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Abstract:The aim of this paper we have define the group of units U(F(G)), where F(G) is the group 
algebra with G is finite group over a field F. Now if char F=0 and G nonabelian or F is a nonabsolute 
field of characterstic  π > 0 and G/ Oπ (G) is nonabelian, then it is well known that the group of unit 
U(K[G]) contains a nonabelain P-group.There for we will prove that there are two cyclic subgroups X 

and Y of G of prime power order and units uX ∈  U(K[X]) and uY∈ U(K[X]) such that (uX,uY) 
contain nonabelian P-subgroups in linear group.   
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Introduction 

Let K[G] denote the group algebra of 
a finite group G over a field K. In this paper 
we are concerned with the existence of 
nonabelian  p-subgroup of the group of units 
U(K[G]). For convenience and following [4] 
we say that an arbitrary group ϑ   is 2-related 
if it contains no nonabelian p-subgroup. Thus 
ϑ  is 2-related if and only if every 
homomorphism from the 2-generator p-group 

2ς into ϑ  has nontrivial kernel and hence if 
and only if every tow elements of ϑ  are 

related that is satisfy a nontrivial word in 2ς . 
Obviously the property of being 2_related is 
closed under taking subgroups and 
homomorphic images. 

If G is a belian then U(K[G]) is 
commutative and if G/ Oπ (G) is abelian 
where char K= π >0 and Oπ (G) is the largest 
normal π -subgroup of G then U(K[G]) is a 
solvable since the kernel of the natural 
homomorphism K[G]→ G/ Oπ (G) is a 
nilpotent ideal. Furthermore if K is an absolute 
field that is algebraic over a finite field then 
U(K[G]) is a periodic group certainly in all of 
these three situations U(K[G]) cannot contain a 
nonabelian p-group and consequently it is 
2_related on the other hand if K[G] dose not 
satisfy the above then U(K[G]) dose contain a 
nonabelian p-group. For the most part this 
result of [2] follows from the fact that GL2(K) 
contains such a p-subgroup. See [5] for 
analogous problem in integral group rings. 

If G has a nonnormal subgroup then 
specific generators for a nonabelian p-
subgroup of the unit group of the integral 
group ring Z(G) were given in [9]. A similar 
result for group algebras in positive 
characteristic can be found in [3]. In this paper 
we consider units of a different nature namely.  

Definition 1.1. Let K[G] be the group 
algebra of g over a  nonabsolute field K, and 
let X=‹x› be cyclic subgroup of G of prime 
power order. Then we say that uX ∈  U(K[X])  
is special unit depending upon the generator x 
if one of the following three conditions is 
satisfied 
1. char K= 0 ,׀X׀π >0 and ux=(x-r)(x-s) for 

suitable integers r,s∈Z ⊆ K with r,s ≥ 2. 
2. char K=π is prime to π׀X׀ 0< , and 

ux=(x-r)(x-s) for suitable  r,s∈  K that are 
positive powers of a fixed element t∈K 
transcendental over the subfield 
K0=GF(π ). 

3. char K=π >0 X is a π -group and 

ux=1+t(1+x+…+x
1−π
) where t∈K is 

transcendental over K0. 
4. In part (ii) and (iii) above we say more 

precisely that ux is special based on t. 
Using this notation our main result is.[4] 

Theorem 1.2. Assume that we say 
char K=0 and G is nonabelian or that K is a 
nonabsolute field of characteristic π >0 and G/ 
Oπ (G) is nonabelian. Then there are two 
cyclic subgroups X and Y of G of prime power 
order and two special units uX ∈  U(K[X]) and  
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uY∈ U(K[X]) (based on the same reselected 
transcendental element if char K>0), such that 
‹ux,uy› is not 2_related. [8] 

Corollary 1.3. Assume that either char 
K=0 and G is nonabelain or that K is a 
nonabsolute field of characteristic π >0 and G/ 
Oπ (G) is nonabelain. Then the subgroup of 
U(K[G]) generated by units of the form x-r 
with x∈G and r∈K has a nonabelian p-
subgroup.[8] 

Definition1.4. A group G is said to be 
a p-group if the order of each element of G is a 
power of a fixed prim p.[2] 

Example1.5. Any group of order pn (p 
prime) is p-group since the order of each 
element must divide the order of the group. In 
particular the group of symmetries of square is 
p-group where p=2.[2] 

Example1.6. Let G be a commutative 
group and the set H consist of those element 
whose order are powers of a fixed prime p          
(quite possible H {e} ). Then H forms 
subgroup of G which by its definition a p-
group.[2] 

Lemma1.7. If G is finite commutative 
group whose order is divisible by a prime p 
then G contains an element of order p.[2] 

Corollary1.8 Let G be a finite 
commutative group and p prime dividing o(G). 
Then G has subgroup of order p. [2]   

Theorem1.9. Let G be a finite group 
and let π  be a fixed prime. Suppose that G/ 
Oπ (G) is nonabelian but that H/ Oπ (H) is 
abelian for every proper subgroup and every 
proper homomorphic image H of G. Then we 
the following two possibilities. 
5. (The p-group case) G is a p-group with p 
≠ π  its center Z(G) is cyclic of index 
p2and ׀ G'׀=p. Furthermore either ׀G׀=p3 
or G=X ×Y where X is cyclic and ׀Y׀=p. 

