Automatic Continuity of Some Types of Double Derivations on Semisimple Banach Algebras

Amir A. Mohammed and Lamia K. Ismail
Department of Mathematics, College of Education of Pure Science University of Mosul, Mosul, Iraq
lamiak.ismial88@gmail.com

Received

$15 / 01 / 2018$

Accepted

06/03/2018

الخلاصة :

 ليست بالضرورة مظلقة و أثبتنا أنهما تكونان قابلتان للانغلاق. كحالة خاصة، أثنتتا كل مشتقة
 صفرية للجبر - C الأولي تكونـان مستمرتـان.

Abstract

Following Villena in [9] and Mohammed and Ali in [4], we introduce partially defined $(g, h)-c$ - double derivation and generalized $(g, h)-c-$ double derivation on a semisimple complex Banach algebra whose domain is not necessarily closed, essential ideal and we prove that they are closable. In particular, we show that every $(g, h)-c$-double derivation and generalized (g, h) - c - double derivation defined on any nonzero ideal of a prime C " - algebra are continuous.

Keywords: automatic continuity, double derivation, ultraprimness, sliding hump sequence.

0. Introduction

Throughout this paper, \mathcal{A} is a semisimple Banach algebra over complex field and $g, h: \mathcal{A} \rightarrow \mathcal{A}$ are linear mappings. If g and h are the identity maps and if \mathcal{A} with or without identity we may conclude that g and h are continuous by Johnson and Sinclair in [1]. As a consequence, we can assume that g and h are continuous. So, we defined our derivation in this paper as in [5] and [7] as follows: A linear $\operatorname{map} D_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is said to be $(g, h)-c$ - double derivation on \mathcal{A} if $D_{1}(a b)=D_{1}(a) b+a D_{1}(b)+g(a) h(b)+h(a) g(b), \forall a, b \in \mathcal{A}$. Similarly, we defined our derivation in this paper as in [8] as follows:
A linear map $D_{2}: \mathcal{A} \rightarrow \mathcal{A}$ is called generalized $(g, h)-c$-double derivation on \mathcal{A} if there exists $(g, h)-c$-double derivation
$D_{1}: \mathcal{A} \rightarrow \mathcal{A}$ such that $D_{2}(a b)=D_{2}(a) b+a D_{1}(b)+g(a) h(b)+$ $h(a) g(b), \forall a, b \in \mathcal{A}$. Recall that, a nonzero ideal I of \mathcal{A} is called essential if for any nonzero ideal J of \mathcal{A} we have $I \cap J \neq\{0\}$. Note that, if \mathcal{A} is prime then any nonzero ideal of \mathcal{A} is essential. By essential defined $(g, h)-c$-double derivation we mean a linear map $D_{1}: I \rightarrow \mathcal{A}$ such that I is essential and for all $a, b \in I, D_{1}(a b)=D_{1}(a) b+$ $a D_{1}(b)+g(a) h(b)+h(a) g(b)$. Clearly if g or h or both are the zero maps then D_{1} is the usual derivation, so $(g, h)-c$ - double derivation is a generalization of derivation. Similarly, by essential defined generalized $(g, h)-c$ - double derivation we mean a linear map $D_{2}: I \rightarrow \mathcal{A}$ such that I is essential and for all $a, b \in I, D_{2}(a b)=D_{2}(a) b+a D_{1}(b)+g(a)$ $h(b)+h(a) g(b)$.
Clearly if g or h or both are the zero maps and $D_{1}=D_{2}$, then D_{2} is the usual derivation, so generalized $(g, h)-c$ - double derivation is a generalization of derivation. Also if $D_{1}=D_{2}$, then generalized (g, h) - c - double derivation is $(g, h)-c$ - double derivation.

Automatic continuity of derivations are studied by many researcher, we mention some of them of our present work see [1], [2], [5], [6] and [7].

In this paper, we will follow the same lines of [4] and [9]. We will use $D=D_{1}$ or D_{2} when the results are true for both D_{1} and D_{2}, otherwise we will use only D_{1} or D_{2}.

