Meromorphic Functions That Share One Finite Value CM or IM with Their First Derivative

Diyala University - College of Science

A B S T R A C T

Received: 19 / 5 /2022 Accepted: 28 / 5 /2022 Available online: 14/6/2012 DOI: 10.37652/juaps.2009.15579

ARTICLE INFO

Keywords: Nevanlinna theory, uniqueness theorem, share CM or IM. Classification Categories: Math. Subject classification: 30D35.

its derivative f' share the value $a \neq 0, \infty$ CM (IM) and if $\overline{N}\left(r, \frac{1}{f}\right) = S(r, f)$ $(\overline{N}\left(r, \frac{1}{f}\right) + \overline{N}\left(r, \frac{1}{f'}\right) = S(r, f)$, then either f = f' or $f(z) = \frac{a(z-c)}{1+Ae^{-z}}$

 $(f(z) = \frac{2a}{1 - Ae^{-2z}})$, where $A(\neq 0)$ and c are constants. These results give

improvement and extension of the following result of Gundersen: if a non-constant meromorphic function f and its derivative f' share two distinct values $0, a \ne \infty$ CM, then f = f'

Introduction and Results

In this paper, the term meromorphic will always mean meromorphic in the complex plane. We use the standard notations and results of the Nevanlinna theory (see [1] or [2], for example). In particular, S(r, f) denotes any quantity satisfying S(r, f) = o(T(r, f)) as $r \to \infty$ except possibly for a set E of r of finite linear measure .We say that two non-constant meromorphic functions f and g share a value a IM (ignoring multiplicities), if f and ghave the same a-points. If f and g have the same *a*-points with the same multiplicities, we say that fshare the value *a* CM (counting and g multiplicities). Let k be a positive integer, we denote by

$$N_{k}\left(r,\frac{1}{f-a}\right)$$
 the counting function of *a*-points of

f with multiplicity $\leq k$ and by $N_{(k+1)}\left(r, \frac{1}{f-a}\right)$ the

counting function of a-points of f with multiplicity > k.

In [3] G. G. Gundersen proved the following theorem:

Theorem A. Let f be a non-constant meromorphic function. If f and f' share two distinct values $0, a \neq \infty$ CM, then f = f'.

In this paper we are give two improvement and extension of Theorem A and prove the following theorems:

Theorem 1. Let f be a non-constant meromorphic function. If f and f' share the value $a \ne 0, \infty$ CM,

and if
$$\overline{N}\left(r,\frac{1}{f}\right) = S(r,f)$$
, then either $f = f'$ or
 $f(z) = \frac{a(z-c)}{1+Ae^{-z}},$ (1.1)

where $A(\neq 0)$ and *c* are constants.

Theorem 2. Let f be a non-constant meromorphic function. If f and f' share the value $a \neq 0, \infty$ IM,

and if
$$\overline{N}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,\frac{1}{f'}\right) = S(r,f)$$
,

then either f = f' or

$$f(z) = \frac{2a}{1 - Ae^{-2z}},$$
 (1.2)

where A is a nonzero constant.

^{*} Corresponding author at: Diyala University - College of Science , Iraq.E-mail address: ameralkhaladi@yahoo.com

Remark Theorem 1 and Theorem 2 are give improvement and extension of Theorem A, because the condition "f and f' share 0 CM " in Theorem A is exactly the condition

$$N\left(r,\frac{1}{f}\right) = N\left(r,\frac{1}{f'}\right) = 0$$

2. Proof of Theorem 1

Suppose a = 1 (the general case follows by considering $\frac{1}{a}f$ instead of f) and $f \neq f'$. Since f and f' share 1 CM, we know that the zeros of f-1 are simple zeros. By the second fundamental theorem and $\overline{N}\left(r,\frac{1}{f}\right) = S(r,f)$, we have $T(r,f) \leq N\left(r,\frac{1}{f-1}\right) + \overline{N}(r,f) -$

$$N_0\left(r,\frac{1}{f'}\right) + S(r,f)$$
, (2.1) where in
 $N_0\left(r,\frac{1}{f'}\right)$ only zeros of f' which are not zeros of

