ISSN: 1991-8941

New Characterizations of C-compact Spaces

Atallah Th. Al-Ani

Irbid National University- College of Science and Information Technology--Irbid-Jordan

Received:12/7/2008 Accepted:24/12/2008

Abstract: Some new properties and characterizations of C-compact spaces are given.

Kewords: C-compact spaces, compact space, H-closed space, multifunctions, q-closed graph.

Introduction and preliminaries.

C-compact spaces are defined in [4]. They form a class lies between compact spaces and quasi H-closed spaces. These spaces had been studied by several authors, as in [1], [2], [3] and [5]. A space X is C-compact iff every closed set is H-set. A subset A of X is H set in X iff every cover of A by open sets in X has a finite subcollection such that the closures of its members in X cover A. A space X is quasi Hclosed (H-closed) cover if it is H-set in X (and Hsusdorff). (X,τ) is maximal C-compact (minimal Hausdorff) iff every topology on X strictly finer (coarser) than τ is not C-compact (not Hausdorff) . A Hausdorff space X is called functionally compact [2] iff every continuous function on X into a Hausdorff space is closed. A multifunction $\alpha: X \rightarrow Y$ is a subset of X × Y, such that $\alpha(x) \neq \phi$ for every x \in X . α is called closed graph iff its graph is closed in $X \times Y$, α is called C-closed graph iff for every $(x,y) \in X \times Y \setminus G(\alpha)$, where $G(\alpha)$ is the graph of α , there is an open set V in X such that $x \in clV$ and an open set W in Y such that $y \in W$ and $(clV \times W) \cap G(\alpha) = \phi$. A multifunction $\alpha: X \rightarrow Y$ is called θ -closed graph iff its graph is θ -closed in X \times Y . A subset A of a space X is θ -closed iff A is equals to its θ closure $cl_{\theta} A = \{x \in X: \exists V \text{ open in } X, x \in V \}$ and $\overline{V} \cap A \neq f$. If $\alpha : X \to Y$ is a multifunction and $K \subset Y$ then $\alpha^{-1}(K) = \{x \in X :$ $\alpha(x) \cap K \neq \phi$. α is called upper semi continuous (u. s. c) iff $\alpha^{-1}(V)$ is open in X for every open set V in Y. By $\gamma(x)$ we mean {cl V : V open in X, $x \in V$ and by $\Gamma(x)$ we mean $\{clV : V \text{ open in } X, x \in cl V \}$, $\Gamma(K)$ will denote $\{c|V:V \text{ open and } K \subset c|V\}$. If Ω is a collection of subsets of X then ad $\Omega = \bigcap \{ c \mid K :$ $K \in \Omega$ the adherence of Ω , $ad_{\theta} \Omega = \bigcap \{cl_{\theta}K :$ $K \in \Omega$ the θ -adherence of Ω . The adherence of $\alpha(\Gamma(x))$ is denoted by $S(\alpha, x)$. And for $K \subset X$, $S(\alpha, K) = \bigcup \{ S(\alpha, x) : x \in K \}$. A subset A of X is

called regular closed in X iff A equals to the interior of its closure in X. The collection of all regular closed sets containing a subset K is denoted by $\nabla(K)$. The small inductive dimension ind X, $X \neq \phi$, is the smallest integer n > -1 such that for every $x \in X$ and every open set O containing x there is and open set V such that $x \in V \subset O$ and ind $b(V) \leq n -1$. b(V) denotes the boundary of V. Taking a closed set in the above definition instead of x we get the definition of large inductive dimension Ind X of X. If $X = \phi$, ind X = -1 = Ind X.

Some properties of C-compact spaces

We start with elementary properties, some of them are known. As their proofs are straightforward we omit them.

1. A C-compact space is maximal compact and minimal Hausdorff.

2. Every H-set in a Hausdorff space is closed.

3. A C-compact space in which every H-set is closed is maximal C-compact.

4. If every closed subspace of C-compact space is C-compact then the space is

compact.

5. C-compact space is functionally compact.

6. Completely regular functionally compact space is compact.

3- Characterization of C-compact spaces

The following theorem is easy to prove and needed further.

