

حسابات DFT لترددات اهتزاز و شدد امتصاص طيف الاشعة تحت الحمراء لجزيئة [6]سايكلاسين (Armchair)

رحاب ماجد كبة

جامعة بغداد - كلية العلوم

معلومات البحث:

الخلاصة:

تم حساب ترددات الاهتزاز وشدد امتصاص طيف الاشعة تحت الحمراء, لجميع الاحداثيات الداخلية لجزيئة [6] سايكلاسين نوع (Armchair) و بعددها (6–3N) و مناقشتها تماثليا و تأصريا وفق نظرية دوال الكثافة (DFT) وباسلوب (B3LYP) وعناصر قاعدة (3116-6). كانت قيم ترددات الاهتزاز المحسوبة قريبة من القيم التجريبية للعدد القليل جدا من قيم ترددات الاهتزاز المستخرجة للانابيب المبنية من هذا النوع من الجزيئات. و عند مقارنة نتائج الحسابات، وجد بأن ترددات الاهتزاز للانماط المتماثلة من هذا النوع من الجريئات. و عند مقارنة نتائج الحسابات، وجد بأن مرددات الاهتزاز المستخرجة للانابيب المبنية من هذا النوع من الجزيئات. و عند مقارنة نتائج الحسابات، وجد بأن ترددات الاهتزاز للانماط المتماثلة الحركات المط التقريز أعلى من تلك غير المتماثلة لاواصر (C-H) والعكس لاواصر (C-C)، و تكون ترددات الاهتزاز غير المتماثلة الحركات الاهتزاز غير المتماثلة للحركات الاهتزاز على من نظارية الحركات الامترائية (6CH) ورحكان الامترائية المتماثلة. ويمكن

تاريخ التسليم: 2010/10/7 تاريخ القبول: 2011/2/14 تاريخ النشر: 14/ 6/ 2012

DOI:10.37652/juaps.2011.15475

الكلمات المفتاحية:

DFT ، ترددات اهتراز ، شدد امتصاص ، الاشعة تحت الحمراء ، [6] سايكلاسين (Armchair).

المقدمة

يتعامل علم تقنية النانوتكنولوجي مع الأنظمة والتراكيب التي يقع قطرها في حدود (1-100nm) التي وبسبب قطرها الصغير (اصغر 10000 مرة من قطر الشعرة في جسم الانسان)، تظهر احتلافاً واضحاً عن الانظمة الاخرى في الخواص الكيميائية والفيزيائية والبايولوجية [1].

وقد تمت معرفة تراكيب النانوكاربون متعددة الطبقات (وقد تمت معرفة تراكيب النانوكاربون متعددة الطبقات ((Iijima) عام 1991 [2]، الذي بين ان صفيحة الكاربون يمكن ان تتحني لتكوين أنابيب نانوكاربون متعددة الطبقات (MWCNT) باشكال مختلفة. وقد تمت دراسة الخواص الالكترونية لهذه الأنابيب نظريا بطرائق تتعلق بميكانيك الكم وعلى وفق فيزياء المادة، والميكانيك الستاتيكي [3-8].

وكذلك درس العالم (Hamada) ومجموعته الخواص الالكترونية لأنابيب النانوكاربون نظريا وبين اعتماد صفاتها بصورة رئيسة على الأقطار والكيرالية(Chirality) وإلى مجموعة النقطة [9].

تمت أيضا دراسة علاقة القوة المثالية لأنابيب النانوكاربون بأطوال أواصر (C-C) المتجهة على طول المحور السيني-C) (Caxial في أنابيب النانوكاربون أحادية الطبقة، وبأطوال أواصر (C-C) المتجهة على طول محيط انبوب النانوكاربون -C) (Ccircumference، (شكل -1) [11-10].

وتتكون أنابيب النانوكاربون أحادية الطبقة (SWCNT) المفردة (Single Wall Carbon Nanotube) من حلقات البنزين السداسية متصلة مع بعضها البعض بشكل طوق. و تمتلك ذرات الكربون فيها تهجين من نوع pS2 مشابه لما موجود في صفيحة الكرافيت ذات الحلقات الكريونية السداسية [12].

أما في ما يتعلق بحسابات ودراسة ترددات الاهتزاز في أنابيب النانوكاربون، وجد أن التشوهات الحاصلة في شكل أنابيب النانو تحصل نتيجة للحركات الاهتزازية على طول المحور السيني لأنبوب النانوكاربون والتي تؤدي الى التغير في الخاصية الالكترونية والميكانيكية لأنبوب النانوكاربون.وقد وجد تجريبياً أن هناك ثلاثة أنماط أساسية من ترددات الاهتزاز لأنابيب النانوكاربون أحادية الطبقة التي لها التأثير المباشر في خواصها التوصيلية، هي: أنماط الاهتزاز التنفسية (breathing modes)، وأنماط الانبعاج (puckering

^{*} Corresponding author at: Baghdad University - College of Science;

ORCID: https://orcid.org/0000-0001-5859-6212 .Mobil:777777 E-mail address:

(clock & anticlock wise). وأثبتت الدراسات أن قيم ترددات الأنماط الاهتزازية الفعالة في طيف الأشعة تحت الحمراء تعتمد على الأقطار، والكيرالية، ونوع الأنبوب، وطول الأنبوب، مع الأخذ بعين الاعتبار التماثل لأنابيب النانوكاربون [14]. وتعد هذه الدراسات بصمات اصبع لطيف امتصاص الأشعة تحت الحمراء، والهدف منها تفسير وفهم الصفات المميزة لأنابيب النانو كاربون ومنها استقرارها، و توصيلها الكهربائى العالى [15-17].

