On The Solution of Existence of Nonlinear Integral-and Integrodifferential Equations

Noora L. Husein

Department of Mathematics \College of Education
University of Mosul
تاريخ 2013/06/05

$$
\text { تاريخ الاستلام 02/ 04/ } 2013
$$

القبول

الخلاصة
 هذا البحث درسنا الوجود والوحدانية لمعادلة فولتيرا- فريدهولم التكاملية ومعادلة فولتيرا- فريدهولم التكاملية التفاضلية مستخدمين نظرية النقطة الثابتة والفضاء المتري

Abstract

Aabstract

In this paper we study the existence and uniqueness for mixed Volterra - Fredholm integral and integrodifferential equations By using the extensions of Banach's contraction principle in complete cone metric space.

Keywords : Fixed point theorem ; Cone metric space ; Comparison function ; Banach space.

Introduction

The purpose of this paper is study the existence of solution for Volterra - Fredholm integral equation of the form :

$$
x(t)=f(t, x(t))+\int_{0}^{t} k(t, s) k_{1}(s, x(s)) d s+\int_{0}^{b} h(t, s) h_{1}(s, x(s)) d s, t \in J=[0, b] \ldots \ldots . .(1)
$$

and is study the existence of solution for the integro diffirential Volterra-Fredholm integral equation of the first order of the form :

$$
\begin{align*}
x^{\prime}(t)= & f(t, x(t))+\int_{0}^{t} k(t, s) k_{1}(s, x(s)) d s+\int_{0}^{b} h(t, s) h_{1}(s, x(s)) d s \\
& x(0)=x_{0} \quad \ldots \ldots \ldots \ldots \ldots .(3) \tag{3}
\end{align*}
$$

Where $\mathrm{f}: \mathrm{J} \times \mathrm{Z} \rightarrow \mathrm{Z} . \mathrm{k}, \mathrm{h}: \mathrm{J} \times \mathrm{J} \rightarrow \mathrm{J}_{\mathrm{k}}, \mathrm{h}_{1}: \mathrm{J} \times \mathrm{Z} \rightarrow \mathrm{Z}$, are continuous and the given X_{0} is element of Z, Z is a Banach space with norm $\|\cdot\|$

The integrodiffirential equations and integral equations have been studied by many authors [2,4,5,6,7].Tidke [7] studied the existence of solution for Volterra - Fredholm integro differential equations of second order of the form:

$$
x^{\prime \prime}(\mathrm{t})=\mathrm{Ax}(\mathrm{t})+\int_{0}^{\mathrm{t}} \mathrm{k}(\mathrm{t}, \mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{kds}+\int_{0}^{\mathrm{b}} \mathrm{~h}(\mathrm{t}, \mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{ds}
$$

And B.G.Pachpatte [6] studied the existence of solution for Volterra integral equation in two variables of the form

$$
\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{u}(\mathrm{x}, \mathrm{y}), \mathrm{K}(\mathrm{x}, \mathrm{y}))
$$

$(K u)(x, y)=\int_{a}^{x} \int_{b}^{y} K(x, y, m, n, u(m, n) d n d m$
Finally in [4], Balachandran and Kim established sufficient conditions for the existence and uniqueness of random solutions of nonlinear Volterra-Fredholm stochastic integral equations of mixed type by using admissibility theory and fixed point theorem .

Preliminaries

Let us recall the concepts of the cone metric space and we refer the reader for the more details. Let E be a real Banach space and P is a subset of E . Then P is called a cone if and only if,

1. P is closed, nonempty and $\mathrm{P} \neq\{0\}$;
2. $a, b \in R, a, b \geq 0, x, y \in P \Rightarrow a x+b y \in P$;
3. $x \in P$ and $-x \in P \Rightarrow x=0$

For a given cone $\mathrm{P} \subset E$, we define a partial ordering relation \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. We shall write $x<y$ to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y-x \in \operatorname{int} P$, where intP denotes the interior of P. The cone P is called normal if there is a number $K>0$ such thatimplies $0 \leq x \leq y$
The least Positive number satisfying $x, y \in E$, for every $\|x\| \leq K\|y\|$ above is called the normal constant of P

In the following way, we always suppose E is areal Banach space, P is acone in E with $\operatorname{intP} \neq \phi$, and \leq is a partial ordering with respect to P .

