
J. of university of anbar for pure science : Vol.4:NO.3 : 2010

ISSN: 1991-8941

A WINDOWS-BASED ACTIVE-ROUTER ARCHITECTURE

Sufyan T. Faraj * Omar A. Athab** Kasim M. Al-Aubidy***

*College of Computer, University of Anbar, Iraq
**Al-Khawarizmi College of Engineering. University of Baghdad, Iraq

***Faculty of Engineering, Philadelphia University, Jordan

Accepted: 19/5/2010Received: 10/1/2010

Abstract :As computing power becomes cheaper, more and more functionality is being deployed
inside computer networks, to provide better services to users. Examples of such services include
support for Quality-of-Service (QoS), multicast, mobility and security. Nevertheless, such
functionalities are still lacking in most networking systems. Active networking is a step towards
enhancing the static and inflexible structures of current networks. This paper focuses on the design and
development of technologies that allow rapid deployment of functionality throughout the network. The
paper presents the design and implementation of a Windows-Based Active Router (WBAR)
architecture, which provides flexibility for the development of future network services. The hardware
is based on a personal computer with 2GHz, Intel P4 processor. The designed AR depends on the use
of Windows OS and efficient C programming. Windows OS is rarely used in such projects due to
complexity of kernel-mode programming.

Key words— Active Router, Active Network, Architecture, Windows

INTRODUCTION
Traditional packet-switched networks, or exactly
intermediate nodes, perform only the processing
necessary to forward packets towards their
destination. Over time, more and more functionality
is being deployed inside the network, in an effort to
provide better services to users [1]. For example,
firewalls at the border routers (gateways) for security
purposes [2] and network caching as a mechanism to
reduce network load [3]. In addition, the need for
qualitatively better communication mechanisms for
real-time traffic (for example, interactive audio and
video) than simple best-effort forwarding has led to
the investigation of QoS mechanisms for the Internet
[1]. Most of these network-side services are
implemented as individual ad-hoc extensions.
However, the fundamental problem remains, namely
that the network provides no architectural support for
flexible extensibility [1]. Therefore, in this paper, an
attempt to investigate a useful step towards active

network mechanisms that considers flexible extensibility
through programmability as part of the fundamental
architectural design. Section 2 introduces some of the
completed related works in the Active Network (AN)
field. Section 3 includes different architectural
approaches towards network programmability, various
programming models, and Operating System (OS)
support technologies. Section 4 presents the design of
the windows-based active router (WBAR) architecture.
Special focus is placed on the service composition
framework. Section 5 describes the ongoing
implementation efforts of developing prototype of the
WBAR architecture. Finally, Section 6 concludes the
paper by drawing together the main arguments of this
work.

LITERATURE SURVEY
D. J. Wetherall and D. L. Tennenhouse [4] have first
pursued the idea of placing program fragments into IP
packets as part of the ActiveIP project. Initially, they
studied the potential of placing small programs within the

J. of university of anbar for pure science : Vol.4:NO.3 : 2010

option fields of IP packets. These so-called active
options, encoded in Tcl language in their prototype
implementation, were executed by modified network
nodes as the packets traversed the network.
SwitchWare Active Network Architecture [5] consists
of three layers: active packets, active extensions and a
secure active router infrastructure. Active packets
carry programs consisting of code and data to replace
both the header and payload of traditional packets. As
a consequence, a new programming language for
Active Networks, known as PLAN, is designed and
implemented. Active extensions, which are not
mobile, form the middle layer of SwitchWare
architecture. They communicate with other routers via
active packets. It is programmed in Caml language. A
secure active router infrastructure layer provides a
secure foundation on which the above two layers are
built. Its role is to ensure that the presumptions of the
other system elements are true. Active Node Transfer
System (ANTS) [6] provides a capsule programming
model. Capsules are packets that encapsulate data
with a customized forwarding code. Applications use
the network by sending and receiving capsules via
active nodes. When a capsule arrives at an active
node, the corresponding routine is executed to forward
the capsule. The demand-pull mechanism is used to
obtain code from the previous node that the capsule
visited. The ANTS prototype is implemented in Java
under UNIX operating system. The Smart Packets
project [7] emphasizes at addressing problems that are
inherent in typical polled managed devices rather than
aiming for general transport mechanisms such as
ANTS. Smart packets are encapsulated within Active
Network Encapsulation Protocol (ANEP) packets and
ANEP packets are encapsulated within an IP packet
using a specific option (router alert). The Smart
Packets architecture expects all programs to fit within
one Ethernet frame. There is no existing language that
had a compact enough representation for Smart
Packets environment. As a result, Sprocket and
Spanner languages are developed as part of the Smart
Packets project.