كما تمت دراسة تأثير التشوهات والعيوب الناتجة من الحركة الاهتزازية في الخواص الالكترونية لأنابيب النانوكاربون (CNTs) في معهد بحوث ماكس بلاك للحالة الصلبة، وذلك باستخدام تقنية المسح الميكروسكوبي الأنبوبي. وبينت الدراسات أيضا أن التشوهات الحاصلة من جراء الاهتزاز عند بعض أنماط الحركة الاهتزازية قد تقلل بدورها من جراء الاهتزاز عند بعض أنماط الحركة الاهتزازية قد تقلل بدورها من قابلية التوصيل الحراري والالكتروني للأنبوب [18]. تتكون جزيئة من قابلية التوصيل الحراري والالكتروني للأنبوب [18]. تتكون جزيئة من قابلية التوصيل الحراري والالكتروني للأنبوب [18]. تكون جزيئة من قابلية التوصيل الحراري والالكتروني للأنبوب [18]. تتكون جزيئة من قابلية التوصيل الحراري والالكتروني للأنبوب والا]. تتكون جزيئة حساب الشكل الهندسي التوازني لها وفق طريقة الحساب التامة لنظرية لوال الكثافة (DSLYP/6-3116), وجد امتلاكها للتماثل (D6d) [19] وفق الشكل الهندسي التوازني لها (شكل-3). و دوال الكثافة (الموال و زوايا التاصر) وبعض الخواص الغيزيائية عند الشكل الهندسي الداخلية (اطوال و زوايا التاصر) وبعض الخواص الغيزيائية عند الشكل الهندسي المتوازن (شكل 4), (جدول –1).

ويلاحظ في (جدول-1) أن أقصر الاواصر تعود الى الاواصر المحيطية كالاصرة (C1-C2) الثنائية وبالتالي فانها أقوى الاواصر وثوابت القوى لتردداتها هي الاكبر، تليها أطوال ألاواصر المحورية كالاصرة (C1-C6) المقترنة، ثم الاواصر المحيطية الداخلية كالاصرة (C1-C8) المنفردة والتي هي أطول ألاواصر وأضعفها وثوابت القوى لتردداتها هي الاقل وينسجم هذا مع قيم ترددات اهتزاز المط لهذه الاواصر جدول (2).

تصنيف ترددات الاهتزاز

تمتلك جزيئة [6] سايكلاسين نوع Armchair تمتلك جزيئة [6] سايكلاسين نوع Fundamental (المتانية (vibrations) وبعدد (3N-6). تم استخراج العدد الكلي للاصناف (vibrations) وبعدد (3N-6). تم استخراج العدد الكلي للاصناف التماثلية غير القابلة للاختزال التماثلية (علم علي القابلة الحديرا وتساوي 216 مع استزازياً. 3N= 3 ×72= 216 = 216

9A1+ 9A2+ 9B1+ 9B2+ 18E1+ 18E2+ 18E3+ 18E4 +18E5 (zR)] Frotation دورانية Frotation [(zR), xR) , A2 هناك ثلاث من هذه الدرجات دورانية Translation. هناك ثلاث من هذه الدرجات الحري انتقالية . [E5 (Ry, xR) , A2] وثلاث اخرى انتقالية . [E1 (yT,xT) , B2 (zT)] يصبح عدد درجات الحرية الاهتزازية Vib = Ftot.- (Frot. + Ftran.) = 3N-6 Fvib = Ftot.- (Frot. + Ftran.) = 3N-6 Fvib = 216 – 6 = 210 Fvib = 9A1+ 8A2+ 9B1+ 8B2+ 17E1+ 18E2+ 18E3 + 18E4+ 17E5 وتتضمن ترددات الاهتزاز 79 نمطاً فعالاً في طيف الاشعة تحت وتتضمن الحمراء [3B1 (Ty ,Tx] تم تصنيفها على النحو

الاتي:

ترددات مط الاصرة CH

وعددها 24 نمطاً اهتزازياً بقدر عدد اواصر (C-H)، وتتراوح القيم العددية المحسوبة لتربداتها بين (3046-3083) سم-1،وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف الاشعة تحت الحمراء هي 93.009 كم/ مول وتعود للنمط (82)vo1 عند التربد 3082 سم-1. كما ويمكن ملاحظة العلاقة الاتية:

vsym (CH str.) (3083 cm-1) >

v1 (A1)

vasym (CH str.) (3046 cm-1) v10 (B1)

ترددات مط اواصر (C-C) الحلقية

و تتراوح القيم العددية المحسوبة لتردداتها بين (1315-و تتراوح القيم العددية المحسوبة لتردداتها بين (1315-1635) سم-1، وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف الاشعة تحت الحمراء هي 21.624 كم/ مول وتعود للنمط (E1)224 عند التردد 1635 سم-1 كما و يمكن ملاحظة العلاقات الاتية:

vsym (C=C str.) (1634 cm-1) < v2 (A1) vasym C=C str.) (1635 cm-1) v23 (E1) circum. vsym (C--C str.) (1406 cm-1) < v3 (A1) vasym (C--C str.) (1596 cm-1) v11 (B1)axial vsym (C-C str.) (1334 cm-1) < v4 (A1) vasym (C-C str.) (1379 cm-1) v79 (E2) circum.

ترددات مط اواصر الحلقية . CCC) str

لاتتمركز متجهات ازاحات المط فيها عند ذرات كاربون اواصر محددة، وتتراوح قيم تردداتها للانماط الفعالة في طيف الاشعة تحت الحمراء بين (1302–1406) سم-1، وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة 66.010 كم/ مول وتعود للنمط (E1) 033 عند التردد 1302 سم-1 .

ترددات انحناء الاصرة CH (ठСН)

تتراوح قيم تردداتها المحسوبة بين (1474-1180) سم-1، وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف الاشعة تحت الحمراء هي 26.290 كم/مول وتعود للنمط (E1)33(عند التردد 1214 سم-1.