Definition 1:[7]

Let X be nonempty set. Suppose that the mapping $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{E}$ satisfies :
(d1) $0 \leq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and onlyif $x=y$;
(d2) $d(x, y)=d(y, x)$, for all $x, y \in X$;
(d3) $d(x, y) \leq d(x, z)+d(z, y)$, for all $x, y, z \in X$;
Then d is called a cone metric on X and (X, d) is called cone metric space .The concept of cone metric space is more general than that of metric space.

Definition 2:[7]

Let X be an ordered space .A function $\phi: \mathrm{X} \rightarrow \mathrm{X}$ is said to a comparison function if for every
$\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \leq \mathrm{y}$ implies that $\phi(\mathrm{x}) \leq \phi(\mathrm{y}), \phi(\mathrm{x}) \leq \mathrm{x}$ and $\lim _{n \rightarrow \infty}\left\|\phi^{n}(x)\right\|=0$, forevery $x \in X$

Definition 3:[8]

The function $\mathrm{x} \in \mathrm{B}$ given by

$$
\begin{equation*}
\mathrm{x}(\mathrm{t})=\mathrm{x}_{0}+\int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{ds}+\int_{0}^{\mathrm{t}}\left[\int_{0}^{\mathrm{s}} \mathrm{k}(\mathrm{t}, \tau) \mathrm{k}_{1}\left(\tau, \mathrm{x}(\tau) \mathrm{d} \tau+\int_{0}^{\mathrm{b}} \mathrm{~h}(\mathrm{t}, \tau) \mathrm{h}_{1}(\tau, \mathrm{x}(\tau)) \mathrm{d} \tau\right] \mathrm{ds}\right. \tag{4}
\end{equation*}
$$

Is called the solution of the initial value problem (2)-(3).
We need the following Lemma for further discussion.

Lemma :[8]

Let (X, d) be a complete cone metric space, where P is a normal cone with normal constant K . Letbe a function such that there exist a $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ comparison function $\phi: \mathrm{P} \rightarrow \mathrm{P}$
such that $\mathrm{d}(\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})) \leq \phi(\mathrm{d}(\mathrm{x}, \mathrm{y}))$ for every $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. Then f has a unique fixed point.
-We list the following hypotheses for our convenience :
(H1) Ther exist continuous $\mathrm{P}_{1}, \mathrm{P}_{2}: \mathbf{J} \times \mathbf{J} \rightarrow \mathrm{R}^{+}$and a comparison function $\phi: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ such that
$\mathrm{k}(\mathrm{t}, \mathrm{s})\left[\left\|\mathrm{k}_{1}(\mathrm{~s}, \mathrm{u})-\mathrm{k}_{1}(\mathrm{~s}, \mathrm{v})\right\|, \alpha\left\|\mathrm{k}_{1}(\mathrm{~s}, \mathrm{u})-\mathrm{k}_{1}(\mathrm{~s}, \mathrm{v})\right\|\right] \leq \mathrm{MP}_{1}(\mathrm{~s}) \phi(\mathrm{d}(\mathrm{u}, \mathrm{v}))$, $\mathrm{h}(\mathrm{t}, \mathrm{s})\left[\left\|\mathrm{h}_{1}(\mathrm{~s}, \mathrm{u})-\mathrm{h}_{1}(\mathrm{~s}, \mathrm{v})\right\|, \alpha\left\|\mathrm{h}_{1}(\mathrm{~s}, \mathrm{u})-\mathrm{h}_{1}(\mathrm{~s}, \mathrm{v})\right\|\right] \leq \mathrm{NP}_{2}(\mathrm{~s}) \phi(\mathrm{d}(\mathrm{u}, \mathrm{v}))$, and
$[\|f(\mathrm{~s}, \mathrm{u})-\mathrm{f}(\mathrm{s}, \mathrm{v})\|, \alpha\|\mathrm{f}(\mathrm{s}, \mathrm{u})-\mathrm{f}(\mathrm{s}, \mathrm{v})\|] \leq \mathrm{r} \phi(\mathrm{d}(\mathrm{u}, \mathrm{v})), \quad-1<\mathrm{r} \leq 0$

