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Abstract:z-compact and z-Lindelof spaces are studied. Characterizations of z-compact spaces and z-
Lindelof spaces, using multifunctions, are given.Our main results are .A space X is z-compact iff for 
every space Y and z-closed graph multifunction on X into Y the image of every z-closed set in X, is 
closed in Y. A space X is z-Lindelof iff for every P-space Y and z-closed graph multifunction on X 
into Y the image of every z-closed set in X is closed in Y. 
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Introduction 
 z-compact and z-Lindelof space are 
introduced by Frolik [1] under titles 
quasicompact and quasi Lindelof spaces, 
respectively. As far as the author knows, no 
further study has been done about these spaces 
except one result (Theorem 4.6) appeared in 
[3]. In this paper we study some properties of 
z-compact and z-Lindelof spaces. We relate z-
compact spaces to pseudocompact, 
realcompact and H-closed spaces. Then we 
give some characterizations of z-compact and 
z-Lindelof spaces. The collection of real 
valued continuous forms a ring denoted by 
C(X) [2]. Characterizations of z-compact 
spaces in terms of z-filters, z-ultrafilters z-
ideals and maximal ideals are given, similar to 
compact case, where complete regularity is 
assumed. Here no separation property is 
assumed unless otherwise is stated. For 
definitions and notations not stated here see 
[2].  
Preliminaries 
Definition  

   A subset K of a space X is called z-
compact relative to X iff every cove of K by z-
open sets in X has a finite subcover.  
Definition  

A space X is z-compact iff X is z-
compact relative to X 
Definition  

A subset A of a space X is called a 
zero set iff there exists a real valued function f 
on X such that A=f-1(0).  
Definition  

   A subset A of a space X is called a 
cozero set iff it's complement in X is a zero set  
 Definition  

   A subset of a topological space X is 
called z-open iff it is a union of cozero sets in 
X.The collection of all z-open sets in X is 
denoted by CR(X). 
 Definition 

 A subset is z-closed iff its 
complement is z-open.  

A point x in X is in the z-closure of a 
subset A in X, (x∈clz(A)) if each V in 
CR({x}) satisfies A∩V≠φ, A is called z-closed 
iff clz(A)=A, and that x∈adz(F) for each F∈Ω 
where Ω is a family of subsets of X. We write 
adzΩ=∩{clz(F):F∈Ω}. 
Definition 

 A multifunction α of a space X into a 
space Y is a set valued function on X into Y 
such that α(x)≠φ for every x∈X.  

The class of all multifunctions on X 
into Y is denoted by m(X,Y).  
Definition 

 A multifunction α on X into Y is 
called z-closed graph iff its graph {(x, 
y)∈X×Y: y∈α(x)} is z-closed in X×Y. 
Definition 

   The z-cluster set ∆(α,x) of α 
containing x∈X is defined by ∩adzα(CR({x}).  

For K⊂X, ∆(α,K) will denote 
∪{∆(α,x):x∈K}. 
Some properties of z-compact spaces  

The proof of the following theorem is 
straightforward. 
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Theorem  
The following  statements on a space X 

are equivalent. 
(a) X is z-compact. 
(b) Every family of subsets of X each 

is an intersection of zero sets, 
with the finite intersection 
property has a non empty 
intersection. 

(c) Every z-filter on X is fixed. 
(d) Every z-ultra filter on X is fixed. 
(e) Every z-ideal in C(X) is fixed. 
(f) Every maximal z-ideal in C(X) is 

fixed. 
Theorem 

A space X is z-compact iff it is 
pseudocompact  and realcompact. 
Proof 

 Suppose that X is z-compact. Let f: 
X→ R be continuous. Then f(X) is compact 
and so it is bounded. So that X is 
peseudocompact. Also every z-ultrafilter in X 
is fixed . In particular every real z-ultrafilter is 
fixed. So X is realcompact. 

Conversely suppose that X is realcompact 
and pseudocompact. If F is a z-ultrafilter on X 
then F is a real z-ultrafilter and in a 
pseudocompact space every real z-ultrafilter is 
fixed [2]. 
The space Ψ   

The following well-known example Ψ [2] 
has many nice toplogical properties. Although 
it is not z-compact. It is Hausdorff, completely 
regular, first Axiom pseudocompact and every 
subset of it is a Gδ .      