Theorem

- (a) The following are equivalent (a) X is C-compact
- (b) For every closed subset K of X and every filterbase W on X such that $F \zeta C^{1} f$ is satisfied for every $F \hat{I} W$ and regular closed set C containing K we have K $\zeta cad_{q} W$ ¹ f.
- (c) For every closed set K of X and every open filterbase W on X and VÇC¹ f is satisfied for every V

 \hat{I} W and regular closed set C containing K we have KÇ ad W ${}^{1}f$.

Theorem

The following are equivalent about spaces X and Y an u. s. c multifunction $\mathbf{a}: X \otimes Y$.

- (a) X is C-compact.
- (b) $S(a, K) = ad \ a \ (G(K))$ for each K closed in X
- (c) S(a, K) is closed in Y for each K closed in X.

Proof (a) \rightarrow (b) for each $x \in K$ we have $\alpha\Gamma(K) \subset \alpha(\Gamma(x))$.

Consequently $S(\alpha, K)=\cup \{ ad \alpha(\Gamma(x)) : x \in K \} \subset ad \alpha(\Gamma(K))$. Now let X be C-compact and K be closed in X. Then K is an H-set in X. Let $z \in ad\alpha(\Gamma(K))$. Let Δ be a local base at z. Then $z \in cl_Y acl_X(V)$ for each V open in X with $K \subset clV$. For $W \in \Delta$ we have $W \cap cl_Y acl_X(V) \neq f$ and since W is open in Y, we have $W \cap \alpha$ (clV) $\neq f$.

Then $\alpha^{-1}(W) \cap cl \quad \forall \neq f$. Thus by the above theorem we have $K \cap ad \quad \alpha^{-1}(K) \neq f$ for each $x \in K \cap ad\alpha^{-1}(\Delta)$ we have $x \in K$ and $x \in ad\alpha^{-1}(\Delta)$. So, $x \in clV$ for each V open in X such that $K \subset clV$ and $x \in \alpha^{-1}(W)$ so that $clV \cap \alpha^{-1}(W) \neq f$. Consequently $\alpha(clV) \cap W \neq f$ for each $clV \in \Gamma(x)$, and $W \in \Delta$. Thus $z \in S(\alpha, x)$. So that $S(\alpha, K) \subset S(\alpha, x)$ for some $x \in K$. Thus $S(\alpha, K)$ $= ad\alpha(\Gamma(K))$

(b) \Rightarrow (c) is obvious.

(c) \Rightarrow (a) let Ω be an open filter base on X such that $W \cap cl V \neq f$ is satisfied for every V open in X and $K \subset cl V$ with $W \in \Omega$. Let $y_o \notin X$. Let $Y=X \cup \{y_o\}$. Define a topology on Y be taking A open in Y iff A is open in X or $y_o \in A$ and there exists $W \in \Omega$ such that $W \subset A$. Let α : $X \rightarrow Y$ be identity function. Then α is continuous, and by hypothesis $S(\alpha, K)$ is closed in Y. So that $y_o \in S(\alpha, K)$. Thus $y_o \in$ $S(\alpha, x)$ for some $x \in K$. For such an x we have $cl V \cap (W \cup \{y_o\}) \neq f$, for every V open in X with $x \in cl V$ and $W \in \Omega$. Thus $cl V \cap W \neq \phi$ for every V open in X with $K \subset cl V$ and $W \in \Omega$. So $K \cap$ ad $\Omega \neq f$. Thus K is C-compact.

Corollary

X is C-compact iff a(K) is closed for every closed subset $K \tilde{I} X$ and a C-closed multifunction a:X@Y.

Proof If α is C-closed graph then $S(\alpha, K) = \alpha(K)$ and the result follows from the above theorem.

Theorem

X is *C*-compact iff every *q*-closed graph multifunction on *X* maps closed sets onto *q*-closed sets.

If $\alpha: X \rightarrow Y$ and X is C-compact then Proof difficult to prove not that it is $\alpha(K) = ad_{\theta}\alpha(\nabla(K))$ for every closed set K in X. Converselv suppose that X satisfies the condition in the statement of the theorem. Let Ω be a filterbase on X. Let $y_0 \notin X$, and $Y=X\cup\{y_o\}$. Topologize Y by taking every subset of X open and a set containing y_o is open iff it contains a member of Ω . Let $\alpha: X \rightarrow Y$ be the θ -closure in Y of the identity function of X. Then $cl_{\theta}(X) = ad_{\theta}\alpha(\nabla(X))$ in Y. Thus $y_0 \in \alpha(X)$. So there is $x \in X$ such that $\alpha(x)$ $= \{x, y_0\}$. Then if $V \in \gamma(x)$ in X and $F \in \Omega$, we get $V \cap F \neq \phi$. So that by the above theorem we have $X \cap ad_{\theta}\Omega \neq \phi$. Consequently, X is Ccompact.