Let \mathcal{P} denote the set of primitive ideals P of \mathcal{A} such that $I \not \subset P$. The primitive ideal P can be obtained as the kernel of a continuous irreducible representation of \mathcal{A} on a complex Banach
space X_{P}, actually the irreducible representation of \mathcal{A} is defined by the following mappings:
$\varphi: \mathcal{A} \rightarrow B L\left(X_{P}\right)$ defined by $\varphi(a)=L_{a}$ and $L_{a}: X_{P} \rightarrow X_{P}$ defined by $L_{a}(x)=a x$ and the $\operatorname{ker}(\varphi)=P$ satisfying $\|a x\| \leq\|a\|\|x\|$, for all $a \in \mathcal{A}, x \in X_{P}$.

Recall that the separating subspace $S(D)$ of D is defined to be the set of those a in \mathcal{A} for which there is a sequence $\left\{a_{n}\right\}$ in \mathcal{A} with $\lim _{n \rightarrow \infty} a_{n}=0$ and $\lim _{n \rightarrow \infty} D\left(a_{n}\right)=a$. It is well known that D is closable if ${ }_{n \rightarrow \infty}^{n \rightarrow \infty}$ only if $S(D)=0, \quad$ and it is easy to show that $I S(D)+$ $S(D) I \subset S(D)$.
Let $\mathcal{P}_{c}=\{P \in \mathcal{P}: S(D) \subset P\}$ and $\mathcal{P}_{E}=\{P \in \mathcal{P}: S(D) \not \subset P\}$.
Note that $S(D) \subset \cap_{P \in \mathcal{P}_{c}} P=P_{c}$. We will show that D is closed if $P_{c}=0$.

1. Main Results

We begin this section by the following fundamental results :

Proposition 1: [9]

Let $P \in \mathcal{P}$ and J any non necessarily closed ideal of \mathcal{A} satisfying $J \not \subset P$. Then one of the following assertions holds :

1) The ideal of those elements $b \in J$ with dim $b X_{P}<\infty$ acts irreducibly on X_{P}. Accordingly, given $x, y \in X_{P}$ with $x \neq 0$ there is $b \in J$ with $\operatorname{dim} b X_{P}=1$ and $b x=y$.
2) There exist sequences $\left\{b_{n}\right\}$ in J and $\left\{x_{n}\right\}$ in X_{P} satisfying $b_{n} \ldots b_{1} x_{n} \neq 0$ and $b_{n+1} \ldots b_{1} x_{n}=0$ for every $n \in \mathbb{N}$.
Proof : see [9, lemma 1]
Let $\left\{P_{n}\right\}$ be a sequence in \mathcal{P}. A sequence $\left\{b_{n}\right\}$ in I is said to be a sliding hump sequence for $\left\{P_{n}\right\}$ if for every $n \in \mathbb{N}$ there exists $x_{n} \in X_{P_{n}}$ such that $b_{n} \ldots b_{1} x_{n} \neq 0$ and $b_{n+1} \ldots b_{1} x_{n}=0$ (see [9]).

Proposition 2:

If there exists a sliding hump sequence for a sequence $\left\{P_{n}\right\}$ in \mathcal{P}, then there is a natural number n for which
i) $S\left(D_{1}\right) \subset P_{n}$. In particular, $S\left(D_{1}\right) \subset P$ if $P_{n}=P$ for every $n \in \mathbb{N}$.
ii) $S\left(D_{2}\right) \subset P_{n}$. In particular, $S\left(D_{2}\right) \subset P$ if $P_{n}=P$ for every $n \in \mathbb{N}$. Proof :

Let $\left\{b_{n}\right\}$ be a sliding hump sequence for $\left\{P_{n}\right\}$ then for every $n \in \mathbb{N}$, there exists $x_{n} \in X_{P_{n}}$ such that $b_{n} \ldots b_{1} x_{n} \neq 0$ and $b_{n+1} \ldots b_{1} x_{n}=0$.
We can certainly assume that $\left\|b_{n}\right\|=\|g\|=\|h\|=\left\|x_{n}\right\|=1$ for every $n \in \mathbb{N}$. We claim that there exist $n \in \mathbb{N}$ and a nonzero $x \in X_{P_{n}}$, such that the map $a \mapsto D(a) x$ from I into $X_{P_{n}}$ is continuous. If the claim fails, then all the maps $a \longmapsto D(a) b_{n} \ldots b_{1} x_{n}$ from I into $X_{P_{n}}$ are discontinuous and we can construct inductively a sequence $\left\{a_{n}\right\}$ in I satisfying :
$\left\|D\left(a_{n}\right) b_{n} \ldots b_{1} x_{n}\right\| \geq n+\left\|\sum_{k=1}^{n-1} D\left(a_{k} b_{k} \ldots b_{1}\right) x_{n}\right\|$