ACTIVE NETWORK
FUNDEMANTELES
A central feature that distinguishes Active Netwrks
(ANs) from configurable ones is the programming
model. While a configurable network aims to establish
a maximal set of high-level features that can be
programmed (or configured) with a single action, AN
focuses on identifying a minimal set of primitives (for
example, system calls of host operating systems) from
which one can compose (or program) a broad
spectrum of features. [1]. By providing a
programmable interface in network nodes, ANs
expose the resources and mechanisms for constructing

or refining new network services from those elements. In
short, ANs support dynamic modification of the network
behavior as seen by the user. The scope of network
programmability varies from control plane to data plane
programmability and extends from very limited to highly
flexible forms (depending on the programming interface)
[6]. Many different programming models have been
suggested for ANs. A common approach is to provide a
programmable engine at each intermediate node that can
be programmed on a per-packet basis. Every packet
contains in addition to the user payload (data) some form
of active program (code) that is executed on each
intermediate node as it traverses the network. This is
called active packet (or in-band) approach. Another
approach in which active programs are loaded onto the
active nodes in out-of-band fashion, prior to the
transmission of data packets. This is called active
extension (or out-of-band) approach [8].

Active Node Architecture
DARPA Active Network Working Group (ANWG) [9]
defines the fundamental parts of an active node and how
they interoperate. The functionality is divided into the
Active Node Operating System (NodeOS) and the
Execution Environment (EE). While the NodeOS
manages access to node local resources and system
configurations, the EE implement the active network
APIs supported by the node. Figure 1 shows the
envisioned general architecture for an Active Network
node. Although this architectural framework considers
only the in band approach, it is considered by many
researchers to be a de-facto standard [8].

Networking Stack in Windows OS
Windows OS network architecture [10] may be imagined
as shown in figure 2. Components that contribute the
same horizontal level, in the figure, provide similar
functionality. The Windows 2003 network layers are
described below from the bottom of the network
architecture model up to the top. Network Driver
Interface Specification (NDIS) provides a communication
path between network adapters and network protocols
and manages the binding between these components.
NDIS layer consists of the following [11]:

Figure 1. Active node architecture of DARPA

J. of university of anbar for pure science : Vol.4:NO.3 : 2010

 NDIS wrapper represented by the
NDIS library (Ndis.sys), which exports
functions for use by transport protocols and
adapter drivers.
 NDIS miniport drivers, which are
responsible for interfacing transport
protocols to particular network adapters.
 According to the designer's
requirements, NDIS layer may contain one or
more NDIS Intermediate (IM) drivers that
are located between transport drivers and
miniport NIC drivers to perform additional
functionality.

Network Protocols (such as TCP/IP and
IPX/SPX) Layer lays above the NDIS. Network
protocols (also called transport protocols) provide
services to their transport clients. At its upper edge, a
transport protocol driver has a private interface to a
higher-level driver in the protocol stack. This interface
is called the Transport Driver Interface (TDI). The
TDI provides a standard interface between network
protocols and TDI clients of these protocols (such as
network redirectors or networking APIs). TDI clients
are kernel-mode device drivers that usually implement
the kernel-mode portion of the upper networking
API's implementation [10]. The network Application
Programming Interface (API) provides standard
protocol-independent programming interfaces for
network applications and services to communicate
across a network. Whereas, InterProcess
Communications (IPC) layer support client/server
computing and distributed processing. Some of the
services that they support are RPC, Distributed
Component Object Model (DCOM), named pipes, and
mailslots. The top layer of the diagram is where user
applications reside [10].