- ترددات الانحناء الحلقية (δCCC)

وتتراوح القيم العددية لتردداتها المحسوبة بين (448-1155) سم-1, وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف الاشعة تحت الحمراء 36.256 كم/ مول وتعود للنمط 45v (E1) عند التردد 543 سم-1.

ترددات انحناء الاصرة YCH

وتتراوح القيم العددية لتردداتها المحسوبة بين (903-706) سم-1، وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف الاشعة تحت الحمراء 144.421 كم/ مول، وتعود للنمط (E1) v39 عند التردد 822 سم-1.

ترددات الانحناء الحلقية (YCCC)

وتتراوح الترددات الاهتزازية المحسوبة بين (187-865) سم-1, وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف الاشعة تحت الحمراء 74.202 كم/ مول ، وتعود للنمط (E1) v37 عند التردد 865 سم-1 .

ولا يوجد في الأدبيات مايشير إلى التصنيف التمائلي والتكافؤي التام لتربدات الاهتزاز و بعدد 3-3N سواء للجزيئات المنفردة المحسوبة لأمثال هذه الجزيئة أو للانابيب التي وحدة بنائها هذه الجزيئة وفق طريقة (DFT) [20] ، رغم كل ما ورد عن أهمية دراسة الحركات الاهتزازية وتصنيفها وطبيعتها في هذه الانابيب، لذا قمنا بهذه الدراسة و تعد حساباتنا تنبؤية تامة.

ويوضح جدول (2) ترددات وشدد امتصاص الأشعة تحت الحمراء بعدد 3-3N (متضمنة الاصناف الفعالة في طيف الأشعة تحت الحمراء (شدة الامتصاص لها (0.0 ≠))، والاصناف غير الفعالة في طيف الأشعة تحت الحمراء (شدة الامتصاص لها (0.0 =)، مع التصنيف التكافؤي و التماثلي لها وبدقة وفق نظرية المجموعة، مع تعيين جميع ألانماط الاهتزازية العائدة للحركات الانبعاجية و التنفسية والانحنائية باتجاه وعكس اتجاه عقرب الساعة، و التي تعود اليها التشوهات الحاصلة في أنابيب النانوكاربون من جراء الاهتزاز، و وفق هيرزبرك لتسلسل الانماط التماثلية [21].

ويبين (شكل -4) الأشكال البيانية الواصفة لبعض أنماط الحركة الاهتزازية لجزيئة [6] سايكلاسين (Armchair)، كما تم حسابها وفق طريقة الحسابDFT ، وتصنيفها اعتمادا على الحركات الواصفة لها باستخدام برنامج 63 Gaussian.

وعند مقارنة ترددات الاهتزاز لهذه الجزيئة مع الترددات المناظرة لها في جزيئة الفينانثرين الاروماتية المسطحة Planar والتي تم حسابها بنفس طريقة واسلوب وعناصر قاعدة الحساب DFT (B3LYP/6-311G)، (جدول–3)، يلاحظ أن قيم ترددات الاهتزاز لجزيئة السايكلاسين أوطأ مما هي في جزيئة الفينانثرين، يشير هذا الى أن ثوابت القوى لترددات هذه الجزيئة أقل والى أن الاواصر العائدة لها اضعف مما هي عليه في جزيئةالفينانثرين والى كون جزيئة السايكلاسين اقل استقرارا يؤكده حرارة التكوين المحسوبة لها 297.977 = المكا الفينانثرين (المالي الحيوين المحسوبة لها 297.977 = مالك) الفينانثرين (المالي لي بكتير من حرارة التكوين المحسوبة لجزيئة الفينانثرين (المالي المالي المحسوبة لها الحيوين المحسوبة لجزيئة الفينانثرين (المالي المالي المحسوبة لها الحيوين المحسوبة الماليكلاسين الفينانثرين (المالي المالي المحسوبة لها المحسوبة الماليكلاسين الفينانثرين (المالي المحسوبة لها المحسوبة الماليكلاسين الفينانثرين (المالي المحسوبة لها الحيوين المحسوبة الماليكلاسين الفينانثرين (المالي المحسوبة لها المحسوبة الماليكلاسين الفينانثرين (المالي المحسوبة الماليكان المحسوبة الماليكا الفينانثرين (المالي المحسوبة المالي المحسوبة الماليكارسين الفينانثرين (المالي المحسوبة الماليكارسين والى محسوبة الماليكارسين الفينانثرين (المالي المحسوبة الماليكارسون المحسوبة المالية المحساب، و يعزى ذلك الى الشد الحلقي لمتسبب عند لف الحلقات المحساب، و يعزى ذلك الى الشد الحلقي لمتسبب عند لف الحلقات المحساب، و يعزى ذلك الى الشد الملقي لمتسبب عند لف الحلقات المحساب، و يعزى ذلك الى الشد الملقي لمزيئة السايكلاسين.وأخيرا تمت المحسوبة الماليزينية على ذرات هذه الجزينة حيث وجد الاروماتية بغرض تكوين الطوق الحلقي لمزالي الماليون المحيولية الماليكارين المحسوبة المالية وجد الم