For every $t, s \in J$ and $u, v \in Z$

$$
\begin{equation*}
\sup _{\mathrm{s} \in \mathrm{~J}} \int_{0}^{\mathrm{b}}\left[\mathrm{MP}_{1}(\mathrm{~s})+\mathrm{NP}_{2}(\mathrm{~s})\right] \mathrm{ds} \leq 1 \tag{H2}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\mathrm{b}} \int_{0}^{\mathrm{b}}\left[\mathrm{MP}_{1}(\mathrm{~s})+\mathrm{NP}_{2}(\mathrm{~s})\right] \mathrm{dsdt} \leq 1 \tag{H3}
\end{equation*}
$$

(H4) $\int_{0}^{\mathrm{b}} \mathrm{ds} \leq 1$

Main Results

In this section we will prove the main result of this paper :

Theorem 1: Assume that hypotheses (H1)-(H2) hold then the integral equation (1) has unique solution x on J .

Proof:

The operator $\mathrm{F}: \mathrm{B} \rightarrow \mathrm{B}$ Is defined by :

$$
\operatorname{Fx}(\mathrm{t})=\mathrm{f}(\mathrm{t}, \mathrm{x}(\mathrm{t})) \mathrm{dt}+\int_{0}^{\mathrm{t}} \mathrm{k}(\mathrm{t}, \mathrm{~s}) \mathrm{k}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{d} \mathrm{~s}+\int_{0}^{\mathrm{b}} \mathrm{~h}(\mathrm{t}, \mathrm{~s}) \mathrm{h}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{ds}, \quad \mathrm{t} \in \mathrm{~J}
$$