We describe this space for the sake of 
completeness. Let Ε be a maximal family of 
infinite subset of sets of natural numbers N 
such that the intersection of any two is finite. 
Let Ψ={wi: i∈Ε } be a new set of distinct 
points. The topology on Ψ is defined as 
follows : 

Every point of N is isolated and the 
neighborhoods of wi are sets containing wi and 
all but finite numbers of Ε. This space is 
completely regular pseudocompact not 
realcompact consequently it is not z-compact 
by the above theorem. 
Theorem 

A countable zero set in a pseudocompact 
space X is z-compact relative to X. 
Proof 

 Let K be a countable zero set in X. 
For each x∈K take a cozero set Vx in X 
containing x. Then {Vx : x∈K}∪{X-K} is a 
countable cover of X by cozero sets. So it has a 
finite subcover {Vxi : i=1,2,…,n} ∪{X - K} of 

X. So {Vxi : i=1,2,…,n} is a finite subcover of 
{Vx} to K. Then K is  

z-compact. 
Recently it has been proved that every 

compact topology is contained in a maximal 
compact topology.  

The following example shows that the 
situation about z-compact topology is different. 

Example A z-compact topology is 
contained in no maximal z-compact topology. 
Let X be the set of real numbers with the 
topology 

τ= {V:V⊂X, 0∉V}∪{(-1,1)}∪{X} 
Then every real valued continuous 

function on X is constant and so  X is z-
compact. Now for every natural number n the 
topology. 

{ } ,,...,2,1:1,1: Xnk
kk

XVVn ∪








=





−∪⊂=τ

is z-compact. 
As every compact topology is H-closed 

there are z-compact topologies which are not 
H-closed. For example a regular spaces on 
which every real valued continuous function is 
constant, given by Hewitt [4]. So that Hewitt 
space is z-compact but not compact. 
Lemma  

Let X and Y spaces and α∈m(X,Y). Then  
∆(α,x)=Πy({x}×Y}∩clz(G(α)) 
Where G(α)is the graph of α 

Proof 
 Let x∈X, y∈∆(α,x) and let 
w∈CR({y}). Then for every V∈CR({x}) we 
have W∩α(V)≠φ. Then (V×W)∩G(α)≠φ. So 
(x,y)∈clz(G(α)). Hence y 
∈Πy({x}×Y)∩clz(G(α)). The reverse 
inclusion is obtained by the obvious way. 
[Note that V∈CR({x}), W∈CR({y}) iff 
V×W∈CR({(x,y)})]. The proof is complete. 
Theorem  
The following statements are equivalent about 
spaces X and  
Y and α∈m(X,Y). 
(a)  The multifunction α has a z-closed 
graph G(α). 
(b) α(x)=Πy(({x}×Y)∩clz(G(α)) for 
each x∈X. 
(c) ∆(α,x)=α(x). 
Proof  
(a) ⇒ (b) obvious. 
(b) ⇒ (c) follows from the above lemma. 
(c) ⇒ (a) Let (x,y)∈X×Y-clz(G(α)). Then 

y∉α(x). So y∉∆(α,x).  
Consequently there are two sets 
V∈CR({x}) in X and W∈CR({y}) in 
Y such that α(V)∩W=φ. Hence 
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(V×W)∩G(α)=φ. Therefore 
clz(G(α))⊂G(α) and G(α) is closed. 

Characterizations of z-compactness 
in terms of multifunctions 
 We give here several 
characterizations of z-compact spaces. First we 
need the following characterization of z-
compact sets relative to X. The proof is clear. 
Theorem 
 A subset K of a space X is z-compact 
relative to X if and only if for each filterbase Ω 
on the X such that F∩V≠φ is satisfied for each 
F∈Ω and V∈CR(K) we have K∩adzΩ≠φ. 
The following result is a characterization of z-
compact spaces.  
Theorem 
 The following statements are 
equivalent about a space X. 

(a) X is z-compact. 
(b) ∆(α,K)=adzα(CR(K)) for every 

z-closed subset K of X and 
α∈m(X,Y). 

(c) ∆(α,K) is z-closed in Y for each 
Y, α∈m(X,Y) and K  
z-closed in X. 

Proof  
(a) ⇒ (b). Let X and Y be spaces and 

K⊂X and let α∈m(X,Y). For each 
x∈K we have CR(K)⊂CR({x}) so 
α(CR(K))⊂α(CR({x})) and 
consequently 
adzα(CR({x})⊂adzα(CR(K)).  