6. (The Frobenius case) G=A×X where A is 
on elementary abelian q-group with the 
prime q different from π , X is cyclic of 
prime order p ≠ q and X acts faithfully 
and irreducibly on A. 

Proof: (i) It is clear that Oπ (G)=1. 
suppose first that Z(G) ≠ 1 and choose  Z to be 
a central subgroup of prime order p. Since 
Oπ (G)=1 we have p ≠π  and it follows easily 
that Oπ (G/Z)=1. Hence G/Z is an abelian π '-
group by hypothesis. Thus G is nilpotent of 
class 2 and Z=G' . In particular Z is unique so 
Z(G) must be a cyclic p-group, and since G 
nilpotent we see that G is a minimal 
nonabelian p-group and by [9] either׀G׀=p3 or 
G = X×Y with X and ׀Y׀=p. 

(ii)We can now assume that Z(G) =1 
and in particular that G is not nilpotent. 

Suppose next by way of contradiction that G is 
simple and let p ≠π  be prime divisor of ׀G׀. If 
P is any nonidentity p-subgroup of G then 
NG(P) is proper and therefore has a normal p-
complement by hypothesis. Frobenius theorem 
(see [6] ) now implies that G has a normal p-
complement and this contradicts the 
assumption that G is simple group that not 
nilpotent. Consequently G is not simple and we 
conclude from the hypothesis that G is 
solvable. 

Finally, let A be a minimal normal 
subgroup of G. Then A is a elementary abelian 
q-group for some prime p ≠π  and A is central. 
In particular we can choose x∈G to be an 
element of minimal order not centralizing A. 
certainly x has prime power order say ׀x׀=pn. 
Note that the group‹ A,x› has nontrivial 
commutator subgroup contained in a so G =‹ 
A,x› by hypothesis. The minimal natural of ׀x׀ 
now implies that xp∈  Z(G) =1 and hence X =‹ 
x ›  is cyclic of prime order p. Clearly G= A×Y 
and since A is a minimal normal subgroup of 
G.  

we conclude that X acts faithfully and 
irreducibly on A.  

As we will see the p-groups above are 
fairly easy to handy but the Frobenius group 
work is much more difficult. The proof of our 
main theorem uses techniques from [4]. 
However the objective of that paper was 
somewhat different from the problem here. In 
particular since we were not concerned with a 
precise description of the unitary units in K[G] 
we were able to finesse a serious study of the 
Frobenius group G= A×Y in [4]. Here we have 
to come to grips with the representations 
theory of such groups. Surprisingly there are 
interesting open questions concerning these 
representations especially in positive 
characteristic. We start with a few simple 
properties see[7] for basic information on this 
subject. We do have to be a bit careful below 
to allow for possibility that p is the 
characteristic of K. 

Lemma 1.10. Let G= A×X where A is 
an elementary abelian q-group, X is cyclic of 
prime order p and X acts faithfully and 
irreducibly on A. Let K be a field of 
characteristic ≠q and assume that K contains a 
primitive qth root of unity. 

7. If KAK →][:µ  is a nonprincipal 
linear character of A, that is a nontrivial 
one-dimensional character then the 

induced representation 
Gµθ =  is an 

absolutely irreducible representation of 
K[G]. 
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8. Conversely if θ  is a nonlinear irreducible 
representation of K[G] and if 

KAK →][:µ is constituent of the 

restriction Aθ then µ≠1 and 
Gµθ = . 

In either situation, θ  is faithful on the 
group G and degθ =p, Furthermore, θ  is 
injective on the group ring K[X] and by 
conjugating if necessary we can assume thatθ  

(α)=diag(µ(α), µ(αx),…, µ(αx
1−p
)) for all 

α∈K[A]. 
Proof: Since G= A×Y is Frobenius 

group, X acts in a fixed-point-free manner on 
the dual group of A. Thus each nonprincipal 

character of K[A] has p=
X

 conjugates under 
the action of X. 

9. Let KAK →][:µ  be nonprincipal 

character and set
Gµθ = . Then degθ =p 

and θA=µ1+µ2+…+µp is the sum of the p 
distinct conjugates of µ. If ψ  is an 
irreducible sub representation of θ  then 

Aψ  must contain some µi and hence it 
contains the entire X-orbit of µ. In 
particular we have 

eirreduciblsopp ψθψθ =≥≥= ,degdeg
. 