 $W_0(r, \frac{f'}{f'})$ only zeros of f which are not zeros of f are to be considered.

j are to be consider

We set

$$F = \frac{1}{f} \left(\frac{f''}{f' - 1} - \frac{f'}{f - 1} \right).$$
(2.2)

From the fundamental estimate of logarithmic derivative it follows that

m(r,F) = S(r,f). (2.3)

If f has a pole of order $p \ge 1$ at z_{∞} , by (2.2) F is

holomorphic at z_{∞} . From

this and the hypotheses of Theorem 1 we see that

N(r,F) = S(r,f). (2.4)

If F = 0, then from (2.2), we find that f'-1 = c(f-1), with $c(\neq 0)$ constant. From which and $\overline{N}\left(r,\frac{1}{f}\right) = S(r,f)$ we arrive at f = f' which

is a contradiction. Therefore $F \neq 0$ and so we deduce from (2.2), (2.3) and (2.4) that

m(r, f) = S(r, f). (2.5)

Again from (2.2), if z_{∞} is a pole of f of order $p \ge 2$, then z_{∞} is possible a zero of F of order p-1. Consequently, from (2.3) and (2.4),

$$N_{(2}(r,f) \le 2N\left(r,\frac{1}{F}\right) \le 2T(r,F) + O(1) = S(r,f)$$
. (2.6)

Set

$$H = \frac{f''(f-1)}{f'(f'-1)}.$$
(2.7)

Then from the fundamental estimate of logarithmic derivative and (2.5) it follows that

$$m(r, H) = S(r, f).$$
 (2.8)

If f has a pole of order p at z_{∞} , by (2.7) z_{∞} is a pole of the numerator of (2.7) with order 2(p+1) and a pole of the denominator of (2.7) with order 2(p+1). This shows that the poles of f, being not the poles of H. Also, because of f and f' share 1 CM, H is holomorphic at the zero of f'-1. Thus, the poles of H can occur at only the zero of f', and so that

$$N(r,H) \le \overline{N}\left(r,\frac{1}{f'}\right). \tag{2.9}$$

Let z_{∞} be a simple pole of f. By (2.7) a short calculation with Laurent series shows that $H(z_{\infty}) = 2$. If H = 2 then $f' - 1 = c(f - 1)^2$, with $c(\neq 0)$ constant. Since f and f' share 1 CM, we have a contradiction. Thus we conclude $H \neq 2$, and so

$$N_{1}(r, f) \leq N\left(r, \frac{1}{H-2}\right)$$

$$\leq T(r, H) + O(1)$$

$$\leq \overline{N}\left(r, \frac{1}{f'}\right) + S(r, f)$$

$$\leq \overline{N}_0\left(r, \frac{1}{f'}\right) + S(r, f),$$

by (2.8) and (2.9). Combining this with (2.5) and (2.6) yields

$$T(r,f) \le \overline{N}_0 \left(r,\frac{1}{f'}\right) + S(r,f). \quad (2.10)$$

Hence, we obtain from (2.5), (2.6), (2.1), and (2.10) that

$$m\left(r,\frac{1}{f-1}\right) = S(r,f). \qquad (2.11)$$

Set

$$L = \frac{f' - f}{f(f - 1)}.$$
 (2.12)

By using (2.11) and the hypotheses of Theorem 1 we may conclude that

T(r,L) = S(r,f). (2.13)

Equation (2.12) may also be written in the form

$$f'-1 = L(f-L)\left(f+\frac{1}{L}\right),$$
 (2.14)

and also written

$$\frac{\left(f + \frac{1}{L}\right)}{f + \frac{1}{L}} - \frac{1 + \left(\frac{1}{L}\right)}{f + \frac{1}{L}} = L(f - 1).(2.15)$$