Corollary

A Hausdorf space X is Ccompact iff every **q**-closed graph multifunction on X maps **q**-closed sets onto **q**-closed sets.

Proof In a Hausdorff C-compact space every closed set is θ -closed.

The following is a characterization of quasi Hclosed spaces which are C-compact. *Theorem*

> A quasi H-closed space X is C-compact iff the boundary of every closed (open) set is C-compact.

Proof If X is C-compact then the boundary of every closed is closed and consequently it is C-compact, conversely let X be quasi H-closed and K be closed in X. Let $\{V_{\lambda}\}$ be a cover of K by open sets in X. Then $\{V_{\lambda}\} \cup \{K^c\}$ is an open cover of X and so there is a finite subcollection $\{V_{I_1}, V_{I_2}, \dots, V_{I_n}, K^c\}$ the closures of its members cover X. On the other hand b(K) is C-compact and so there is a subcollection $\{V_{I_{1+1}}, V_{I_{2+2}}, \dots, V_{I_m}\}$ of $\{V_{\lambda}\}$ the closures of its members cover b(K). Then $\{V_{I_1}, V_{I_2}, \dots, V_{I_m}\}$ is a subcollection of $\{V_{\lambda}\}$ the closures of its members cover b(K). Then $\{V_{I_1}, V_{I_2}, \dots, V_{I_m}\}$ is a subcollection of $\{V_{\lambda}\}$ the closures of its members cover K. Thus X is C-compact. Application

We conclude this paper by the following application of C-compact spaces in dimension theory. *Theorem*

A quasi H-closed space X such that the boundary of every closed set is quasi H-closed with ind $X \ f \ n \ (Ind \ X \ f \ n)$ is C-compact. **Proof** The proof is by induction on n. If n = -1 then X= ϕ and so it is C-compact. Suppose that the result is true for n-1. For $x \in X$ (K closed in X) and G open in X with $x \in G(K \subset G)$ there is an open set V such that $x \in V \subset G$ (K \subset V \subset G) with

ind $b(V) \le n1$.(Ind $b(v) \le n$ so ind b(V) is C-compact. Thus X is C-compact.

The above result cannot be weakened by dropping the condition that the boundary of every closed set is H-closed as the following example shows

Example Let

$$Y = \{(\frac{1}{n}, \frac{1}{m}) : n, m \in N\} \cup \{(\frac{1}{n}, 0) : n \in N\} \subset R^{2}$$

, where R is the set of real numbers. Let $x_o \in R^2 \setminus Y$ and $X = Y \cup \{x_o\}$. Topologize X by taking a subset U of X open if $U \cap Y$ is open in Y (as a subspace of R^2) and if $x_o \in U$ then there exists $r \in N$ such that

$$U_r = \{ (\frac{1}{n}, \frac{1}{m}) : n \ge r, m \in N \} \subset U.$$

Now

$$b(U_r) = \{(\frac{1}{n}, 0) : n > r\},\$$

is an infinite discrete space. So it is not H-closed. Also, ind X = Ind X = 1.

References

[1] J.P. Clay and J.E. Joseph, *A Characterization of C-compact spaces*,

Proc. Amer. Math. Soc. 82(1981) 657-658.

[2] G. Goss and G. Viglino. *C-compact* and Functionally Compact spaces

Pacific J. Math., 37(1971) 77-681

M.P, Nayar, A Remark on C-compact

spaces, J. Austral. Math..

[3]

Soc. (series A) 64(1998). 327-328.

[4] G. Viglino, *C-compact spaces*, Duke J. Math., 36(1969) No 4, p.p. 671-674

[5] Yan-Kui Song , Some Topological Properties Weaker Than Lindelofness,

МSTEMATИЧКИ ВЕСНИК, 60 (2008), 173-180

تمييزات جديدة للفضاءات المتراصة – C

عطالله ثامر العاني

E-mail: atairaqi@yahoo.com

الخلاصة

تم في هذا البحث وضع بعض الصفات والتمييزات الجديدة للفضاءات المتراصة – C.