THE PROPOSED SYSTEM
ARCHITECTURE

This section of the work introduces the
design of the proposed active router architecture.

Design Specifications
The proposed Networking Stack Model has to be
"component-based" and not layered. Actually, the
protocol stacks are replaced by protocol components
that can be tailored and composed to perform
application specific functions. The advantages of
component-based design, namely code modularity,
reusability, and dynamic composition, facilitate the
development and deployment of custom network
services.

Concerning the Programming Model, active
packet (in-band) approach in AN tends to be fairly
restrictive because of the limited programming
capabilities (for example, active programs are very
limited in code size). In the other side, the active
extension (out-of-band) approach often lacks adequate
service composition capabilities for software
components. This project resolves these limitations by
extending the active extension programming model by a
flexible composition framework for software
components. NDIS IM driver has been chosen as a base
in designing the packet interceptor in this project. It is
located between the LLC and MAC sub layers, and this
feature gives IM driver a lot of control over network
packets, without affecting other network protocol stack
components. Moreover, an IM driver could be layered
above or below another IM driver without affecting its
function.

Architecture Overview
The architecture of the proposed AN has been divided
into two functional parts: the Component Distributor
(CD) and the Packet Manipulator (PM) part. The CD
concerns the transferring and managing of User
Components (UCs) from a Privileged End–System (PES)
or network administrator (ADMN) to the WBAR. In
other side, the PM functional part extends the OS
networking stack such that it can intercept the in-bound
packets that enter the WBAR and discriminate among the
various types of packets. After distinguishing the type,
the PM forwards the packet to the proper component to
be serviced. The proposed architecture is designed to
extend exiting routers by layering active network-specific
functionality on top of the router operating system. The
following sections explain the two parts of the proposed
WBAR, which there positions are also shown in figure 3.

Component Distributor
The proposed Component Distributor (CD) allows the
user to load new components in the WBAR.

Figure 2. Windows OS Network

J. of university of anbar for pure science : Vol.4:NO.3 : 2010

The UC is a program performing either protocol
processing or value-added function to the packet. UC
may perform, for example, specialized filtering,
routing, encrypting…etc. It is expected that the code
of the UC is written by a Privileged-End User (PEU)
or purchased from software third party, then sent from
any Privileged-End System (PES) to the Active
Router using the CD unit. The end user who send and
install a UC should be authenticated and authorized to
add a UC into the router. Also, the code of the UC
must be authenticated to ensure safe evaluation within
the WBAR execution environment. Each UC has its
own Component Identifier (CID) which is associated
with the component during transmission. PEU must
firstly send the UC (which implements the required
protocol or service) to the WBAR to be installed
there. Then, PEU send his packets (which require
active processing) such that it refers to the required
component using the CID. In this manner, the WBAR
will process the received ADPs by the indicated UC.
To gain a certain active service, the AN user is
responsible to determine which UCs and in which
sequence they must be composed. Section 4.5 clarifies
the necessary glue mechanism of UCs. The proposed
scheme of CD is the transfer of the UC to router(s)
along the path that active packet using the service
follows. The code is cached at these routers for later
use. The CD unit provides the capability of packing (if
more than one UC), and then uploading the UC from a
PES to the WBAR. Furthermore, the CD unit is also
responsible for controlling (replace or uninstall) the
installed UCs remotely. The CD unit operates in a
client/server fashion. The WBAR represents the
server, whereas the PES represents the client. Hence,
jobs of the CD can be summarized as: packing,
uploading and controlling the UC.