- 8- Iijima S, Brabec C, Maiti A, and Bernholc J. (1996). Structural flexibility of carbon nanotubes. Journal of Chemical Physics; 104(5): 2089–92.
- 9- Hamada, N., Sawada, S. & Oshiyama, (1992). ANew one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett.; 68: 1579–1581.
- Budyka M.F., Zyubina T.S., Ryabenko A.G., Lin S. H. And Mebel A.H. (2005). Bond Lengths and diameters of armchair single wall carbon nanotubes. Chem. Phys. Lett. :407: 266-271.
- 11- Imtani A.N. and Jinal V.K. (2006). Bond Lengths of Single-Walled Carbon Nanotubes. Dept. of Phys., Panjab University, Changdigrah-160014, India;1-11.
- 12-a- Brown T.L.L., Bursten B.E., Lemay H.E., (1999). Chemistry: The Central Science, 8th edition, Prentice-Hall. :b- Carroll, D. L. et al. (1997). Electronic structure and localized states at carbon nanotube tips. Phys. Rev. Lett.; 78: 2811–2814.
- 13- Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M. S. (1992). Electronic structure of graphene tubules based on C60. Phys. Rev. B 46, 1804–1811.
- 14- Collins PG, Avouris P. (2000). Nanotubes for electronics. Scientific American; 283(6): 62–9.
- 15- Ramani K.A. and Chadl H. (2006). Infrared spectroscopy of SWCNTs. J. phys.chem. ;B. 110 (25): 12388-12393.
- 16- U. Kuhlman, H. Jantoljak, N. Pfander, P. Bernier, C. Journet and C. Thomsen, Chem. Phys. Lett. 294, 237-240, (1998).
- 17- Science direct-surface science Reports; (2005). Electronic and vibrational properties of chemically modified (SWCNTs), Article Tool book, Maxplank-Institutfuer, Germany, vol. 58, Issues 4, p. 1-5, August.
- 18- Vitali L., Bughard M., Schneider M.A., LeiLiu Y.Wu., Jayanthi C. and Kem K. (2004). Photon Spectromicroscopy of Carbon Nanostructures with Atomic Resolution. Phys. Rev. Lett.; 93:136103.
- 19- Davidson G. (1990). Introduction to group theory for Chemists. Applied Science Publishers Ltd. London, Elsevier Publishing Comp. Ltd.
- 20- Andzelm J.W. Labanowski and J.K. (1991). Density Functional Methods in Chemistry, Springer-Verlag, NewYork.
- 21- Herzberg G. (1971). Molecular Spectra and Molecular Structure, Infrared and Raman spectra of

في حين تتضائل عند ذرات الكاربون البعيدة عن الحواف الخارجية للجزيئة.

ويتضح هذا في الشكل (5) حيث يلاحظ ان الشحنة الالكترونية على ذرات الكاربون عند حافة الطوق النانوكاربوني اكبر -) (0.132 للجزيئة وهذه اكبر سالبية من الشحنات على ذرات الكاربون الداخلية المساوية الى (0.027-).

وتتوافق هذه النتائج مع أطوال الاواصر (جدول-1) فالاقصر هي التي تتمركز عندها الشحنة الالكترونية بدرجة أكبر وهي التي ترددات الاهتزاز لها أكبر (جدول-2).

وتتوافق هذه النتائج أيضا مع مااشير اليه في الادبيات حول طبيعة توزيع الشحنة الالكترونية في أنابيب النانوكاربون المتشاكلة من امثال هذه الجزيئات، ومن أن الشحنات الالكترونية تنتقل ميكانيكياً في انابيب النانوكاربون بين الاغلفة الخارجية من انبوب الى اخر -5,23] [24، و مع النتائج التي تم الحصول عليها عند حساب توزيع الشحنة الالكترونية لجزيئات سايكلاسين (Mono rings) بأنواع اخرى Zig (232ه وMINDO/3) باستخدام حسابات ميكانيك الكم شبه التجريبية

المصادر

- 1-Meyyappan M. and Srivastava D. (2000). Cabon nanotube, Nasa Ames, Research center, Article. :16-18.
- 2- Ijima S. (1991). Helical microtubules of graphitic carbon. Nature; 354: 56–58.
- 3- Zettl A. and Cummings J. (2003). Electro mechanical properties of MWCNT. Department of phys.Univ. Calefornia, Ca.; 94: 720, U.S.A.
- 4- Xie S, Li W, Pan Z, Chang B, Sun L. (2000). Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of Solids; 61(7): 1153–1158.
- 5- Krcmar M., Saslow W.M. and Zangwill A. (2003). Electrostatic of Conducting Nanocylinder. J. Appl. phys.; 93: 3495-3500.
- 6- Ruoff RS, Lorents DC. (1995). Mechanical and thermal-properties of carbon nanotubes. Carbon; 33(7): 925–30.
- 7- Gulseren O., Yildirim T. and Ciraci S. (2002). Systematic ab initio study of curvature effects in carbon nanotubes. J. Phys. Rev.; B 65: 153405.

P- ISSN 1991-8941, E-ISSN 2706-6703 2011,(5),(1):25-37

- 24- Zhang, Z. & Lieber, C. M. (1993). Nanotube structure and electronic properties probed by STM. Appl. Phys.Lett. ;62 :2972–2974.
- 25- Al-Ani H. N. (2009). Theoretical study of vibration modes for Cyclacene and Collarene molecules. M.Sc. Thesis, College of Science, University of Baghdad.

Polyatomic Molecules, Van Nostrand Co, New York.

- 22- Lewars E. (2003) COMPUTATIONAL CHEMISTRY "Introduction to the Theory and Applications of Molecular and Quantum Mechanics".,Chemistry Department, Trent University, Peterborough, Ontario, Canada.
- 23- Odom T.W., Huang J., Kim P. and Lieber C.M. (2000). Structure and electronic properties of CNT. J. Phy. Chem.;104: 2794-2809,

(b)

(شكل -1) : (a) انبوب نانوكاربون احادي الطبقة نوع Armchair، (d) الشكل الهندسي الفراغي لجزيئة [6]سايكلاسين نوع Armchair، تتوضح فيه اواصر (C-Ca) المتجهه باتجاه المحور العمودي للجزيئة و اواصر (C-Cc) المتجهه على طول محيط الجزيئة.