$$
\begin{equation*}
+\left\|D\left(c_{n+1}\right) b_{n+1} \ldots b_{1} x_{n}\right\| \tag{1}
\end{equation*}
$$

and $\left\|a_{n}\right\| \leq 2^{-n} \min \left\{\left(1+\left\|D_{1}\left(b_{k} \ldots b_{1}\right)\right\|\right)^{-1}: k=1, \ldots, n\right\}$. Now, we consider the element $c \in \mathcal{A}$ given by $c=\sum_{n=1}^{\infty} a_{n} b_{n} \ldots b_{1}$ and for every $n \in \mathbb{N}$, we write $c_{n}=a_{n}+\sum_{k=n+1}^{\infty} a_{k} b_{k} \ldots b_{n+1}$. Now we will follow the same way of [4] and [9], then we have $c=\sum_{k=1}^{n-1} a_{k} b_{k} \ldots b_{1}+a_{n} b_{n} \ldots b_{1}+c_{n+1} b_{n+1} \ldots b_{1}$.

Currently, we will prove the first part of this proposition :
(i) $D_{1}(c)=\sum_{k=1}^{n-1} D_{1}\left(a_{k} b_{k} \ldots b_{1}\right)+D_{1}\left(a_{n}\right) b_{n} \ldots b_{1}+a_{n} D_{1}\left(b_{n} \ldots b_{1}\right)$ $+g\left(a_{n}\right) h\left(b_{n} \ldots b_{1}\right)+h\left(a_{n}\right) g\left(b_{n} \ldots b_{1}\right)+D_{1}\left(c_{n+1}\right) b_{n+1} \ldots b_{1}$ $+c_{n+1} \quad D_{1}\left(\begin{array}{lll}b_{n+1} & \ldots & b_{1}\end{array}\right)+g\left(c_{n+1}\right) \quad h\left(b_{n+1} \ldots b_{1}\right)$ $+h\left(c_{n+1}\right) g\left(b_{n+1} \ldots b_{1}\right)$. Now,
$\left\|D_{1}(c) x_{n}\right\| \geq\left\|D_{1}\left(a_{n}\right) b_{n} \ldots b_{1} x_{n}\right\|-\left\|\sum_{k=1}^{n-1} D_{1}\left(a_{k} b_{k} \ldots b_{1}\right) x_{n}\right\|$ $-\left\|a_{n} D_{1}\left(b_{n} \ldots b_{1}\right) x_{n}\right\|-\left\|g\left(a_{n}\right) h\left(b_{n} \ldots b_{1}\right) x_{n}\right\|$
$-\left\|h\left(a_{n}\right) g\left(b_{n} \ldots b_{1}\right) x_{n}\right\|-\left\|D_{1}\left(c_{n+1}\right) b_{n+1} \ldots b_{1} x_{n}\right\|$
$-\left\|c_{n+1} D_{1}\left(b_{n+1} \ldots b_{1}\right) x_{n}\right\|-\left\|g\left(c_{n+1}\right) h\left(b_{n+1} \ldots b_{1}\right) x_{n}\right\|$
$-\left\|h\left(c_{n+1}\right) g\left(b_{n+1} \ldots b_{1}\right) x_{n}\right\|$, then by (1) we have $\left\|D_{1}(c) x_{n}\right\| \geq n-\left\|a_{n} D_{1}\left(b_{n} \ldots b_{1}\right) x_{n}\right\|-\left\|g\left(a_{n}\right) h\left(b_{n} \ldots b_{1}\right) x_{n}\right\|$ $-\left\|h\left(a_{n}\right) g\left(b_{n} \ldots b_{1}\right) x_{n}\right\|-\left\|c_{n+1} D_{1}\left(b_{n+1} \ldots b_{1}\right) x_{n}\right\|$ $-\left\|g\left(c_{n+1}\right) h\left(b_{n+1} \ldots b_{1}\right) x_{n}\right\|-\left\|h\left(c_{n+1}\right) g\left(b_{n+1} \ldots b_{1}\right) x_{n}\right\| . .(2)$