The Packet Manipulator
Certainly, manipulating a network packet demands
capturing the packet itself. The IM driver has been

proposed to be the foundation of the Packet Manipulator
(PM) architecture. In addition to catching a packet, the
PM performs a light firewalling, lifting the packet from
the kernel to the user mode, recognizing its type, and
finally dispatching the packet to the user component that
it wishes for processing. Consequently, the PM
architecture was further divided into the following
functional units: The Packet Interceptor\inJector (PIJ),
Packet Filter (PF), Packet Bridge (PB), Packet Classifier
(PC) and Packet Dispatcher (PD). A simple block
diagram of the designed PM is shown in figure 4. The
following sections illustrate the PM units briefly.
Packet interceptor/injector (PIJ)
PIJ is responsible for intercepting the network traffic
traversing the node and passing it to the active network
environment for processing. Also, it can re–inject the

network data back into the default forwarding path on the
node or sends it directly through one of the outgoing
interfaces. However, the PIJ consists of two edges (like
any other IM driver), the protocol edge (sometimes called
physical or lower adapter) and the miniport edge
(sometimes called virtual or upper adapter). However, the
delivered packet is not a simple sequential row of bytes.
Instead it is configured in the NIC MiniPort driver in a
memory descriptor list (MDL) fashion.

Packet Filter (PF)
The proposed project provides a programmable Packet
Filter (PF) on the read handle. The read handle of IM
driver may be the protocol edge or miniport edge,
according to the direction of transmission of packets. The
PF actions are:

Figure 3. CD and PM units in Windows

Figure 4. Block diagram of PM architecture Architecture

J. of university of anbar for pure science : Vol.4:NO.3 : 2010

Block: the PF drop the matching packet from the
normal packet flow.
Pass: the PF allow the matching packet to pass up to
the PT driver as in the normal flow.
Read: the PF pass a copy of the received packet to the
packet bridge which is the next unit in the AR.

Actions can be used in combination. For
example, the combination of Block and Read (we will
call this case "claim") action cause a matching packet
to be redirected to the packet bridge and inhibited
from continuing in its normal passage in the network
stack of the WBAR.
Packet Bridge (PB)
The project establishes so–called Packet Bridge (PB)
to provide the means to transfer network data to and
from the UC. It is noteworthy to state that the PIJ and
PF units are placed within the kernel space of the
proposed WBAR. However, to make the system more
flexible it is suggested to load the UCs in the user
space of the OS. Accordingly, PB targets the
transportation of Packets to the user mode to be, then,
processed by UCs. Also, if required, the PB transport
packets back to the PIJ to be re–injected into the
default forwarding path on the node or sent it directly
through one of the outgoing interfaces.
Packet Classifier (PC)

If PB lifts a packet up to user mode, PC unit will
receive it. The object of the PC is the discrimination
among the various types of packets that may pass
through the Packet Manipulator (PM). To be serviced
properly, packets should be firstly classified. To
clarify the ambiguity that may occur, these different
types of packets can be categorized into the following:
Component and Data packets. The designed PC
distinguishes between these types, and then forwards
each one to the correct path.
A) Component Packets (CP):
It carries a code–related content in its payload.
Accordingly, the CPs are further split into two types:
the upload packets and control packets.
A.1) Upload Components Packets (UCP): It carries
the code (or program) of the user component in its
payload.
A.2) Control Components Packets (CCP): The
installed UCs in the WBAR can be controlled
(uninstalled or replaced) by sending CCP from a PES.
B) Data Packets (DP):
This type consists of packets that carrying data (not
code) related contents. It may be traditional or active
packets.
B.1) Traditional Data Packets (TDP): Packets that are
exchanged usually in the current computer networks
have been referred to as TDP in this paper.
B.2) Active Data Packets (ADP): ADPs are those
packets expected to be interchanged among the AN
elements (nodes and end–users). An IP option is

inserted in the ADP to meet the requirements of AN from
the point of view of composition of services.

