}	d_{83}	d_{84}	d_{85}

The spin characters	Decomposition matrix for the block $\boldsymbol{B}_{\mathbf{6}}$		
$\left\langle\mathbf{1 8 , 4 , \mathbf { 4 } \rangle ^ { * }}\right.$	$\mathbf{1}$		
$\langle\mathbf{1 1 , 8 , 4}\rangle^{*}$	1	1	
$\langle\mathbf{1 1 , 7 , 4 , 1 \rangle}$		1	$\mathbf{1}$
$\langle\mathbf{1 1 , 7 , 4 , 1}\rangle^{\prime}$		1	$\mathbf{1}$
$\langle\mathbf{1 1 , 5 , 4 , 2 , 1}$			$\mathbf{1}$
	$\boldsymbol{d}_{\mathbf{8 6}}$	$\boldsymbol{d}_{\mathbf{8 7}}$	$\boldsymbol{d}_{\mathbf{8 8}}$

The spin characters	The decomposition matrix for the block $\boldsymbol{B}_{\mathbf{7}}$					
$\langle\mathbf{1 7 , 3 , 2 , 1 \rangle}$	$\mathbf{1}$					

The spin characters	The decomposition matrix for the block B_{8}					
$\langle 16,4,2,1\rangle$,					
$\left\langle\mathbf{1 6 , 4 , 2 , 1 \rangle ^ { \prime }}\right.$		1				
$\langle 11,9,2,1\rangle$	1		1			
$\langle\mathbf{1 1 , 9 , 2 , 1}\rangle^{\prime}$		1		1		
$\langle 9,8,4,2\rangle$			1		1	
$\langle\mathbf{9 , 8 , 4 , 2}\rangle^{\prime}$				1		1
$\langle 9,7,4,2,1\rangle^{*}$					1	1
	d_{95}	d_{96}	d_{97}	d_{98}	d_{99}	d_{100}

The blocks of defect 0 are:
$\langle 13,6,4\rangle^{*}=\mathrm{d}_{101},\langle 12,6,5\rangle^{*}=d_{102}$,
$\langle 11,6,4,2\rangle=\mathrm{d}_{103},\langle 11,6,4,2\rangle^{\prime}=\mathrm{d}_{104}$ and $\langle 9,8,3,2,1\rangle^{*}=\mathrm{d}_{105}$

References

[1] N.S.Abdullah: On the decomposition matrices of the projective characters of the symmetric group, M.Sc. Thesis Basrah University, (2009).
[2] L. Dornhoff: Group representation theory ,parts A and B .Marcel Dekker Inc,(1971), (1972).
[3] J.F.Humphreys: Projective modular representations of finite groups I,J.London Math. Society (2), 16 (1977) 51-66.
[4]G.D.James and A.Kerber :The representation theory of the symmetric group ,Reading, Mass, Addison-Wesley ,(1981).
[5] Lukas Maas: Decomposition Matrices for Spin Characters of Symmetric and Alternating Groups, Nikolaus Conference 2010, Aachen.
[6] A.O.Morris :The spin representation of the symmetric group, proc. London Math. Soc.(3) 12 (1962), $55-76$.
[7] A.O.Morris and A.K.Yaseen: Decomposition matrices for spin characters of symmetric group, Proc. of Royal society of Edinburgh, 108A, (1988),145-164.
[8] B. M. Puttaswamaiah and J.D.Dixon :Modular representation of finite groups, Academic Press,(1977).
[9] J. A. Resan: The decomposition matrices of the projective characters of the symmetric groups S_{17} andS $_{18}$ M. Sc. Thesis Basrah university, (2010).
[10] I.Schur: Uber die Darstellung der symmetrischen und der alternierenden gruppe durch gebrochene lineare subtituttionen ,j.Reine ang.Math. ,139(1911) 155-250 .
[11] S.A.Taban: On the decomposition matrices of the projctive characters of the symmetric groups ,M.Sc.Thesis,Basrah University (1989).
[12] S. A. Taban: 7-Decomposition matrix for the spin characters of the symmetric group S_{16} , Basrah J. Science, A, vol.169, 2,(1998), 7986.
[13] S. A. Taban 7-Decomposition matrix for the spin characters of the symmetric group S_{17}, Mutah Lil-Buhuth Wad-Dirasat, (2001).
[14] S.A.Taban 7-Decomposition matrix for the spin characters of the symmetric group S_{18}, Basrah J. Science, A, vol. 30, 3,(2004), 49-62.
[15] N. M. Yacoob, Decomposition Matrices of Spin Characters of the Symmetric Groups S_{21}, S_{22} Modulo $p=11$ and S_{22} modulo $p=7 \mathrm{M}$. Sc. Thesis, Basrah University 2014.
[16] A.K.Yaseen: Modular spin representations of the symmetric groups , Ph.D thesis, Aberystwyth,(1987) .
[17] A.K.Yaseen and S. A. Taban: Decomposition matrix for the spin characters of the symmetric group $\mathrm{S}_{14}, \mathrm{p}=7$, J. Basrah Researches vol. 11, part 1, (1995), $35-44$.

\bar{S}_{23} المشخصات المعيارية قياس 7 لزمرة التمثيل

$$
\begin{aligned}
& \text { احمد حسين جاسم } \\
& \text { قسم الرياضيات } \\
& \text { كلبة العلوم/جامعة البصرة }
\end{aligned}
$$

البريد الالكتروني:ahmedhussein1981@ymail.com

في هذا البحث تم ايجاد المشخصات المعيارية للزمر التمثيلية (زمرة الغطاء) المشخصات المعيارية الأسقاطية غير القابلة للتحليل للزمرة ${ }^{23}$ قياس 7 , 7 , كذلك اعطينا مصفوفة التجزئة قياس 7 "للزمرة . \bar{S}_{23}