By using the hypotheses $\mathrm{H} 1-\mathrm{H} 2$, we have

$$
\begin{aligned}
& (\|\operatorname{Fx}(\mathrm{t})-\mathrm{Fy}(\mathrm{t})\|, \alpha\|\operatorname{Fx}(\mathrm{t})-\mathrm{Fy}(\mathrm{t})\|) \\
& \leq\left(\| f(t, x(t))+\int_{0}^{\mathrm{t}} \mathrm{k}(\mathrm{t}, \mathrm{~s}) \mathrm{k}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{ds}+\int_{0}^{\mathrm{b}} \mathrm{~h}(\mathrm{t}, \mathrm{~s}) \mathrm{h}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{ds}-\mathrm{f}(\mathrm{t}, \mathrm{y}(\mathrm{t}))\right. \\
& -\int_{0}^{\mathrm{t}} \mathrm{k}(\mathrm{t}, \mathrm{~s}) \mathrm{k}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s})) \mathrm{ds}-\int_{0}^{\mathrm{b}} \mathrm{~h}(\mathrm{t}, \mathrm{~s}) \mathrm{h}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s})) \mathrm{ds}\|, \alpha\| \mathrm{f}(\mathrm{t}, \mathrm{x}(\mathrm{t}))+ \\
& \int_{0}^{\mathrm{t}} \mathrm{k}(\mathrm{t}, \mathrm{~s}) \mathrm{k}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{ds}+\int_{0}^{\mathrm{b}} \mathrm{~h}(\mathrm{t}, \mathrm{~s}) \mathrm{h}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{ds}-\mathrm{f}(\mathrm{t}, \mathrm{y}(\mathrm{t}))_{-} \\
& \left.-\int_{0}^{\mathrm{t}} \mathrm{k}(\mathrm{t}, \mathrm{~s}) \mathrm{k}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s})) \mathrm{ds}-\int_{0}^{\mathrm{b}} \mathrm{~h}(\mathrm{t}, \mathrm{~s}) \mathrm{h}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s})) \mathrm{ds} \|\right) \\
& \leq\left(\|f(t, x(t))-f(t, y(t))\|+\int_{0}^{\mathrm{t}}\left\|\mathrm{k}(\mathrm{~s}, \mathrm{t})\left[\mathrm{k}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))-\mathrm{k}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s}))\right]\right\| \mathrm{ds}\right. \\
& +\int_{0}^{\mathrm{b}}\left\|\mathrm{~h}(\mathrm{~s}, \mathrm{t})\left[\mathrm{h}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))-\mathrm{h}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s}))\right]\right\| \mathrm{ds}, \alpha\|\mathrm{f}(\mathrm{t}, \mathrm{x}(\mathrm{t}))-\mathrm{f}(\mathrm{t}, \mathrm{y}(\mathrm{t}))\| \\
& \left.+\alpha \int_{0}^{\mathrm{t}}\left\|\mathrm{k}(\mathrm{~s}, \mathrm{t})\left[\mathrm{k}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))-\mathrm{k}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s}))\right]\right\| \mathrm{ds}+\alpha \int_{0}^{\mathrm{b}}\left\|\mathrm{~h}(\mathrm{~s}, \mathrm{t})\left[\mathrm{h}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))-\mathrm{h}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s}))\right]\right\| \mathrm{ds}\right) \\
& \leq(\|f(t, x(t))-f(t, y(t))\|, \alpha\|f(t, x(t))-f(t, y(t))\|)+\left(\int_{0}^{t}\left\|k(s, t)\left[k_{1}(s, x(s))-k_{1}(s, y(s))\right]\right\| d s\right. \\
& \left., \alpha \int_{0}^{\mathrm{t}} \mid\left\|\mathrm{k}(\mathrm{~s}, \mathrm{t})\left[\mathrm{k}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))-\mathrm{k}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s}))\right)\right\| \mathrm{ds}\right)+\left(\int_{0}^{\mathrm{b}}\left\|\mathrm{~h}(\mathrm{~s}, \mathrm{t})\left[\mathrm{h}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))-\mathrm{h}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s}))\right]\right\| \mathrm{ds}\right. \\
& \left., \alpha \int_{0}^{\mathrm{b}} \| \mathrm{h}(\mathrm{~s}, \mathrm{t})\left[\mathrm{h}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))-\mathrm{h}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s}))\right] \mid \mathrm{ds}\right) \\
& \leq \mathrm{r} \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right)+\int_{\mathrm{o}}^{\mathrm{t}} \mathrm{MP}(\mathrm{~s}) \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right) \mathrm{ds}+\int_{0}^{\mathrm{b}} \mathrm{NP}_{2}(\mathrm{~s}) \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right) \mathrm{ds} \\
& \leq \mathrm{r} \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right)+\int_{\mathrm{o}}^{\mathrm{b}} \mathrm{MP} P_{1}(\mathrm{~s}) \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right) \mathrm{ds}+\int_{\mathrm{o}}^{\mathrm{b}} \mathrm{NP}_{2}(\mathrm{~s}) \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right) \mathrm{ds} \\
& \leq \mathrm{r} \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right)+\int_{\mathrm{o}}^{\mathrm{b}}\left[\mathrm{MP}_{1}(\mathrm{~s})+\mathrm{NP}_{2}(\mathrm{~s})\right] \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right) \mathrm{ds} \\
& \leq \mathrm{r} \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right)+\phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right) \\
& =(r+1) \phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right) \\
& \leq \phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right) \quad, \quad|r+1| \leq 1
\end{aligned}
$$

This implies that $d(F x, F y) \leq \phi(d(x, y))$ For every $x, y \in B$.Now an application of lemma 1, the operator has a unique point in B . This means that the equation (1) has unique solution .This completes the proof of theorem (1).

Theorem 2: Assume that hypotheses (H1)-(H3) and (H4) hold then the initial value problem (2)-(3) has unique solution x on J .

Proof:

The operator $\mathrm{G}: \mathrm{B} \rightarrow \mathrm{B}$ Is defined by
$\operatorname{Gx}(\mathrm{t})=\mathrm{x}_{0}+\int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{s}, \mathrm{x}(\mathrm{s})) \mathrm{ds}+\int_{0}^{\mathrm{t}}\left[\int_{0}^{\mathrm{s}} \mathrm{k}(\mathrm{t}, \tau) \mathrm{k}_{1}(\tau, \mathrm{x}(\tau)) \mathrm{d} \tau+\int_{0}^{\mathrm{b}} \mathrm{h}(\mathrm{t}, \tau) \mathrm{h}_{1}(\tau, \mathrm{x}(\tau)) \mathrm{d} \tau\right] \mathrm{ds}, \quad \mathrm{t} \in \mathrm{J}$
By using the hypotheses $\mathrm{H} 1, \mathrm{H} 3, \mathrm{H} 4$, we have.
$(\|\operatorname{Gx}(\mathrm{t})-\mathrm{Gy}(\mathrm{t})\|, \alpha\|\operatorname{Gx}(\mathrm{t})-\mathrm{Gy}(\mathrm{t})\|)$
$\leq\left(\| \int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{s}, \mathrm{x}(\mathrm{s})) \mathrm{ds}+\int_{0}^{\mathrm{t}}\left[\int_{0}^{\mathrm{s}} \mathrm{k}(\mathrm{t}, \tau) \mathrm{k}_{1}(\tau, \mathrm{x}(\tau)) \mathrm{d} \tau+\int_{0}^{\mathrm{b}} \mathrm{h}(\mathrm{t}, \tau) \mathrm{h}_{1}(\tau, \mathrm{x}(\tau)) \mathrm{d} \tau\right] \mathrm{ds}\right.$
$-\int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{s}, \mathrm{y}(\mathrm{s})) \mathrm{ds}-\int_{0}^{\mathrm{t}}\left[\int_{0}^{\mathrm{s}} \mathrm{k}(\mathrm{t}, \tau) \mathrm{k}_{1}(\tau, \mathrm{y}(\tau)) \mathrm{d} \tau+\int_{0}^{\mathrm{b}} \mathrm{h}(\mathrm{t}, \tau) \mathrm{h}_{1}(\tau, \mathrm{y}(\tau)) \mathrm{d} \tau\right] \mathrm{ds} \|, \mathrm{\alpha}$
$\| \int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{s}, \mathrm{x}(\mathrm{s})) \mathrm{ds}+\int_{0}^{\mathrm{t}}\left[\int_{0}^{\mathrm{s}} \mathrm{k}(\mathrm{t}, \tau) \mathrm{k}_{1}(\tau, \mathrm{x}(\tau)) \mathrm{d} \tau+\int_{0}^{\mathrm{b}} \mathrm{h}(\mathrm{t}, \tau) \mathrm{h}_{1}(\tau, \mathrm{x}(\tau)) \mathrm{d} \tau\right] \mathrm{ds}$
$\left.-\int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{s}, \mathrm{y}(\mathrm{s})) \mathrm{ds}-\int_{0}^{\mathrm{t}}\left[\int_{0}^{\mathrm{s}} \mathrm{k}(\mathrm{t}, \tau) \mathrm{k}_{1}(\tau, \mathrm{y}(\tau)) \mathrm{d} \tau+\int_{0}^{\mathrm{b}} \mathrm{h}(\mathrm{t}, \tau) \mathrm{h}_{1}(\tau, \mathrm{y}(\tau)) \mathrm{d} \tau\right] \mathrm{ds} \|\right)$