Any packet belongs to the CPs is re–injected by
the PC to the virtual adapter (miniport edge) of the
proposed PIJ unit. This allows for these packets to
complete their journey up to the component distributor.
Also, the TDPs are feed backed by the PC to the virtual
adapter to be processed traditionally in the protocol
driver. In the proposed system, the windows 2003 server
operates as a traditional router to serve such TDP packets.
Only the ADPs are forwarded to the packet dispatcher
unit to be processed actively by the suitable UC(s).
Packet Dispatcher (PD)
PD defines the "route" through the UC space for the
ADPs passing the WBAR. The PD plays a central role in
the service composition process. It determines, based on
the IP header, which UC(s) are involved and in which
order they should process the ADP. After the UC(s)
finished it's processing on the ADPs, the PD returns the
packet back to the windows network stack through the
PB.

Service Composition
A special working group has evolved within the DARPA
active network program with the goal to investigate and
standardize mechanisms for the composition of active
services on EE. In this work, a router alert option of IP
packet has been chosen as a means to assign packets
passing a network node to active computations. This IP
option is used for retrofitting active networks to current
IP networks. The presence of such an option in the IP
header alerts the router to the fact that it should look at
the packet payload more closely. Seeing the active
packet, the router then goes on to process the packet as
required. A specific option which adhere to the generic
type-length-value format of IP option is defined. Two
fields in the option value (or data) are proposed. The
Component Count (CC) field and Service Composition
(SC) field. CC field (8 bit) used to indicate the count of
UCs that may be composed to introduce the service to the
active packet. The Component ID (CID) of the
component itself is described in SC field which is a
variable-length. The SC field consists of the CIDs of the
components that must be composed to create the required
active service. The sequence at which the CIDs appear in
the service composition field is considered as the
sequence of the components that will be executed in the
WBAR. Using this format, a service composition
capability and interoperability with active and non-active
networks can be achieved. For example, when an active
packet want to be processed by three components; that
are component 4, 6 and 3, respectively, in such case; the
Component Count "CC" field would contain the value 3,
and the SC field will contain the CIDs of components 4,
6, and 3 respectively. In this paper, the concept of
component-based services is envisaged to achieve a good
flexibility in introducing functionalities for the ADPs.

J. of university of anbar for pure science : Vol.4:NO.3 : 2010

Modes of Operation
According to the specified architecture, four modes of
operation of the proposed AN can be recognized;
Upload, Control, Active Data, and Traditional Data
modes.
Upload Mode

The upload mode of AN operation targets the
transferring of one or more UC(s) from one of the
PESs to the WBAR. As shown in Figure 5, this mode
of operation does not involve any transmission beyond
the WBAR.

Control Mode
The purpose of this mode is the control (uninstall or
replace) of the previously installed UCs, as shown in
Figure 6. This mode does not consist of any actual
transmission of code or data; it only involves packets
of commands issued by the CD client in the ES and

implemented by the CD server in the WBAR.
. Active Data Mode
This mode represents the envisaged operation of the
designed AN (see Figure 7). It constitutes the
transmission of Active Data Packets (ADPs) between the
network and any ES in the target LAN (in both
directions), passing through the WBAR. ADP contains a
router alert option in its header.

Traditional Data Mode

It is adopted to keep the backward compatibility with
the existing computer networks. Packets transferred
in this mode are exactly same as that are used in the
current traditional computer networks. As shown in
Figure 8.

PROTOTYPE IMPLEMENTATION
The WBAR prototype implementations outlined in this
section is being built upon a Personal Computer with
Microsoft’s Windows 2003 server (which supports basic
routing functionality). All widows' computers have
internet explorer-based FTP service. Using FTP protocol,
UCs can be uploaded easily by drag and drop from the
PES to the WBAR. The proposed UC is implemented as
two files: code and configuration files. The code file is a
DLL library. It contains the required processing to be
applied on the ADPs. The configuration file is an
initialization (ini) file that contains configuration data
such as the path of code file of UC.