(شكل-2): جزيئة [6] سايكلاسين نوع (Armchair) كما تم حسابها وفق طريقة الحساب DFT.

(شكل-3): مقطع الاواصر والزوايا المتكرر وفق تماثل الشكل الهندسي الفراغي التوازني (D6d) لجزيئة [6]سايكلاسين نوع

.(Armchair)

(جدول-1): اطوال وزوايا التآصر لجزيئة [6] سايكلاسين نوع (Armchair) وفق تماثل الشكل الهندسي الفراغي التوازني (D6d)،

Bond length (Å) and Bond angles (deg.)	(DFT) B3LYP/ 6-311G
$C_1C_2^{**}$	1.366
C_1C_6*	1.435
C7C8**	1.452
C ₆ C ₇ *	1.417
C1H15	1.080
C ₂ H ₁₆	1.080
$< C_2 C_1 C_6$	120.651
$< C_2 C_1 H_{15}$	119.119
$< C_2 C_3 C_4$	121.630
$< C_2 C_3 C_8$	119.062
$< C_2 C_3 C_4$	117.399
$< C_3 C_8 C_7$	119.075
$< C_3 C_8 C_9$	117.399
$< C_8 C_9 C_{10}$	120.651
$< C_8 C_9 H_{17}$	119.866
Molecular formula	$C_{48}H_{24}$
Point group	D _{6d}
m.wt. (gm/mol)	600.718
ΔH_{f} (kcal/mol)	297.977
Length (Å)	5.545
Diameter (Å)	8.383
HOMO (eV)	- 8.066
LUMO (eV)	- 1.257

مع بعض الصفات الفيزياوية.

*: axial bond., **: Circumference bond.

(جدول-2): ترددات الاهتزاز وشدة امتصاص الاشعة تحت الحمراء كما تم حسابها عند الشكل الهندسي التوازني لجزيئة [6]

	Symmetry & description	DFT B3LYP/ 6-311G Freq. cm ^{- 1}	Intensity km/mol		
A ₁					
ν_1	CH str.	3083	0.000		
v ₂	ring (C=C str.)	1634	0.000		
v ₃	ring (CCC str.)	1406	0.000		
v_4	ring (C-C str.) + δ CH	1334	0.000		
v ₅	δCH (sciss.)	1222	0.000		
ν_6	γCH (wag .)	810	0.000		
v ₇	δring (δCCC) (elongation)	662	0.000		
ν_8	$\gamma ring (\gamma CCC)$ (breath.) + γCH (wag.)	346	0.000		
v 9	γring (γCCC) (breath.)	226	0.000		
B ₁					
v ₁₀	CH str.	3046	0.000		
v ₁₁	ring (CC str.)	1596	0.000		
ν_{12}	δCH (rock.)	1474	0.000		
ν_{13}	δCH (rock.) + δring (δCCC)(clock & anti clockwise)	1154	0.000		
v ₁₄	$\gamma CH (twist.)$	963	0.000		
V ₁₅	δring (δCCC)	884	0.000		
v_{16}	γring (γCCC) (puckering)	635	0.000		
v_{17}	δring (δCCC) (clock & anticlockwise)	448	0.000		
v ₁₈	γring (γCCC) (puckering)	398	0.000		
E 1					
V19	CH str.	3080	42.581		
V ₂₀	CH str.	3080	42.581		
V21	CH str.	3048	9.982		
V22	CH str.	3048	9.982		
V ₂₃	ring (C=C str.)	1635	21.624		
v_{24}	ring (C=C str.)	1635	21.624		
V ₂₅	δCH (rock.)	1495	13.437		
v_{26}	δCH (rock.)	1495	13.437		
V ₂₇	ring (CCC str.)	1396	5.348		
V ₂₈	ring (CCC str.)	1396	5.348		
V ₂₉	ring (CCC str.)+ δ CH (sciss.)	1359	7.345		
V30	ring (CCC str.)+ δ CH (sciss.)	1359	7.345		
V31	$\delta CH (rock.) + \delta ring (\delta CCC)$	1266	4.175		
V 32	$\delta CH (rock.) + \delta ring (\delta CCC)$	1266	4.175		
V 33	δCH (sciss.)	1214	26.290		
v_{34}	δCH (sciss.)	1214	26.290		
V ₃₅	γ (CH) (twist.)	976	20.347		
V36	γ (CH) (twist.)	976	20.347		
V37	$\gamma ring (CCC) + \gamma CH (wag.)$	865	74.202		
V ₃₈	$\gamma ring (CCC) + \gamma CH (wag.)$	865	74.202		

سايكلاسين (Armchair).