$$
\begin{aligned}
& \leq\left(\int_{0}^{t}\|f(s, x(s))-f(s, y(s))\| d s+\int_{0}^{t}\left[\int_{0}^{s} k(t, \tau)\left\|k_{1}(\tau, x(\tau))-k_{1}(\tau, y(\tau))\right\| d \tau\right] d s\right. \\
& +\int_{0}^{t}\left[\int_{0}^{b} h(t, \tau)\left\|h_{1}(\tau, x(\tau))-h_{1}(\tau, y(\tau))\right\| d \tau\right] d s, \alpha \int_{0}^{t}\|f(s, x(s))-f(s, y(s))\| d s \\
& \left.+\alpha \int_{0}^{t}\left[\int_{0}^{s} k(t, \tau)\left\|k_{1}(\tau, x(\tau))-k_{1}(\tau, y(\tau))\right\| d \tau\right] d s+\alpha \int_{0}^{t}\left[\int_{0}^{b} h(t, \tau)\left\|h_{1}(\tau, x(\tau))-h_{1}(\tau, y(\tau))\right\| d \tau\right] d s\right) \\
& \leq\left(\int_{0}^{t}\|f(s, x(s))-f(s, y(s))\| d s, \alpha \int_{0}^{t}\|f(s, x(s))-f(s, y(s))\| d s\right)+\left(\int_{0}^{t}\left[\int_{0}^{s} k(t, \tau)\left\|k_{1}(\tau, x(\tau))-k_{1}(\tau, y(\tau))\right\| d \tau\right] d s\right. \\
& \left., \alpha \int_{0}^{t}\left[\int_{0}^{s} k(t, \tau)\left\|k_{1}(\tau, x(\tau))-k_{1}(\tau, y(\tau))\right\| d \tau\right] d s\right)+\left(\int_{0}^{t}\left[\int_{0}^{b} h(t, \tau)\left\|h_{1}(\tau, x(\tau))-h_{1}(\tau, y(\tau))\right\| d \tau\right] d s, \alpha\right. \\
& \left.\int_{0}^{t}\left[\int_{0}^{b} h(t, \tau)\left\|h_{1}(\tau, x(\tau))-h_{1}(\tau, y(\tau))\right\| d \tau\right] d s\right) \\
& \leq \int_{0}^{t} r \phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right) d s+\int_{0}^{t} \int_{0}^{s} M P_{1}(s) \phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right) d \tau d s \\
& +\int_{0}^{t} \int_{0}^{b} N P_{2}(s) \phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right) d \tau d s \\
& \leq \int_{0}^{b} r \phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right) d s+\int_{0}^{b} \int_{0}^{b} M P_{1}(s) \phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right) d \tau d s \\
& +\int_{0}^{b} \int_{0}^{b} N P_{2}(s) \phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right) d \tau d s \\
& \leq \mathrm{r} \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right)+\int_{0}^{\mathrm{b}} \int_{0}^{\mathrm{b}}\left[\mathrm{M} \mathrm{P}_{1}(\mathrm{~s})+\mathrm{NP} \mathrm{P}_{2}(\mathrm{~s})\right] \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{X}-\mathrm{y}\|_{\infty}\right) \mathrm{d} \tau \mathrm{ds} \\
& \leq \mathrm{r} \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right)+\phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right) \\
& =(\mathrm{r}+1) \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\left\|_{\mathrm{x}}-\mathrm{y}\right\|_{\infty}\right) \\
& \leq \phi\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right) \\
& |\mathrm{r}+1| \leq 1
\end{aligned}
$$

This implies that $d(F x, F y) \leq \phi(d(x, y))$ For every $x, y \in B$ Now an application of lemma 1 the operator has a unique point in B.This means that the equation (1) -(2) has unique solution .This couplets the proof of theorem (2).

Application

In this section we give example to illustrate the usefulness of our result. In equation (1), we define:

$$
\begin{array}{r}
\mathrm{k}(\mathrm{t}, \mathrm{~s})=\mathrm{s}, \mathrm{k}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))=\frac{\mathrm{x}}{2}, \mathrm{~h}(\mathrm{t}, \mathrm{~s})=\mathrm{s}, \mathrm{~h}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))=\frac{\mathrm{x}^{2}}{2}, \mathrm{f}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))=\lambda \mathrm{x}+\mathrm{s} \\
\mathrm{~s}, \mathrm{t} \in[0,1], \mathrm{x} \in \mathrm{C}([0,1], \mathrm{R}), \lambda \operatorname{constan} \mathrm{t}
\end{array}
$$

And metric $\mathrm{d}(\mathrm{x}, \mathrm{y})=\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right)$ onC $([0,1], \mathrm{R})$ and $\alpha \geq 0$. Then clearly $\mathrm{C}([0,1], \mathrm{R})$ is complete cone metric space.

Now we have

$$
\begin{aligned}
& \left(\left|\mathrm{k}(\mathrm{t}, \mathrm{~s})\left[\mathrm{k}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))-\mathrm{k}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s}))\right]\right|, \alpha\left|\mathrm{k}(\mathrm{t}, \mathrm{~s})\left[\mathrm{k}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))-\mathrm{k}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{~s}))\right]\right|\right) \\
& =\left(\left|\mathrm{s}\left[\frac{\mathrm{x}}{2}-\frac{\mathrm{y}}{2}\right]\right|, \alpha\left|\mathrm{s}\left[\frac{\mathrm{x}}{2}-\frac{\mathrm{y}}{2}\right]\right|\right) \\
& =\left(\frac{\mathrm{s}}{2}|\mathrm{x}-\mathrm{y}|, \alpha \frac{\mathrm{s}}{2}|\mathrm{x}-\mathrm{y}|\right) \\
& =\frac{\mathrm{s}}{2}(|\mathrm{x}-\mathrm{y}|, \alpha|\mathrm{x}-\mathrm{y}|) \\
& \leq \frac{\mathrm{s}}{2}\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right) \\
& =\mathrm{MP} P_{1}^{*} \Phi^{*}\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\left\|_{\mathrm{x}}-\mathrm{y}\right\|_{\infty}\right),
\end{aligned}
$$

