Meromorphic Functions That Share One Finite Value CM or IM with Their First Derivative

Amer H. H. Al-Khaladi
Diyala University - College of Science

ARTICLEINFO

Received: 19 / 5/2022
Accepted: 28 / 5 /2022
Available online: 14/6/2012
DOI: 10.37652/juaps.2009.15579

Keywords:

Nevanlinna theory,
uniqueness theorem,
share CM or IM.
Classification Categories: Math.
Subject classification: 30D35.

ABSTRACT

In this paper we shall prove that if a non-constant meromorphic function f and its derivative f^{\prime} share the value $a(\neq 0, \infty) \mathrm{CM}(\mathrm{IM})$ and if $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$ $\left(\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)\right)$, then either $f=f^{\prime}$ or $f(z)=\frac{a(z-c)}{1+A e^{-z}}$ $\left(f(z)=\frac{2 a}{1-A e^{-2 z}}\right)$, where $A(\neq 0)$ and c are constants. These results give improvement and extension of the following result of Gundersen: if a non-constant meromorphic function f and its derivative f^{\prime} share two distinct values $0, a(\neq \infty) \mathrm{CM}$, then $f=f^{\prime}$

Introduction and Results

In this paper, the term meromorphic will always mean meromorphic in the complex plane. We use the standard notations and results of the Nevanlinna theory (see [1] or [2], for example). In particular, $S(r, f)$ denotes any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ except possibly for a set E of r of finite linear measure. We say that two non-constant meromorphic functions f and g share a value $a \mathrm{IM}$ (ignoring multiplicities), if f and g have the same a-points. If f and g have the same a-points with the same multiplicities, we say that f and g share the value $a \quad \mathrm{CM}$ (counting multiplicities). Let k be a positive integer, we denote by
$N_{k)}\left(r, \frac{1}{f-a}\right)$ the counting function of a-points of f with multiplicity $\leq k$ and by $N_{(k+1}\left(r, \frac{1}{f-a}\right)$ the counting function of a-points of f with multiplicity $>k$.

[^0]In [3] G. G. Gundersen proved the following theorem:

Theorem A. Let f be a non-constant meromorphic function. If f and f^{\prime} share two distinct values $0, a(\neq \infty) \mathrm{CM}$, then $f=f^{\prime}$.
In this paper we are give two improvement and extension of Theorem A and prove the following theorems:
Theorem 1. Let f be a non-constant meromorphic function. If f and f^{\prime} share the value $a(\neq 0, \infty) \mathrm{CM}$, and if $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$, then either $f=f^{\prime}$ or
$f(z)=\frac{a(z-c)}{1+A e^{-z}}$,
where $A(\neq 0)$ and c are constants.
Theorem 2. Let f be a non-constant meromorphic function. If f and f^{\prime} share the value $a(\neq 0, \infty) \mathrm{IM}$, and if $\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$,
then either $f=f^{\prime}$ or
$f(z)=\frac{2 a}{1-A e^{-2 z}}$,
where A is a nonzero constant.

Remark Theorem 1 and Theorem 2 are give improvement and extension of Theorem A, because the condition " f and f ' share 0 CM " in Theorem A is exactly the condition

$$
N\left(r, \frac{1}{f}\right)=N\left(r, \frac{1}{f^{\prime}}\right)=0 .
$$

2. Proof of Theorem 1

Suppose $a=1$ (the general case follows by considering $\frac{1}{a} f$ instead of f) and $f \neq f^{\prime}$. Since f and f^{\prime} share 1 CM , we know that the zeros of $f-1$ are simple zeros. By the second fundamental theorem and $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$, we have
$T(r, f) \leq N\left(r, \frac{1}{f-1}\right)+\bar{N}(r, f)-$
$N_{0}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)$,
(2.1) where in
$N_{0}\left(r, \frac{1}{f^{\prime}}\right)$ only zeros of f^{\prime} which are not zeros of f are to be considered.
We set

$$
\begin{equation*}
F=\frac{1}{f}\left(\frac{f^{\prime \prime}}{f^{\prime}-1}-\frac{f^{\prime}}{f-1}\right) \tag{2.2}
\end{equation*}
$$

From the fundamental estimate of logarithmic derivative it follows that

$$
\begin{equation*}
m(r, F)=S(r, f) \tag{2.3}
\end{equation*}
$$

If f has a pole of order $p \geq 1$ at z_{∞}, by (2.2) F is holomorphic at z_{∞}. From this and the hypotheses of Theorem 1 we see that
$N(r, F)=S(r, f)$.
If $F=0$, then from (2.2), we find that $f^{\prime}-1=c(f-1)$, with $c(\neq 0)$ constant. From which and $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$ we arrive at $f=f^{\prime}$ which is a contradiction. Therefore $F \neq 0$ and so we deduce from (2.2), (2.3) and (2.4) that