10. Conversely, letθ  be a nonlinear 
irreducible representation of K[G] and let 
µ be irreducible constituent ofθ A. If µ=1 
then G'=A ⊆  kerθ  and θ is linear a 
contradiction. Thus µ≠1 and hence by  (i) 
above µG is irreducible. In particular 
sinceθ  is quotient of (θ A)G and since 
the latter is direct sum of copies of µG, we 
conclude thatθ = µG, as required. 
The remaining observations follow from 
the definition of induced representation 
and the fact that A= G' is the unique 
nontrivial normal subgroup of G.   

FROBENIUS GROUPS 
As we indicated in the introduction our 
proof relies on certain special case 
considerations. Indeed the p-groups are 
easy handle while the Frobenius groups 
are much more of a challenge. The 
following result is well. Known. We 
include it here as motivation for later 
work. 
Lemma 2.1. Let G be a nilpotent group of 

class ≤2 and let )(][: KMGK n→θ  a 
G-faithful absolutely irreducible 

representation. If T is trivial for Z(G) in G. 
thenθ (T) is a K-basis for Mn(K) and 

hence n2=
)(: GZGT =

 . 
Proof : Sinceθ  absolutely irreducible 
θ (K[G])=Mn(K). Now for each g∈G, let 
χ (g) ∈K be the matrix trace ofθ (g). 

KG →:χ   is the character of G 
associated withθ . If g∈Z(G) 
thenθ (g)=λI  is a scalar matrix and hence 
χ(g)= λn. If g∉  Z(G) then since G has 
class ≤2, there exists x∈G with x-1gx=gz 
for some 1≠z∈Z(G).                                 
Thus  θ(x)-1θ(g)θ(x)=θ(g)θ(z)=µθ(g), 
where θ(z)=µI, and µ ≠1 since z≠1and θ is 
faithful. Taking matrix traces and using 
the fact that similar matrices have same 
trace we obtain χ(g)=0 In other words, χ 
vanishes off Z(G). Now all matrices in θ( 
Z(G)) are scalar so it follows that θ(T). 
spans Mn(K). Furthermore since there are 
matrices in Mn(K) with nonzero trace, we 
see that χ cannot vanish on G and in 
particular we have n≠0 in K. Finally 

suppose 
)(gk

Tg
gθ∑

∈  =0 is linear 
dependence relation for θ(T). If x∈T then 
multiplying this equation by θ(x-1) and 
taking traces yields kxn=0, sine gx-
1∈Z(G) if and only if g=x. Thus kx=0 for 
all x∈T and θ(T) is K-linearly 
independent as required. 
Next we consider the necessary Frofebiuns 
groups. Specifically, let G=A×X, where A 
is an elementary abelian q-group X=‹x› is 
cyclic of prime order p, and X acts 
faithfully and irreducible on A. Assume 
that K is a field of characteristic different 
from p and q and that K contains a 
primitive (pq)th root of unity. We fix this 
notation throughout the remainder of 
section. 
If θ is a nonlinear irreducible 
representation of K[G], then by lemma 
1.10, θ is faithful on G and 
θ(K[G])=Mp(K) has dimension p2. In 
analogy with lemma 2.1 it is appropriate 
to ask whether there is a natural basis for 
this matrix built from certain group 
elements. For example if 1≠a∈A then 
Y=aXa-1 is acyclic subgroup of G of order 
p disjoint from X. Thus XY is a basis for 
Mp(K). As it turns out this indeed the case 
if either char K=0 or char K is positive and 
sufficiently there exists an appropriate 
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K[G] such that for all θ and X,Y, the set 
θ(XY) is a basis for the matrix ring. 
Returning to the general group G, we 
know that θ(K[G]) may be taken to be the 
set of diagonal matrices in Mp(K) and 
hence this image has dimension p. On the 
other hand each nonidentity G-conjugacy 
class contained in A has size p and we ask 
whether there exists such a class Aa with 
θ(Aa) a basis for the diagonal matrices. 
This question turns out to be precisely 
equivalent to the preceding one and hence 
has the sam positive and negative. 
Fortunately we are able to partially finesse 
the negative answers and prove a result 
just strong enough to enable us construct 
the unit we require. 
We now start the formal considerations. 
Since X acts on A it also acts on K[G] and 
for each linear character 

KXK →][:λ  we define the λ-trace 
][][: AKAKtr →λ   to be the K-linear 

map given by 
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Basic properties are as follows. 
Lemma 2.2 With the above notation we 
have (trλα)x=λ(x)trλα and  
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Proof: For the first fact note that 
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The third formula follows from the above 
by interchanging the factors. 
Now suppose µ:K[X]→K is a linear 
character. Then the idempotent eµ∈K[X]  
associated with µ is given by 
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The basic relation between these 
idempotents and λ-traces is as follows. 