Since f and f' share 1 CM, we may obtain from (2.14) and (2.13)

$$N\left(r,\frac{1}{f+\frac{1}{L}}\right) = S(r,f). \qquad (2.16)$$

If $1 + \left(\frac{1}{L}\right) \neq 0$, then from (2.15), (2.13) and (2.5) we

get $m\left(r, \frac{1}{f+\frac{1}{L}}\right) = S(r, f)$ from which, (2.16) and

(2.13) we conclude T(r, f) = S(r, f). This is impossible. Therefore $1 + \left(\frac{1}{L}\right)' = 0$, and so L =

 $\frac{1}{c-z}$, with c constant. Thus equation (2.14) may

now be put in the form $\frac{d}{dz}\left[\frac{(c-z)e^z}{f(z)}\right] = -e^z$. By

integration and $\overline{N}\left(r,\frac{1}{f}\right) = S(r,f)$ we get (1.1).

3. Proof of Theorem 2

Suppose a = 1 and $f \neq f'$. From (2.2), if z_p is a pole of f of multiplicity $p \ge 1$, then

$$F(z) = O((z - z_p)^{p-1}).$$
(3.1)

If z_1 is a simple zero of f'-1, then from (2.2) we find that F will be holomorphic at z_1 . From this, (2.2), (3.1) and hypotheses of Theorem 2 it can be seen that the poles of F can only occur at the multiple zeros of f'-1. That is

$$N(r,F) \le \overline{N}_{(2)}\left(r,\frac{1}{f'-1}\right). \tag{3.2}$$

If F = 0, then similarly as in the proof of Theorem 1, we arrive at a contradiction. Next we assume that $F \neq 0$. Thus, we get from (3.1), (3.2) and (2.3)

$$\overline{N}_{(2}(r,f) \leq N\left(r,\frac{1}{F}\right) \leq T(r,F) - m\left(r,\frac{1}{F}\right) + O(1) \leq N(r,F) + m(r,F) - m\left(r,\frac{1}{F}\right) + S(r,f) + O(1) \leq \overline{N}_{(2}\left(r,\frac{1}{f'-1}\right) - m\left(r,\frac{1}{F}\right) + S(r,f) .$$

$$(3.3)$$

It follows from (2.2) that

$$m(r,f) \le m\left(r,\frac{1}{F}\right) + S(r,f). \qquad (3.4)$$

Combining (3.3) with (3.4) we obtain

$$\overline{N}_{(2}(r,f) + m(r,f) \leq \overline{N}_{(2}\left(r,\frac{1}{f'-1}\right) + S(r,f).$$

$$(3.5)$$

By (2.7), we have $m(r, H) \le m(r, f) + S(r, f)$. (3.6)

From (2.7), we know that if z_{∞} is a pole of f of multiplicity $p \ge 1$, then

$$H(z_{\infty}) = \frac{p+1}{p}.$$
(3.7)

Let z_1 be a zero of f'-1 of multiplicity $q \ge 1$. Since f and f' share 1 IM, we must have z_1 is a simple zero of f-1. By a simple calculation on the local expansion we see that

we

$$H(z_1) = q$$
. (3.8)
From (3.7), (3.8) and $\overline{N}\left(r, \frac{1}{f'}\right) = S(r, f)$

conclude that

N(r, H) = S(r, f). (3.9) It can be obtained from (3.7), (3.8), (3.9) and (3.6) that, if $H \neq 2$,

$$N_{1}(r,f) + \overline{N}_{2}\left(r,\frac{1}{f'-1}\right) - N_{1}\left(r,\frac{1}{f'-1}\right) \le N\left(r,\frac{1}{H-2}\right) \le T(r,H) + O(1)$$
$$\le N(r,H) + O(1)$$

 $m(r, H) + O(1) \le m(r, f) + S(r, f).$

Combining this with (3.5) yields - - (1)

$$\overline{N}(r,f) \leq \overline{N}_{(3)}\left(r,\frac{1}{f'-1}\right) + S(r,f).$$