As a consequence, \| $a_{n} D_{1}\left(b_{n} \ldots b_{1}\right) x_{n}\|\leq\| a_{n}\| \| D_{1}\left(b_{n} \ldots b_{1}\right) \|$ ≤ 1
Also, $\left\|g\left(a_{n}\right) h\left(b_{n} \ldots b_{1}\right) x_{n}\right\| \leq\|g\|\left\|a_{n}\right\|\|h\|\left\|b_{n}\right\| \ldots b_{1}\| \| x_{n} \|$ $\leq\left\|a_{n}\right\| \leq 1$
Hence, $\left\|h\left(a_{n}\right) g\left(b_{n} \ldots b_{1}\right) x_{n}\right\| \leq\|h\|\left\|a_{n}\right\|\|g\|\left\|b_{n}\right\| \ldots\left\|b_{1}\right\|\left\|x_{n}\right\|$ $\leq\left\|a_{n}\right\| \leq 1$
Now, we will follow the same way of [4] and [9], then we have
$\left\|c_{n+1}\right\| \leq 2\left\|a_{n+1}\right\|$
So, $\left\|c_{n+1} D_{1}\left(b_{n+1} \ldots b_{1}\right) x_{n}\right\| \leq\left\|c_{n+1}\right\|\left\|D_{1}\left(b_{n+1} \ldots b_{1}\right)\right\|$, then by (6)

$$
\begin{align*}
& \leq 2\left\|a_{n+1}\right\|\left\|D_{1}\left(b_{n+1} \ldots b_{1}\right)\right\| \tag{6}\\
& \leq 2 \tag{7}
\end{align*}
$$

Also, $\left\|g\left(c_{n+1}\right) h\left(b_{n+1} \ldots b_{1}\right) x_{n}\right\| \leq\|g\|\left\|c_{n+1}\right\|\|h\|\left\|b_{n+1}\right\| \ldots$ $\left\|b_{1}\right\|\left\|x_{n}\right\|$, then by (6)
$\leq 2\left\|a_{n+1}\right\|$
≤ 2
And, $\left\|h\left(c_{n+1}\right) g\left(b_{n+1} \ldots b_{1}\right) x_{n}\right\| \leq\|h\|\left\|c_{n+1}\right\|\|g\|\left\|b_{n+1}\right\| \ldots$ $\left\|b_{1}\right\|\left\|x_{n}\right\|$, then by (6)
$\leq 2\left\|a_{n+1}\right\|$
≤ 2
Then by putting (3), (4), (5), (7), (8) and (9) in (2) we get that $\left\|D_{1}(c) x_{n}\right\| \geq n-9 \quad \forall n \in \mathbb{N}$, then $\left\|D_{1}(c)\right\| \geq\left\|D_{1}(c) x_{n}\right\| \geq n-9$ $\forall n \in \mathbb{N}$. This contradiction proves our claim.

Let $m \in \mathbb{N}$ such that map $a \mapsto D_{1}(a) x$ from I into $X_{P_{m}}$ is continuous for some nonzero $x \in X_{P_{m}}$ and let X be the set of all $x \in X_{P_{m}}$ satisfying this property, X is a nonzero I-submodule of $X_{P_{m}}$; therefore, we conclude that $X=X_{P_{m}}$. Let $a \in S\left(D_{1}\right)$ then $\lim _{n \rightarrow \infty} D_{1}\left(a_{n}\right)=a$ for a suitable sequence $\left\{a_{n}\right\}$ in I with $\lim _{n \rightarrow \infty} a_{n}=0$, then $a x=\lim _{n \rightarrow \infty} D_{1}\left(a_{n}\right) x=0$, for every $x \in X_{P_{m}}$ and therefore, $a \in P_{m}$. That means $S\left(D_{1}\right) \subset P_{m}$.
(ii) The proof is similar to the proof of that of first part of this proposition.

Proposition 3 : [9]

Let $P \in \mathcal{P}$ and J any subspace of \mathcal{A} satisfying $I J+J I \subset J$ and $J \not \subset$ P. Then $J x=X_{P}$ for every nonzero $x \in X_{P}$.