$$
\begin{equation*}
m(r, f)=S(r, f) \tag{2.5}
\end{equation*}
$$

Again from (2.2), if z_{∞} is a pole of f of order $p \geq 2$, then z_{∞} is possible a zero of F of order $p-1$. Consequently , from (2.3) and (2.4),
$N_{(2}(r, f) \leq 2 N\left(r, \frac{1}{F}\right) \leq 2 T(r, F)+O(1)=S(r, f)$
Set
$H=\frac{f^{\prime \prime}(f-1)}{f^{\prime}\left(f^{\prime}-1\right)}$.
Then from the fundamental estimate of logarithmic derivative and (2.5) it follows that
$m(r, H)=S(r, f)$.
If f has a pole of order p at z_{∞}, by (2.7) z_{∞} is a pole of the numerator of (2.7) with order $2(p+1)$ and a pole of the denominator of (2.7) with order $2(p+1)$. This shows that the poles of f, being not the poles of H. Also, because of f and f^{\prime} share 1 CM, H is holomorphic at the zero of $f^{\prime}-1$. Thus, the poles of H can occur at only the zero of f^{\prime}, and so that

$$
\begin{equation*}
N(r, H) \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right) \tag{2.9}
\end{equation*}
$$

Let z_{∞} be a simple pole of f. By (2.7) a short calculation with Laurent series shows that $H\left(z_{\infty}\right)=2$. If $H=2$ then $f^{\prime}-1=c(f-1)^{2}$, with $c(\neq 0)$ constant. Since f and f^{\prime} share 1 CM , we have a contradiction. Thus we conclude $H \neq 2$, and so

$$
\begin{aligned}
N_{1)}(r, f) & \leq N\left(r, \frac{1}{H-2}\right) \\
& \leq T(r, H)+O(1) \\
& \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \\
& \leq \bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f),
\end{aligned}
$$

by (2.8) and (2.9). Combining this with (2.5) and (2.6) yields

$$
\begin{equation*}
T(r, f) \leq \bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{2.10}
\end{equation*}
$$

Hence, we obtain from (2.5), (2.6), (2.1), and (2.10) that
$m\left(r, \frac{1}{f-1}\right)=S(r, f)$.
Set

$$
\begin{equation*}
L=\frac{f^{\prime}-f}{f(f-1)} . \tag{2.12}
\end{equation*}
$$

By using (2.11) and the hypotheses of Theorem 1 we may conclude that
$T(r, L)=S(r, f)$.
Equation (2.12) may also be written in the form
$f^{\prime}-1=L(f-L)\left(f+\frac{1}{L}\right)$,
and also written

$$
\begin{equation*}
\frac{\left(f+\frac{1}{L}\right)^{\prime}}{f+\frac{1}{L}}-\frac{1+\left(\frac{1}{L}\right)^{\prime}}{f+\frac{1}{L}}=L(f-1) \tag{2.15}
\end{equation*}
$$

Since f and f^{\prime} share 1 CM , we may obtain from (2.14) and (2.13)

$$
\begin{equation*}
N\left(r, \frac{1}{f+\frac{1}{L}}\right)=S(r, f) \tag{2.16}
\end{equation*}
$$

If $1+\left(\frac{1}{L}\right)^{\prime} \neq 0$, then from (2.15), (2.13) and (2.5) we get $m\left(r, \frac{1}{f+\frac{1}{L}}\right)=S(r, f)$ from which, (2.16) and (2.13) we conclude $T(r, f)=S(r, f)$. This is impossible. Therefore $1+\left(\frac{1}{L}\right)^{\prime}=0$, and so $L=$ $\frac{1}{c-z}$, with c constant. Thus equation (2.14) may now be put in the form $\frac{d}{d z}\left[\frac{(c-z) e^{z}}{f(z)}\right]=-e^{z}$. By integration and $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$ we get (1.1).

3. Proof of Theorem 2

Suppose $a=1$ and $f \neq f^{\prime}$. From (2.2), if z_{p} is a pole of f of multiplicity $p \geq 1$, then

$$
\begin{equation*}
F(z)=O\left(\left(z-z_{p}\right)^{p-1}\right) . \tag{3.1}
\end{equation*}
$$

If z_{1} is a simple zero of $f^{\prime}-1$, then from (2.2) we find that F will be holomorphic at z_{1}. From this, (2.2), (3.1) and hypotheses of Theorem 2 it can be seen that the poles of F can only occur at the multiple zeros of $f^{\prime}-1$. That is
$N(r, F) \leq \bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-1}\right)$.
If $F=0$, then similarly as in the proof of Theorem 1, we arrive at a contradiction. Next we assume that $F \neq 0$. Thus, we get from (3.1), (3.2) and (2.3)
$\bar{N}_{(2}(r, f) \leq N\left(r, \frac{1}{F}\right) \leq T(r, F)-$
$m\left(r, \frac{1}{F}\right)+O(1) \leq N(r, F)+m(r, F)-$
$m\left(r, \frac{1}{F}\right)+S(r, f)+O(1) \leq$
$\bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-1}\right)-m\left(r, \frac{1}{F}\right)+S(r, f)$.