V39	γ CH (wag .) + γ ring (CCC)	822	144.421		
v_{40}	$\gamma CH (wag.) + \gamma ring (\gamma CCC)$	822	144.421		
V41	γ CH (wag .) + γ ring (γ CCC)	763	16.591		
v_{42}	γ CH (wag .) + γ ring (γ CCC)	763	16.591		
V 43	δring (δCCC) (elongation)	635	2.142		
V 44	δring (δCCC) (elongation)	635	2.142		
V 45	δring (δCCC) + δCH (rock.)	543	36.256		
v_{46}	δring (δCCC) + δCH (rock.)	543	36.256		
v_{47}	γ ring (γ CCC) + γ (CH) (twist .)	425	20.585		
ν_{48}	$\gamma ring (\gamma CCC) + \gamma (CH) (twist.)$	425	20.585		
V49	γring (γCCC) (puckering)	347	22.994		
v_{50}	γring (γCCC) (puckering)	347	22.994		
v_{51}	γring (γCCC) (puckering)	250	10.749		
v_{52}	γring (γCCC) (puckering)	250	10.749		
A2					
V 53	CH str.	3046	0.000		
V 54	$\delta CH (rock.) + \delta ring (\delta CCC)$	1487	0.000		
V 55	δCH (rock .)	1275	0.000		
v_{56}	γCH (twist .)	968	0.000		
v_{57}	$\delta ring (\delta CCC) (clock & anti clock wise)$	850	0.000		
ν_{58}	γring (γCCC) (puckering)	792	0.000		
V59	δring (δCCC)	552	0.000		
ν_{60}	γring (γCCC) (puckering)	372	0.000		
R ₂					
D 2					
ν ₆₁	CH str.	3082	193.009		
V ₆₁ V ₆₂	CH str. ring (C=C str.)	3082 1530	193.009 10.436		
V ₆₁ V ₆₂ V ₆₃	CH str. ring (C=C str.) ring (CCC str.)+ δCH (sciss.)	3082 1530 1302	193.009 10.436 66.010		
V61 V62 V63 V64	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.)	3082 1530 1302 1195	193.009 10.436 66.010 0.528		
V61 V62 V63 V64 V65	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.)	3082 1530 1302 1195 1009	193.009 10.436 66.010 0.528 0.078		
V61 V62 V63 V64 V65 V66	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.)	3082 1530 1302 1195 1009 803	193.009 10.436 66.010 0.528 0.078 0.018		
V61 V62 V63 V64 V65 V66 V67	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.)	3082 1530 1302 1195 1009 803 530	193.009 10.436 66.010 0.528 0.078 0.018 2.968		
V61 V62 V63 V64 V65 V66 V67 V68	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.)	3082 1530 1302 1195 1009 803 530 184	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027		
V61 V62 V63 V64 V65 V66 V67 V68 E2	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.)	3082 1530 1302 1195 1009 803 530 184	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027		
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.)	3082 1530 1302 1195 1009 803 530 184 3074 3074	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000		
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) CH str. CH str. CH str.	3082 1530 1302 1195 1009 803 530 184 3074 3074 3055	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000		
D2 V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) CH str. CH str. CH str. CH str.	3082 1530 1302 1195 1009 803 530 184 3074 3074 3055 3055	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000		
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) CH str. CH str. CH str. CH str. CH str. CH str. CH str. CH str.	3082 1530 1302 1195 1009 803 530 184 3074 3074 3074 3055 3055 1639	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000		
D2 V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) CH str. CH	3082 1530 1302 1195 1009 803 530 184 3074 3074 3074 3055 3055 1639 1639	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
D2 V61 V62 V63 V64 V65 V66 V67 V68 E2 V70 V71 V72 V73 V74	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) CH str. CH str. CH str. CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) ring (C=C str.)	3082 1530 1302 1195 1009 803 530 184 3074 3074 3055 3055 1639 1515	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
D2 V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) CH str. CH str. CH str. CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) + δ CH	3082 1530 1302 1195 1009 803 530 184 3074 3075 3055 1639 1515	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
D2 V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74 V75 V76	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) CH str. CH str. CH str. CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) + δ CH ring (C-C str.) + δ CH	3082 1530 1302 1195 1009 803 530 184 3074 3055 3055 1639 1515 1515	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
D2 V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74 V75 V76	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) CH str. CH str. CH str. CH str. CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) + δ CH ring (C-C str.) + δ CH ring (C-C str.) + δ CH	3082 1530 1302 1195 1009 803 530 184 3074 3075 3055 1639 1515 1397 1307	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
D2 V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74 V75 V76 V77 V78	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) CH str. CH str. CH str. CH str. CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) + δ CH ring (C-C str.) + δ CH	3082 1530 1302 1195 1009 803 530 184 3074 3074 3055 1639 1515 1515 1397 1370	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
D2 V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74 V75 V76 V77 V78 V79	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) γ ring (γ CCC) (breath.) CH str. CH str. CH str. CH str. CH str. CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) + δ CH ring (CC str.) + δ CH	3082 1530 1302 1195 1009 803 530 184 3074 3074 3055 3055 1639 1515 1397 1397 1379 1370	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
D2 V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74 V75 V76 V77 V78 V79 V80	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) CH str. CH str. CH str. CH str. CH str. CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) + δ CH ring (CC str.) + δ CH ring (C-C str.) + δ CH ring (C-C str.) + δ CH	3082 1530 1302 1195 1009 803 530 184 3074 3074 3055 3055 1639 1515 1397 1397 1379 1379 1353	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
D2 V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74 V75 V76 V77 V78 V79 V80 V81	CH str. ring (C=C str.) ring (CCC str.)+ δ CH (sciss.) ring (CCC str.)+ δ CH (sciss.) δ ring (δ CCC) + δ CH (sciss.) γ CH (wag.) γ CH (wag.) γ ring (γ CCC) (breath.)+ γ CH (wag.) γ ring (γ CCC) (breath.) CH str. CH str. CH str. CH str. CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) + δ CH ring (CC str.) + δ CH ring (CC str.) + δ CH ring (CC str.) + δ CH ring (C-C str.) + δ CH	3082 1530 1302 1195 1009 803 530 184 3074 3074 3055 3055 1639 1515 1515 1397 1397 1379 1353 1353	193.009 10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000		