Proof: see [9, lemma 3]

Proposition 4 :

Let $P \in \mathcal{P}$ and J any non necessarily closed ideal of \mathcal{A} contained in I. If there is an element $b \in J$ such that $b \notin P$, and $\operatorname{dim} b J b<\infty$.
Then $S\left(D_{1}\right) \subset P$ and $S\left(D_{2}\right) \subset P$.
proof :
Note that, since $\operatorname{dim} b J b<\infty$ then the map $a \mapsto D(b J b)$ is continuous, let $a \in S(D)$, then there exists a sequence $\left\{a_{n}\right\} \subset I$ such that $\lim _{n \rightarrow \infty} a_{n}=0$ and $\lim _{n \rightarrow \infty} D\left(a_{n}\right)=a$. Thus $\lim _{n \rightarrow \infty} b a_{n} b=0$ and $\lim _{n \rightarrow \infty} D\left(b a_{n} b\right)=0$. Since g and h are continuous linear maps, then $\lim _{n \rightarrow \infty} g\left(a_{n}\right)=0$ and $\lim _{n \rightarrow \infty} h\left(a_{n}\right)=0$, also $\lim _{n \rightarrow \infty} b a_{n}=0$ thus $\lim _{n \rightarrow \infty} g\left(b a_{n}\right)^{n \rightarrow \infty}=0$ and $\lim _{n \rightarrow \infty} h\left(b a_{n}\right)=0$.

Firstly, we will prove $S\left(D_{1}\right) \subset P$. Now, for all $b \in I,\left\{a_{n}\right\} \subset I$, we have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} D_{1}\left(b a_{n} b\right)= & \lim _{n \rightarrow \infty}\left[D_{1}\left(b a_{n}\right) b+b a_{n} D_{1}(b)+g\left(b a_{n}\right) h(b)+h\left(b a_{n}\right) g(b)\right] \\
= & \lim _{n \rightarrow \infty}\left[D_{1}(b) a_{n} b+b D_{1}\left(a_{n}\right) b+g(b) h\left(a_{n}\right) b+h(b)\right. \\
& \left.g\left(a_{n}\right) b+b a_{n} D_{1}(b)+g\left(b a_{n}\right) h(b)+h\left(b a_{n}\right) g(b)\right] \\
= & b a b=0 \quad \forall a \in S\left(D_{1}\right) \text { hence } b S\left(D_{1}\right) b=0
\end{aligned}
$$

Since $b \notin P$ then $b X_{P} \neq 0$, if we assume that $S\left(D_{1}\right) \not \subset P$ then by Proposition 3 we have $S\left(D_{1}\right) b X_{P}=X_{P}$ thus $b S\left(D_{1}\right) b X_{P}=b X_{P}=0$ Which gives $b \in P$ this is contradiction; therefore, $S\left(D_{1}\right) \subset P$.

Secondly, we will prove $S\left(D_{2}\right) \subset P$. Since $\lim _{n \rightarrow \infty} D_{2}\left(a_{n}\right)=a$; therefore, $\lim _{n \rightarrow \infty} b D_{2}\left(a_{n}\right)=b a$ this implies that $\lim _{n \rightarrow \infty} D_{2}\left(\begin{array}{ll}b & a_{n}\end{array}\right)=b a$, Now, for all $b \in I,\left\{a_{n}\right\} \subset I$,
we have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} D_{2}\left(b a_{n} b\right)= & \lim _{n \rightarrow \infty}\left[D_{2}\left(b a_{n}\right) b+b a_{n} D_{1}(b)+g\left(b a_{n}\right) h(b)+h\left(b a_{n}\right) g(b)\right] \\
= & \lim _{n \rightarrow \infty} D_{2}\left(b a_{n}\right) b+\lim _{n \rightarrow \infty} b a_{n} D_{1}(b)+\lim _{n \rightarrow \infty} g\left(b a_{n}\right) h(b) \\
& +\lim _{n \rightarrow \infty} h\left(b a_{n}\right) g(b) \\
= & b a b=0 \forall a \in S\left(D_{2}\right) \text { hence } b S\left(D_{2}\right) b=0
\end{aligned}
$$

Since $b \notin P$ then $b X_{P} \neq 0$, if we assume that $S\left(D_{2}\right) \not \subset P$ then by Proposition 3 we have $S\left(D_{2}\right) b X_{P}=X_{P}$ then $b S\left(D_{2}\right) b X_{P}=b X_{P}=0$ that means $b \in P$ this is contradiction; therefore, $S\left(D_{2}\right) \subset P$.

The proof of the following result may be obtained in the same way as in [9 , theorem 5] applying the above propositions 2 and 4.