Lemma 2.3 Let µ,η:K[X]→K be linear 
characters and let α∈K[A]. Then  
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setting λ = ηµ-1 we obtain 
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The second formula follows in a similar 
fashion. 
Recall from lemma 1.10 that every 
nonlinear irreducible representation θ of 
K[G] has degree p. Furthermore according 
to that lemma we can always assume that 
θ(A) consists of diagonal matrices. 
Lemma 2.4 Let θ be a nonlinear 
irreducible representation of K[G] and let 
µ:K[A]→K be a constituent of the 
restriction θA. If α∈K[A] then θ(trλa) is 
either zero or an invertible element in 
Mp(K) =θ(K[G]). It is invertible if and 

only if 
.0)()(

1

0
≠∑

−

=

− ix
p

i

ix αµλ
  

Proof: Since trλ α commutes with A and 
since(trλ α)x = λ(x) trλ α we see that 
θ(trλa) Mp(K) is two-sided ideal of the 
matrix ring           Mp(K) = θ(K[G]. With 
this it is clear that θ(trλa) is either zero or 
invertible. Furthermore since θ(trλa) is a 
diagonal matrix it is invertible if and only 
if its (1,1)-entry is not zero and according 
to lemma 1.10 this entry is equal to 

)()(
1

0

ix
p

i

ix αµλ∑
−

=

−

. 
We can prove the equivalence of the 
various problem. 
Lemma 2.5 Let θ be a nonlinear 
irreducible representation of K[G] and let 
µ be an irreducible constituent of θA. Fix 
1≠a∈  A and set Y=aXa-1. The following 
are equivalent:  
1. θ(XY)= θ(X) θ(Y) is a basis for 

Mp(K)= θ(K[G]). 
2. θ(Aa) is a basis for the diagonal 

matrices in Mp(K). 
3. θ(trλa) ≠0 for each λ:K[X]→K. 
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4. 
0)()(

1

0
≠∑

−

=

− ix
p

i

ix αµλ
 for each  

λ:K[X]→K. 
Proof: We show that each of these 
condition is equivalent to (iii) and note 
that (iv)↔(iii) from the previous lemma. 
(ii) ↔(iii). If 

θ(Aa)={θ(a),θ(ax),…, )(
1−pxaθ } is K-

linearly independent then certainly 
θ(trλa)≠0 for each λ. Conversely suppose 
that each θ(trλa)≠0 and note that by 
lemma 2.2 each of these is an eigenvector 
for the conjugation action of θ(x) with 
distinct eigenvalue λ(x). Thus the various 
θ(trλa) are linearly independent and span a 
K-vector space of dimension p. Since this 
space is contained in the span of θ(Aa), we 
conclude that the latter span has 
dimension p and is equal to the set of 
diagonal matrices in Mp(K). 
(i) ↔(iii). Let µ,η:K[X]→K , let eµ be the 
idempotent of K[X] associated with µ, and 
let fµ=aeµa-1 be the idempotent of K[Y] 
associated with η. Then, by lemma 2.3, 
   eµfη=(eµaeη)a-1 =1/p (trλa)eηa-1,   
where λ =µ-1η. θ is faithfule on K[X] and 
K[Y], we know that θ(eµ) and θ(fη) are 
not zero.                  If θ(X) θ(Y) is linearly 
independent, then it follows immediately 
that θ(eµ) θ(fη) ≠ 0 for all λ, then since 
θ(trλa) and θ(a-1) are invertible, we see 
that θ(eµ) θ(fη) ≠ 0 for all µ,η. The 

orthogonality of the sets { eµ׀ all µ} and { 
fη׀ all η} now clearly implies that the set 
{θ(eµ) θ(fη)׀ all µ,η} of size p2 is linearly 
independent and hence spans Mp(K). 
Therefore θ(X) θ(Y) also spans Mp(K).    
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  في الزمرة الجبريةالأولية ةنظائر الزمردراسة 
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  الخلاصة

اذا  . F المعرفة على الحقل     G هو جبر الزمرة المنتهية      F(G)الهدف من هذا البحث هو تعريف زمرة النظائر حيث            
ر ابدالية فأنه معرفة  غيπG/O(G) اكبر من الصفر π حقل غير مطلق ومميزF غير ابدالية و Gكان المميز هو صفر والزمرة 

 ذي الرتـب الاوليـة والنظــائر   Gتعريفـا حـسنا لزمـرة النظـائر المحتويـة مـن الزمــرة الاوليـة غيـر ابداليـة مـن           
])[(])[( YKUuandXKUu yx ),( بحيث ان    ∋∋ yx uu       تحتوي الزمرة الجزئيه الاولية غير ابدالية من الزمر 
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