Open Access الصرفة

2011 ,(5), (1) :25-37

V ₈₃	δCH (sciss .)	1199	0.000		
ν_{84}	δCH (sciss.)	1199	0.000		
V85	γCH (twist .)	991	0.000		
v_{86}	γCH (twist .)	991	0.000		
V87	δring (δCCC)	885	0.000		
V88	δring (δCCC)	885	0.000		
V89	γ CH (wag .) + γ ring (γ CCC)	828	0.000		
V90	γ CH (wag .) + γ ring (γ CCC)	828	0.000		
V91	γ CH (twist .) + γ ring (γ CCC)	731	0.000		
V92	γ CH (twist .) + γ ring (γ CCC)	731	0.000		
V93	γring (γCCC) (puckering)	595	0.000		
V94	γring (γCCC) (puckering)	595	0.000		
V95	γring (γCCC) (puckering)	560	0.000		
V96	γring (γCCC) (puckering)	560	0.000		
V97	γring (γCCC) (puckering)	460	0.000		
V98	γring (γCCC) (puckering)	460	0.000		
V99	γring (γCCC) (puckering)	439	0.000		
V100	γring (γCCC) (puckering)	439	0.000		
V101	γring (γCCC) (puckering)	194	0.000		
V102	γring (γCCC) (puckering)	194	0.000		
v_{103}	γring (γCCC) (breathing)	43	0.000		
V104	γring (γCCC) (breathing)	43	0.000		
E3					
v_{105}	CH str.	3067	0.000		
ν_{106}	CH str.	3067	0.000		
V 107	CH str.	3061	0.000		
ν_{108}	CH str.	3061	0.000		
V109	ring (C=C str.)	1630	0.000		
v 110	ring (C=C str.)	1630	0.000		
v_{111}	ring (CC-C str.) + δ CH (rock.)	1541	0.000		
V 112	ring (CC-C str.) + δ CH (rock.)	1541	0.000		
V 113	ring (CC str.) + δ CH (rock.)	1416	0.000		
v_{114}	ring (CC str.) + δ CH (rock.)	1416	0.000		
v_{115}	$\delta CH (rock.) + ring (CC str.)$	1259	0.000		
ν_{116}	δCH (rock .) + ring (CC str .)	1259	0.000		
v_{117}	$\delta CH (sciss.) + ring (CC str.)$	1258	0.000		
ν_{118}	$\delta CH (sciss.) + ring (CC str.)$	1258	0.000		
V119	δCH (sciss.)	1180	0.000		
v_{120}	δCH (sciss.)	1180	0.000		
V121	$\gamma CH (twist.)$	999	0.000		
V122	$\gamma CH (twist.)$	999	0.000		
V123	δring (δCCC)	909	0.000		
V124	δring (δCCC)	909	0.000		
v_{125}	γ CH (wag .) + γ ring (γ CCC)	828	0.000		
V126	γ CH (wag .) + γ ring (γ CCC)	828	0.000		
V127	γ CH (wag .) + γ ring (γ CCC)	706	0.000		
v_{128}	γ CH (wag .) + γ ring (γ CCC)	706	0.000		

2011 ,(5), (1) :25-37

V ₁₂₉	$\gamma ring (\gamma CCC) + \gamma CH (wag.)$	689	0.000
v_{130}	$\gamma ring (\gamma CCC) + \gamma CH (wag.)$	689	0.000
V131	γring (γCCC) (puckering)	564	0.000
v ₁₃₂	γring (γCCC) (puckering)	564	0.000
V133	γring (γCCC) (puckering)	500	0.000
V134	γring (γCCC) (puckering)	500	0.000
V135	γring (γCCC) (puckering)	362	0.000
V136	γring (γCCC) (puckering)	362	0.000
V137	γring (γCCC) (puckering)	149	0.000
V ₁₃₈	γring (γCCC) (puckering)	149	0.000
V139	γring (γCCC) (puckering)	100	0.000
V140	vring (vCCC) (puckering)	100	0.000
E4			
V141	CH str.	3074	0.000
V142	CH str.	3074	0.000
V142	CH str.	3055	0.000
V143	CH str.	3055	0.000
V144	ring (C=C str.)	1614	0.000
V145	ring (C=C str.)	1614	0.000
V140	ring (CC str.) + δ CH (rock.)	1557	0.000
V14/	$ring (C - C str.) + \delta CH (rock.)$	1557	0.000
V148	$ring (C - C str.) + \delta CH (rock.)$	1430	0.000
V149	$ring (C - C str.) + \delta CH (rock)$	1430	0.000
V150	$ring (C - C str.) + \delta CH$	1315	0.000
V151	$ring (C-C str.) + \delta CH$	1315	0.000
V152	δCH (see)	1313	0.000
V153	SCH (seise)	1251	0.000
V154	$\delta ring (CCC) + \delta CH$	1167	0.000
V155	$\delta ring (CCC) + \delta CH$	1167	0.000
V156	oring (eee) + oerr	002	0.000
V157	vCII (twist.)	992	0.000
V158	$\gamma CH (WISL)$ Sving (CCC) + SCH (realt)	992	0.000
V159	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(C(C_i) + \frac{1}{2} C(C_i) $	947	0.000
V160	$\frac{1}{10000000000000000000000000000000000$	947	0.000
V161	YCH (wag.)	823 823	0.000
V162	yCH (wag.)	823	0.000
V163	pring (pCCC)	004 004	0.000
V ₁₆₄	ming (vCCC)	004 660	0.000
V ₁₆₅	$\gamma \text{ Inig} (\gamma \text{CCC}) + \gamma \text{CH} (\text{wag.})$		0.000
V ₁₆₆	$\gamma \text{ring} (\gamma \text{CC}) + \gamma \text{CH} (\text{wag.})$	00U	0.000
V167	$\gamma \text{ring} (\gamma \text{CC}) + \gamma \text{CH} (\text{wag.})$	500	0.000
V168	$\frac{\gamma \text{ ring } (\gamma \text{CC}) + \gamma \text{CH} (\text{wag.})}{\beta \text{ ring } (\beta \text{CC}) (\text{clongation})}$	500	0.000
V169	Sing (SCCC) (clongation)	506	0.000
V170	oring (oUU) (elongation)	506	0.000
V ₁₇₁	γring (γCCC) (puckering)	280	0.000
V172	γring (γCCC) (puckering)	280	0.000
V173	γring (γCCC) (puckering)	204	0.000
v_{174}	γring (γCCC) (puckering)	204	0.000