Proposition 5: D_{1} and D_{2} are closable.
Proof: Obvious.
A Banach algebra \mathcal{A} is said to be ultraprime if there exists a positive constant $K \geq 0$ such that $K\|a\|\|b\| \leq\left\|M_{a, b}\right\| \quad \forall a, b \in$ \mathcal{A}, where $M_{a, b}$ is the tow - sided multipliplication operator on \mathcal{A} defined by:
$M_{a, b}(x)=a x b$ (see [9] $)$.
In [3, proposition 2.3] it was proved that every prime C^{*} - algebra is an ultraprime Banach algebra, where $K=1$.

Theorem 6 :

Let D_{1} and D_{2} be closable (g, h) -c- double derivation and generalized $(g, h)-c$-double derivation respectively defined on a nonzero ideal I of an ultraprime Banach algebra, then D_{1} and D_{2} are continuous.
proof :
Since g and h are continuous; therefore, there are positive constants $\varepsilon, \delta \geq 0$ such that $\|g(y)\| \leq \varepsilon\|y\|$ and $\|h(z)\| \leq \delta\|z\| \forall y, z \in \mathcal{A}$.

Firstly, we will prove D_{1} is continuous. Fix $a \in I$, with $\|a\|=1$ and consider the following mapping $f_{1}: \mathcal{A} \rightarrow \mathcal{A}$ define by $f_{1}(x)=D_{1}\left(\begin{array}{ll}x & a\end{array}\right)$ $\forall x \in \mathcal{A}$, we will follow the same way of [4] and [9], then we have f_{1} is continuous; therefore, there is a positive constant $t \geq 0$, such that $\left\|f_{1}(x)\right\| \leq t\|x\| \quad \forall x \in \mathcal{A}$. Let $\|x\|=1$ we have $\left\|f_{1}(x)\right\| \leq t$, thus $\left\|f_{1}(x)\right\|=\left\|D_{1}(x a)\right\| \leq t$. Now, for $b \in I, x \in \mathcal{A}$ we have: $D_{1}(b x a)=D_{1}(b) x a+b D_{1}(x a)+g(b) h(x a)+h(b) g(x a)$, then $D_{1}(b) x a=D_{1}(b x a)-b D_{1}(x a)-g(b) h(x a)-h(b) g(x a)$; therefore, $M_{D_{1}(b), a}(x)=D_{1}(b x a)-b D_{1}(x a)-g(b) h(x a)-h(b) g(x a)$, thus $\left\|M_{D_{1}(b), a}(x)\right\| \leq\left\|D_{1}(b x a)\right\|+\left\|b D_{1}(x a)\right\|+\|g(b) h(x a)\|$ $+\|h(b) g(x a)\|$
$\leq t+\|b\| t+\varepsilon\|b\| \delta\|x a\|+\delta\|b\| \varepsilon\|x a\|$ $\leq 4 t \varepsilon \delta\|b\|\|a\|$.
By taking supremum for both sides we have $\left\|M_{D_{1}(b), a}\right\| \leq 4 t \varepsilon \delta\|b\|\|a\|$. Since \mathcal{A} is ultraprime Banach algebra, then there exists a positive constant

$K \geq 0$ such that $K\|a\|\|b\| \leq\left\|M_{a, b}\right\|$, for all $a, b \in \mathcal{A}$. Then $K\left\|D_{1}(b)\right\|\|a\| \leq\left\|M_{D_{1}(b), a}\right\| \leq 4 t \varepsilon \delta\|b\|\|a\|$, hence $\left\|D_{1}(b)\right\| \leq \frac{4 t \varepsilon \delta}{K}\|b\|, \forall b \in I$. This implies that D_{1} is continuous.

Secondly, we will prove D_{2} is continuous. Fix $a \in I$, with $\|a\|=1$ and consider the following mapping $f_{2}: \mathcal{A} \rightarrow \mathcal{A}$ define by:

$$
f_{2}(x)=D_{2}(x a) \forall x \in \mathcal{A},
$$

we will follow the same way of [4] and [9], then we have f_{2} is continuous; therefore, there is a positive constant $r \geq 0$, such that $\left\|f_{2}(x)\right\| \leq r\|x\| \quad \forall x \in \mathcal{A}$. Let $\|x\|=1$ we have $\left\|f_{2}(x)\right\| \leq r$, thus $\left\|f_{2}(x)\right\|=\left\|D_{2}(x a)\right\| \leq r$. Now, for $b \in I, x \in \mathcal{A}$ we have: $D_{2}(b x a)=D_{2}(b) x a+b D_{1}(x a)+g(b) h(x a)+h(b) g(x a)$, so $D_{2}(b) x a=D_{2}(b x a)-b D_{1}(x a)-g(b) h(x a)-h(b) g(x a)$; therefore, $M_{D_{2}(b), a}(x)=D_{2}(b x a)-b D_{1}(x a)-g(b) h(x a)-h(b) g(x a)$, thus $\left\|M_{D_{2}(b), a}(x)\right\| \leq\left\|D_{2}(b x a)\right\|+\left\|b D_{1}(x a)\right\|+\|g(b) h(x a)\|$ $+\|h(b) g(x a)\|$
$\leq r+\|b\| \frac{4 t \varepsilon \delta}{K}\|x a\|+\varepsilon\|b\| \delta\|x a\|+\delta\|b\| \varepsilon\|x a\|$ $\leq 7 r t \varepsilon \delta\|b\|\|a\|$.
By taking supremum for both sides we get $\left\|M_{D_{2}(b), a}\right\| \leq 7 r t \varepsilon \delta\|b\|\|a\|$. Since \mathcal{A} is ultraprime Banach algebra, then there exists a positive constant $m \geq 0$ such that $m\|a\|\|b\| \leq\left\|M_{a, b}\right\|$, for all $a, b \in \mathcal{A}$. Then $m\left\|D_{2}(b)\right\|\|a\| \leq\left\|M_{D_{2}(b), a}\right\| \leq 7 t \varepsilon \delta\|b\|\|a\|$, hence $\left\|D_{2}(b)\right\| \leq \frac{7 r t \varepsilon \delta}{m}\|b\|, \forall b \in I$. This proves that D_{2} is continuous.

Applying proposition 5 and theorem 6 we can prove the following result:

Corollary 7 :

Every essentially defined (g, h) - c-double derivation and generalized $(g, h)-c$-double derivation on a nonzero ideal of prime C^{*} - algebra is continuous.

Corollary 8 :

Every essentially defined derivation on a nonzero ideal of prime C^{*} algebra is continuous.

Proof:
i) By corollary 7, taking g or h or both in D_{1} to be the zero maps.
ii) By corollary 7, let $D_{1}=D_{2}$ and taking g or h or both in D_{2} to be the zero maps.

Remark 9 :

The above results of this paper are also true for the following derivations:
(1) $D_{3}: I \rightarrow \mathcal{A}$ such that $D_{3}(a b)=D_{3}(a) g(b)+h(a) D_{3}(b)$, for all $a, b \in I$.
(2) $D_{4}: I \rightarrow \mathcal{A}$ such that $D_{4}(a b)=D_{4}(a) g(b)+h(a) D_{3}(b)$, for all $a, b \in I$.

References

[1] Johnson B. E. and Sinclair A. M., " Continuity of derivations and a problem of Kaplansky", Amer. J. Math., 90:1067-1073 (1968).
[2] Lee $\mathrm{T}-\mathrm{K}$. and Liu $\mathrm{C}-\mathrm{K}$., " Partially defined σ-derivations on semisimple Banach algebras", Studia. Math., 190:193-202 (2009).
[3] Mathieu M., "Elementary operator on prime C^{*} - algebra", Math. Ann., 284: 223-244 (1989).
[4] Mohammed A. A. and Ali S. M., " On Villena's theorem of automatic continuity of essentially defined derivations on semisimple Banach algebras ", Int. J. of Math. Analysis, 7: 2931-2939 (2013).
[5] Mahdavian Rad H. and Niknam A., "Double derivations, higher double derivations and automatic continuity ", J. of sciences, 24 (2) : 165-170 (2013).
[6] Mirzavaziri M. and Moslehian M. S., " Automatic continuity of σ-derivations on C^{*} - algebras ", Proc. Amer. Math. Soc., 134 : 3319-3327 (2006).
[7] Mirzavaziri M. and Omidvar Tehrani E. ," (δ, ϵ) - double derivations on C^{*} - algebras ", Bull. Iranian Math. Soc., 35:147-154 (2009).
[8] Parky C. and Yun Shinz D., " Generalized (θ, \varnothing) - derivations on Banach algebras ", Korean J. Math., 22 (1): 139-150 (2014).
[9] Villena A. R., "Essentially defined derivations on semisimple Banach algebras ", Proc. Edinburgh Math. Soc., 40 : 175-179 (1997).