It follows from (2.2) that
$m(r, f) \leq m\left(r, \frac{1}{F}\right)+S(r, f)$.
Combining (3.3) with (3.4) we obtain
$\bar{N}_{(2}(r, f)+m(r, f) \leq \bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-1}\right)+$
$S(r, f)$.
By (2.7), we have
$m(r, H) \leq m(r, f)+S(r, f)$.
From (2.7), we know that if z_{∞} is a pole of f of multiplicity $p \geq 1$, then

$$
\begin{equation*}
H\left(z_{\infty}\right)=\frac{p+1}{p} . \tag{3.7}
\end{equation*}
$$

Let z_{1} be a zero of $f^{\prime}-1$ of multiplicity $q \geq 1$. Since f and f^{\prime} share 1 IM , we must have z_{1} is a simple zero of $f-1$. By a simple calculation on the local expansion we see that

$$
\begin{equation*}
H\left(z_{1}\right)=q . \tag{3.8}
\end{equation*}
$$

From (3.7), (3.8) and $\bar{N}\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$ we conclude that
$N(r, H)=S(r, f)$.
It can be obtained from (3.7), (3.8), (3.9) and (3.6) that, if $H \neq 2$,
$N_{1)}(r, f)+\bar{N}_{2)}\left(r, \frac{1}{f^{\prime}-1}\right)-$
$N_{1)}\left(r, \frac{1}{f^{\prime}-1}\right) \leq N\left(r, \frac{1}{H-2}\right) \leq T(r, H)+O(1)$
$\leq N(r, H)+$
$m(r, H)+O(1) \leq m(r, f)+S(r, f)$.
Combining this with (3.5) yields
$\bar{N}(r, f) \leq \bar{N}_{(3}\left(r, \frac{1}{f^{\prime}-1}\right)+S(r, f)$.
Hence, we get from this, the second fundamental theorem for f^{\prime} and $\bar{N}\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$ that
$T\left(r, f^{\prime}\right) \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}-1}\right)+$
$\bar{N}(r, f)+S(r, f) \leq \bar{N}\left(r, \frac{1}{f^{\prime}-1}\right)+$
$\bar{N}_{(3}\left(r, \frac{1}{f^{\prime}-1}\right)+S(r, f)$.
Therefore
$N_{(2}\left(r, \frac{1}{f^{\prime}-1}\right) \leq \bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-1}\right)+$
$\bar{N}_{33}\left(r, \frac{1}{f^{\prime}-1}\right)+S(r, f)$.
This implies that
$\bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-1}\right)=S(r, f)$.
It is easy to see that $H \neq 1$. Thus we deduce from (3.10), (3.11), (3.8), (3.9), (3.6) and (3.5) that
$T\left(r, f^{\prime}\right) \leq N_{1)}\left(r, \frac{1}{f^{\prime}-1}\right)+S(r, f) \leq$
$N\left(r, \frac{1}{H-1}\right)+S(r, f) \leq T(r, H)+$
$S(r, f)=S(r, f)$,
which implies the contradiction $T(r, f)=S(r, f)$.
Therefore, we have $H=2$, and integration yields
$f^{\prime}-1=c(f-1)^{2}$,
where c is a nonzero constant. We rewrite this in the form $f^{\prime}=c(f-1+A)(f-1-A)$, where $A^{2}=$ $-\frac{1}{c}$. Since $\bar{N}\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$ by the assumption, it follows from the second fundamental theorem for f that if $A \neq \pm 1$,

$$
\begin{aligned}
& T(r, f) \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-1+A}\right)+ \\
& \bar{N}\left(r, \frac{1}{f-1-A}\right)+S(r, f)=S(r, f)
\end{aligned}
$$

which is a contradiction. Therefore, we have $A= \pm 1$ and so $c=-1$. Then (3.12) reads $\frac{f^{\prime}}{f-2}-\frac{f^{\prime}}{f}=-2$. By integration once we conclude (1.2).

References

[1] W. K. Hayman (1964). Meromorphic functions, Clarendon Press, Oxford.
[2] R. Nevanlinna (1929). Le théorème de PicardBorel et la théorie des functions méromorphes, Gauthiers-Villars, Paris.
[3] G. G. Gundersen (1980). Meromorphic functions that share finite values with their derivative. J. Math. Anal. Appl., 75: 441-446.

دوال الميرومورفك التي لها حصة قيمة واحدة منتهية CM او IM مع مشتقتها الاولى

عامر حيدر حسين

E-mail: ameralkhaladi@yahoo.com

(IM) CM $(\infty, 0 \neq) a$ في هذا البحث نحن سوف نبرهن، اذا كانت f دالة ميرومورفك غير ثابتة و مشتقتها ${ }^{\prime}$ (لها حصة قيمـة واحدة منتهية
 (0才)A

[^0]: __* Corresponding author at: Diyala University - College of Science, Iraq.E-mail address: ameralkhaladi@yahoo.com