The foremost step in realizing the PM

: Code file
: Configuration file
: Kernel space
: User space
: Designed Unit
: Direction of information in physical connection.
: Direction of information in logical connection
: User Component

Figure 5. Upload Component mode

Applications
and

Services

TDI and
TDI clients

Windows
Stack
layers

API

Protocol

NDIS

install

PES WBAR
Generated component

network

CD
client

EE

CD
server

EE

PM

Figure 8. Traditional Data mode

Applications
and

Services

TDI and
TDI clients

Windows
Stack
layers

API

Protocol

NDIS

ES WBAR

network

CD
client

EE

CD
server

EE

PM

Figure 6. Control Component

Applications
and

Services

TDI and
TDI clients

Windows
Stack
layers

API

Protocol

NDIS

affect

PES WBAR

commands

network

CD
client

EE

CD
server

E

PM

Figure 7. Active Data

Applications
and

Services

TDI and
TDI clients

Windows
Stack
layers

API

Protocol

NDIS

ES WBA
R

network

CD
client

E

CD
serve

E

PM

J. of university of anbar for pure science : Vol.4:NO.3 : 2010

architecture is the implementation of a simple "pass
through" IM driver. PCAUSA Corporation [12]
offered ready–to–use cloned–packet software which
targets extending the Microsoft IM driver to achieve a
buffered complete copy of received packets. The
cloned–packet software is a group of c-language
modules. In our work, cloned-packet software was
modified and extended to implement the PIJ, PF and
PB units of PM architecture. At this point, a copy of a
complete, received, filtered packet has been gained

and queued in the user-space of the WBAR. The PC is
realized in a discrete c++ function. After completing
the classification operations, the PC will deliver only
the Active Data Packets (ADP) to the Packet
Dispatcher (PD). Jobs of PD unit are implemented as
three c++ functions. One determines how many UCs
must be called and the second withdraws the CIDs of
the required UCs in a correct order. The third one gets
a copy of contents of the configuration file associated
with the UC. The software linker between the CD
server and the PM in the AR is the Execution
Environment Manager (EEM). The implemented
EEM is shown in Figure 9.

CONCLUSIONS
Several conclusions about the design of WBAR
architecture can be drawn from this work:
* Component-based active router architecture enables
network programmability through extensibility of router
functionality and services.
* The IP option-based service composition enables
transparent network programmability. New network
functionality can be flexibly integrated into the packet
processing chain on the router simply by inserting a CIDs
into the IP header.
* A split implementation across both kernel and user
space takes advantage of the high flexibly programming
environment in user-mode and sophisticated protection
and safety mechanisms of today’s OSs.
* Standard user-space implementations for active
networks typically suffer largely from the performance
hit resulting from the copy operations required to pass the
network traffic “up” into user-space and back “down”
again. As far as possible, packet processing must be in
kernel space.

REFERENCES
[1] P. L. Simeonov (2002). The wandering logic

intelligence, a hyperactive approach to network
evolution and its application to adaptive mobile
meltimeidia communication. PhD dissertation,
Faculty of Informatics and Automation,
Technology Uuniversity of Ilmenau.

[2] P. Xue and S. Chandra (2006). Revisiting multimedia
streaming in mobile ad hoc networks. NOSSDAV
’06 Conference, Newport, Rhode Island, USA.

[3] G. Barish and K. Obraczka (2002). World Wide Web
catching: trends and techniques. IEEE
Communications Magazine, May 2000.

[4] D. J. Wetherall and D. L. Tennenhouse (1996). The
ACTIVE IP option. 7th ACM SIGOPS European
Workshop, Ireland, September 1996.

[5] D. S. Alexander, W. A. Arbaugh, M. Hicks, P.
Kakkar, and J. M. Smith (1998). The SwitchWare
active network architecture. IEEE Network, vol.
12, no. 3, pp. 29-36.