So,  ∆(α,x)⊂adzα(CR(K)) for every x∈K. 
So,  ∪{∆(α,x):x∈K}⊂adzα(CR(K)). 
Thus ∆(α,K)⊂adzα(CR(K)) 

Now let X be z-compact and let K⊂X where K 
is z-closed in X.  
Let z∈adzα(CR(K)). Let η be a local base at z 
Then for W∈η and V∈CR(K) in X we have α-

1(W)∩V≠φ. So α-1(η)is a filterbase on X 
satisfying the hypothesis of the previous 
theorem. This implies that  
K∩α-1(η)≠φ. For each x∈K∩adzα-1(η) we 
have V∩α-1(W)≠φ and consequently 
α(V)∩W≠φ for each V∈CR({x}) in X and 
W∈η. Thus z∈∆(α,x) and the proof of  
(a) ⇒ b is complete. 
(b) ⇒ (c). Obvious 
(c) ⇒ (a). Let Ω be a filterbase on X . Let 
yo∉X and Y=X∪{yo}.  
 Topologize Y by taking each singleton in X 
open and sets containg yo to be those sets 
containing a member of Ω. Hence from 
hypothesis ∆(α,X) is z-closed in Y and we see 
that yo∈clz(∆(α,x). Thus yo∈∆(α,x) for some 
x∈X. For such x we have 

V∩F=V∩(F∪{yo})≠φ for each V∈CR({x}) 
and F∈Ω.So, adzΩ≠φ. Consequently X is z-
compact. 

The following  result is our main 
characterization of z-compact spaces. 
Theorem 
 A space X is z-compact iff for every 
space Y and z-closed graph multifunction 
α∈m(X,Y) the image of every z-closed set in 
X, is closed in Y. 
Proof  
Direct from the previous  theorem . 
z-Lindelof spaces 
Definition 
 A space X is called z-Lindelof iff 
every cover of X by cozero sets in X has a 
countable subcover. 
Hewitt's example[4] is z-Lindelof but not 
Lindelof. 
The following results about z-Lindelof spaces 
can be proved by the same technique of 
Theorems 4.1 - 4.3  
Theorem  
 A subset K of a space X is z-Lindelof 
iff for each filterbase Ω on X such that I∩V≠φ 
for every countable intersection I of elements 
of Ω and every V∈CR(K) we have 
K∩adzΩ≠φ. 
Definition  
 A subset of a space  X is called a Gδ 
set iff it is an intersection of a countable 
number of open sets. 
Definition  
 A space X is a P-space[ 2 ] iff every 
Gδ set is open.  
Theorem 
 The following statements about a 
space X are equivalent. 

(a) X is z-Lindelof. 
(b) ∆(α,K)=adzα(CR(K)) for every P-

space Y, α∈m(X,Y) and  
     z-closed subset K of X. 

(c) ∆(α,K) is closed in Y for every P-
spaces Y, α∈m(X,Y) and  

     z-closed subset K of X. 
Proof  
 Similar to  the Theorem 4.2 
We conclude this paper by the following main 
characterization of Lindelof spaces  
Theorem 
 A space X is z-Lindelof iff for every 
P-space Y and z-closed graph multifunction 
α∈m(X,Y) the image of every z-closed set in 
X is closed in Y. 
Proof  
 Direct from previous theorem.  
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  z –الفضاءات المتراصة 
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  الخلاصة
وقد وضعت بعض التمييـزات بدلالـة    . z –  والفضاءات اللندلوفيةz–تم في هذا البحث دراسة الفضاءات المتراصة 

 كل دالة Yلكل فضاء تبولوجي :  متراصاً اذا وفقط اذا تحقق ما يأتي Xيكون الفضاء التبولوجي .أهم النتائج   . الدوال متعددة القيم    
 Xيكـون الفـضاء   .Y الى مجموعات مغلقة في X في z- تنقل المجموعات المغلقة Y الى   X على   z –متعددة القيم مغلقة البيان     

 تنقـل  Y الى   X  على    z –قة البيان    كل دالة متعددة القيم مغل     P    Y–لكل فضاء تبولوجي    :  اذا تحقق الشرط الاتي      z-لنديلوفي
  .Y الى مجموعات مغلقة في X  في z-المجموعات  المغلقة
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