Where $P_{1}^{*}(s)=s$, which is continuous function of $[0,1] \times[0,1]$ int o R^{+}and a comparison function $\Phi^{*}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ such that $\Phi^{*}(\mathrm{x}, \mathrm{y})=(\mathrm{x}, \mathrm{y})$. Similarly, we can show that
$\left(\left|h(t, s)\left[h_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{s}))-\mathrm{h}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{s}))\right], \alpha\right| \mathrm{h}(\mathrm{t}, \mathrm{s})\left[\mathrm{h}_{1}(\mathrm{~s}, \mathrm{x}(\mathrm{s}))-\mathrm{h}_{1}(\mathrm{~s}, \mathrm{y}(\mathrm{s}))\right]\right) \leq \mathrm{P}_{2}^{*} \phi^{*}\left(\|\mathrm{x}-\mathrm{y}\|_{\infty}, \alpha\|\mathrm{x}-\mathrm{y}\|_{\infty}\right)$, wher $P_{2}^{*}(s)=s$, which iscontiuous function of $[0,1] \times[0,1]$ int o R^{+}.Similary, we can show that $(\mid f(s, x(s))-f(s, y(s))], \alpha \mid f(s, x(s))-f(s, y(s))]) \leq \lambda \phi^{*}\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right)$,

$$
-1<\lambda \leq 0
$$

Morever,

$$
\int_{0}^{1}\left[\mathrm{MP}_{1}^{*}(\mathrm{~s})+\mathrm{NP}_{2}^{*}(\mathrm{~s})\right] \mathrm{ds}=\int_{0}^{1}\left[\frac{1}{2} \mathrm{~s}+\frac{1}{2} \mathrm{~s}\right] \mathrm{ds}=\frac{1}{2}<1
$$

Also

$$
\int_{0}^{1} \int_{0}^{1}\left[\mathrm{MP}_{1}^{*}(\mathrm{~s})+\mathrm{MP}_{2}^{*}(\mathrm{~s})\right] \mathrm{dsdt}=\int_{0}^{1} \int_{0}^{1}\left[\frac{1}{2} \mathrm{~s}+\frac{1}{2} \mathrm{~s}\right] \mathrm{dsdt}=\int_{0}^{1} \frac{1}{2} \mathrm{dt}=\frac{1}{2}<1
$$

Also

$$
\int_{0}^{1} \mathrm{ds}=1
$$

With these choices of function, all requirements of Theorem 1. And Theorem 2 are satisfied. Hence the existence and uniqueness are verified.

References

1) Akram.H.Mahmood and Lammyaa.H.Sadon, " Existence of solution of certain Volterra-Fredholm integro differential equations " , J.Edu and Sci , Vol.(25),N0 .(3), (2012).
2) Asadollah Aghajant, Yaghoub Jalillan and Kishin Sadarangan, " Existence of solutions for mixed Volterra- Fredholm integral equations" Vol.2012,N0.137,PP.1-12,(2012).
3) K.Balachandran and J.H.Kim, " Existence of solutions nonlinear stochastic Volterra- Fredholm integral equations of mixed type" J.Math.Sci,Vol . 2010 , P(1-16),(2010).
4) Biarca, Renatasatco, " Nonlinear Volterra integral equations in Henstock integrability setting " J.elec. diff.eqs.,
5) B.G.Pachpatte, " On anonlinear Volterra- Fredholm integral equation ",Vol.4,PP 61-71,(2008).
6) B.G.Pachpatte, " Volterra integral and integro differential equations in two variables " Vol.10,iss 4,art.108,(2009).
7) H.L.Tidke,G.T.Aage, S.d.Kerdre, and J.N.Salurke "On semilinear equations of mixed type in cone metric space " N0.39,19151925,(2010).
8) H.L.Tidke,C.T.Aage, J.N.Salurke ," Existence and uniqueness of continuous solution of mixed type integral equations in cone metric space", Vol.7,N.1,PP 48-55,(2011).