[6] D. J. Wetherall (1999). Service Introduction in an
Active Network. PhD thesis, Department of
Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, USA.

[7] B. Schwartz, W. Zhou, A. W. Jackson, W. T. Strayer
and D. Rockwell (1999). Smart Packets for Active
Networks. 2nd Conf. on Open Architectures and
Network Programming, OPENARCH’99, NY,
USA, Mar. 1999.

[8] S. Schmid (2000). LARA++ Design Specification.
Report on the next generation active router
architecture of Lancaster University, Computing
Department, Lancaster University, UK.

Open the lower and virtual adapters, using APIs

Call PC unit

Packet
pendin

ADP?

Read the received
packet(s)

start

Yes

N

Yes

N

Using WriteOnAdapter API, push the processed packet
again to

Call the Component Loader (CL) function. Which is
responsible for loading UCs into memory, and to

Execute the required

Decrease count of UCs (CC field of

ANEP)

Figure 9. Flowchart of EEM

END

Initialize some variables

Call PD unit

CC=0?

EXIT?

Yes

YesN

N

J. of university of anbar for pure science : Vol.4:NO.3 : 2010

[9] Active Networks Working Group, K.L. Calvert
(Ed.) (1998). Architectural Framework for
Active Networks. Draft, August 1998.

[10] D. A. Solomon and M. E. Russinovich (2000).
Inside Microsoft Windows 2000. Third
Edition, Microsoft Press, USA.

[11] Microsoft Corporation (2000). Microsoft
Windows 2000 Driver Development Kit, Network
Drivers. Microsoft Press, USA.

[12] T. F. Divine. (2006). NDIS IM driver samples for
windows NT and higher. Online article, USA.

Available at: www.pcausa.com.

معماریة محدد المسار الفعال المبني على نظام النوافذ

سفیان تایه فرج عمر علي عذاب قاسم موسى العبیدي

E-mail: sufyantaih@yahoo.com

لأننا بدأنا نستطیع الحصول على قوة حاسوبیة بكلفة أقل وبشكل مستمر، فإن كثیرا من الفعالیات والوظائف أصـبح بالإمكـان نتیجة :الخلاصـة

تأدیتهــا داخــل الشــبكة، ممــا یتــیح تقــدیم خــدمات أفضــل للمســتخدمین. ومــن الأمثلــة علــى ذلــك دعــم نوعیــة الخدمــة والإرســال المتعــدد والحركیــة

جـزءا مهمـا مـن هـذه الفعالیـات لازال مفتقـدا فـي كثیـر مـن نظـم الشـبكات. ویعتبـر التشـبیك الفعـال خطـوة مهمـة لتحسـین والأمنیة. ورغم ذلك فإن

التراكیــب الثابتــة وغیــر المرنــة للشــبكات الحالیــة. یركــز هــذا البحــث علــى تصــمیم وتطــویر التقانــات التــي تســمح بــإطلاق كبیــر للفعالیــات ضــمن

والتنفیذ لمعماریة محدد مسار فعال یعمل في بیئة نظام النوافذ من مایكروسوفت. ویقدم محدد المسار الفعال الشبكة، حیث یقدم البحث التصمیم

وسـرعة ٤-هذا المرونة اللازمة لتطویر الخدمات المستقبلیة للشبكة. ولقد تم التنفیذ وإجراء التجارب باستخدام حاسوب یعمل بمشـغل إنتـل بنتیـوم

ام لغة البرمجة "سي" لغرض تطویر النظام في بیئة النوافذ. وقد أعطى هذا لبحثنا أهمیـة خاصـة كـون نظـام النوافـذ غیغا هرتز. كما تم استخد٢

نادرا ما یستخدم لتطویر هكذا مشاریع بسبب تعقید وصعوبة البرمجة في نواة النظام.