v_{175}	γring (γCCC) (puckering)	62	0.000		
ν_{176}	γring (γCCC) (puckering)	62	0.000		
E5					
v_{177}	CH str.	3080	0.000		
ν_{178}	CH str.	3080	0.000		
V 179	CH str.	3048	0.000		
ν_{180}	CH str.	3048	0.000		
ν_{181}	ring (C=C str.)	1602	0.000		
v_{182}	ring (C=C str.)	1602	0.000		
ν_{183}	ring (C=C str.)	1544	0.000		
ν_{184}	ring (C=C str.)	1544	0.000		
ν_{185}	ring (CCC str.) + δ CH	1456	0.000		
ν_{186}	ring (CCC str.) + δ CH	1456	0.000		
V 187	δCH (sciss.) + ring (CCC str.)	1292	0.000		
v_{188}	δring (δCCC) + δCH (sciss.)	1292	0.000		
V 189	δCH (sciss.) + ring (CCC str.)	1229	0.000		
V190	δCH (sciss.) + ring (CCC str.)	1229	0.000		
V 191	δring (δCCC)	1155	0.000		
V192	δring (δCCC)	1155	0.000		
v_{193}	$\gamma CH (twist.)$	989	0.000		
v_{194}	$\gamma CH (twist.)$	989	0.000		
V195	γCH (twist .)	972	0.000		
v_{196}	$\gamma CH (twist.)$	972	0.000		
V197	δring (δCCC) (elongation)	867	0.000		
ν_{198}	δring (δCCC) (elongation)	867	0.000		
V199	γCH (wag .)	810	0.000		
v_{200}	γCH (wag .)	810	0.000		
V201	$\gamma ring (\gamma C=C) (puck.) + \gamma CH (twist.)$	615	0.000		
V202	$\gamma ring (\gamma C=C) (puck.) + \gamma CH (twist.)$	615	0.000		
v_{203}	$\gamma ring (\gamma C-C) + \gamma CH (wag.)$	584	0.000		
V204	$\gamma ring (\gamma C-C) + \gamma CH (wag.)$	584	0.000		
V205	δring (δCCC)(clock & anticlockwise)	471	0.000		
v_{206}	δring (δCCC) (clock & anticlockwise)	471	0.000		
v_{207}	γring (γCCC) (puckering)	336	0.000		
ν_{208}	γring (γCCC) (puckering)	336	0.000		
V209	$\gamma ring (\gamma C = C)$ (puckering)	187	0.000		
v_{210}	$\gamma ring (\gamma C=C) (puckering)$	187	0.000		

Scaling factors: 0.96 (CH str.) for all DFT (B3LYP/6-311G) frequencies, [22].

 γ : Out of plane of the molecule., δ : In- plane of the molecule.

(breath.): ring breathing mode التنفسية, (puck.): ring puckering mode. الانبعاجية, (rock.): CH rocking mode. (sciss.): CH scissoring mode. المقصية, (twist.): CH twisting mode. (wag.): CH wagging mode. التأر جحية.

شكل (4): الاشكال البيانية الواصفة لبعض أنماط الحركة الاهتزازية لجزيئة [6] سايكلاسين (Armchair)، كما تم حسابها وفق طريقة الحساب DFT و باستخدام برنامج Gaussian 3.

(جدول-3): مقارنة ترددات الاهتزاز (cm-1) لجزيئة [6] سايكلاسين Armchair مع ترددات الاهتزاز المناظرة في جزيئة الفينانثرين المسطحة Planar.

Molecule	C-H	C-H	CCa	CCa	CCc	CCc	δCH	δCH	γCH	γCH
	sym.	asym.	sym.	asym.	sym.	asym.	sym.	asym	sym.	asym.
[6] Cyclacene	3067	3055	1531	1457		1411	1222	1274	956	936
armchair D _{6d}	A _{1g}	B _{1g}	A _{1g}	B1u		B _{1g}	A1	B _{2g}	A1g	E1g
Phenanthrene	3209	3198	1644	1656	1662		1341	1328	1005	1021
(C _{2v})	A1	B2	A1	B1	A1		A1	B2	A2	B1

(شكل -5): توزيع الشحنة الالكترونية على ذرات جزيئة [6]سايكلاسين (Armchair)، وتبعا للشكل التماثلي لها (D6d)، كما تم حسابها وفق طريقة الحساب DFT، و باستخدام برنامج 30 Gaussian.

DFT CALCULATED FOR VIBRATION FREQUENCIES AND IR ABSORPTION INTENSITIES OF [6] CYCLACENE (ARMCHAIR) MOLECULE

REHAB M. KUBBA

ABSTRACT.:

The (3N-6) vibration frequencies and IR-absorption intensities of [6] Cyclacene (Armchair) (D6d) molecule were calculated applying Density Functional Theory (DFT) of the type (B3LYP) and a Gaussian basis (6-311G) method. Comparison of the results showed that for the C-H stretching vibrations, the sym. mode shows higher frequency values than the asym. The reverse was found for C-C stretching vibrations., and the following relations hold:

sym.CH str. > vasym. CH str.

and, in general :vsym CC str. < vasym. CC str.

v C=C str. (circum.) > v C--C str. (axial.) > v C-C str. (circum.)

where's:vsym (C=C str.) < vasym (C=C str.) Circumference, vsym (C--C str.) < vasym (C--C str.) axial , vsym (C-C str.) < vasym (C-C str.) Circumference

Assignment and determined with accurately, were done for all modes of vibration related to puckering, breathing and clock-anticlock bending vibrations.

Also calculations and studying the distribution of charge density on the atoms of the molecule. The results agree with the others in the literature, and with the physical properties and conductivity of tubes constructed from similar molecules.