Hence, we get from this, the second fundamental

theorem for
$$f'$$
 and $\overline{N}\left(r,\frac{1}{f'}\right) = S(r,f)$ that
 $T(r,f') \le \overline{N}\left(r,\frac{1}{f'}\right) + \overline{N}\left(r,\frac{1}{f'-1}\right) + \overline{N}(r,f) + S(r,f) \le \overline{N}\left(r,\frac{1}{f'-1}\right) + \overline{N}_{(3}\left(r,\frac{1}{f'-1}\right) + S(r,f).$ (3.10)

Therefore

$$N_{(2}\left(r,\frac{1}{f'-1}\right) \leq \overline{N}_{(2}\left(r,\frac{1}{f'-1}\right) + \overline{N}_{(3}\left(r,\frac{1}{f'-1}\right) + S(r,f).$$

This implies that

$$\overline{N}_{(2)}\left(r,\frac{1}{f'-1}\right) = S(r,f).$$
 (3.11)

It is easy to see that $H \neq 1$. Thus we deduce from (3.10), (3.11), (3.8), (3.9), (3.6) and (3.5) that

$$\begin{split} T(r, f') &\leq N_{\rm l} \left(r, \frac{1}{f' - 1} \right) + S(r, f) \leq \\ N \left(r, \frac{1}{H - 1} \right) + S(r, f) \leq T(r, H) + \\ S(r, f) &= S(r, f), \end{split}$$

which implies the contradiction T(r, f) = S(r, f). Therefore, we have H = 2, and integration yields $f' - 1 = c(f - 1)^2$, (3.12)

where *c* is a nonzero constant. We rewrite this in the form f' = c(f-1+A)(f-1-A), where $A^2 = -\frac{1}{c}$. Since $\overline{N}\left(r,\frac{1}{f'}\right) = S(r,f)$ by the assumption, it

follows from the second fundamental theorem for f that if $A \neq \pm 1$,

$$T(r,f) \le \overline{N}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,\frac{1}{f-1+A}\right) + \overline{N}\left(r,\frac{1}{f-1+A}\right) + \overline{N}\left(r,\frac{1}{f-1-A}\right) + S(r,f) = S(r,f),$$

which is a contradiction. Therefore, we have $A = \pm 1$ and so c = -1. Then (3.12) reads $\frac{f'}{f-2} - \frac{f'}{f} = -2$. By integration once we conclude (1.2).

References

- [1] W. K. Hayman (1964). Meromorphic functions, Clarendon Press, Oxford.
- [2] R. Nevanlinna (1929). Le théorème de Picard-Borel et la théorie des functions méromorphes, Gauthiers-Villars, Paris.
- [3] G. G. Gundersen (1980). Meromorphic functions that share finite values with their derivative. *J. Math. Anal. Appl.*, 75: 441-446.

دوال الميرومورفك التي لها حصة قيمة واحدة منتهية CM او IM مع مشتقتها الاولى

عامر حيدر حسين

E-mail: ameralkhaladi@yahoo.com

الخلاصة:

(IM) CM $(\infty, 0 \neq) a$ في هذا البحث نحن سوف نبرهن، اذا كانت f دالة ميرومورفك غير ثابتة و مشتقتها f' لها حصة قيمة واحدة منتهية a

وإذا كانت
$$f(z) = \frac{2a}{1 - Ae^{-2z}}$$
 $(f(z) = \frac{a(z-c)}{1 + Ae^{-z}}$ او $f = f'$ او $f(z) = f(z) = S(r,f)$ ($\overline{N}\left(r, \frac{1}{f}\right) = S(r,f)$ (حيث ان $f(z) = S(r,f)$

مشتقتها f في c ثابتان . هاتان النتيجتان هي تطوير و توسيع للنتيجة التالية العائدة الى Gundersen: اذا كانت f دالة ميرومورفك غير ثابتة و $f \neq 0$ مشتقتها f' لها حصة قيمتان مختلفتان 0 و CM $(\infty \neq)$ ، فان. f = f