Ex-Modules and Related concepts Haibat K .Mohammadali Shaheed Jameel Al-Dulaimi Tikrit University-Education College Received: 3/4/2010 Accepted: 14/11/2010

Abstract: In this work , We introduce the concept of an Ex –Module as a generalization of the concept Q-Module. Many characterizations and properties of Ex-Modules are obtained .Some classes of modules which are Ex-Modules are given . We investigate conditions for Ex-Modules to be Q-Modules . Modules which are related to Ex-Modules are studied . Furthermore , characterizations of Ex-Modules in some classes of modules are obtain

Key words: Ex -Module, generalization, Q-Module, characterizations, properties

Introduction

Throughout this paper, R will denoted an associative ring with identity, and all R-modules are unitary (left) R-modules . An R-module M is said to be a Q-Module if every submodule of M is a quasiinjective[2.]. An R-module, M is called an extending if every submodule of M is an essential in a direct summand of M [4]. An R-module M is called uniform, if every non submodule of M is an essential in M, where a non-zero submodule N of M is essential in M if $N \cap K \neq (0)$ for each non zero submodule K of M, which is equivalent to say that every non-zero element $m \in M$ there exists a $\in R$ non-zero element r such that $0 \neq mr \in N[6].$ A submodule N of an Rmodules M is called a fully invariant, if $f(N) \subseteq N_{\text{for each}} f \in End_R(M)[15].$

§1: Basic properties of Ex-Module

In this section, we introduce the definition of Ex-Modules and give examples, some basic properties and characterizations of this concept.

Definition 1.1

An R-module M is called an Ex-Module, if every submodule of M is extending.

Example and Remarks 1.2

- 1. Every uniform R-module is an Ex-Module.and an R-module M is uniform if every non-zero submodule of M is an essential in M [6] .or every uniform module is an Ex-Module , but the converse is not true . Since Z_6 as Zmodule , but not uniform .
- 2. . Every simple R-module is an Ex-Module.
- 3. \mathbb{Z}_{p}^{∞} as a Z-module is an Ex-Module

- 4. Z_n as a Z-Module for $n \ge 1$ is an Ex-Module.
- 5.. Any submodule (direct summand) of an Ex-Module is an Ex-Module.
- 6. Z as Z-module is an Ex-module
- 7. The direct sum of two distinct Ex-Modules need not to be an Ex-Module for example Z-module Z₂ and Z₄ are an Ex-Module,
 - but $Z_2 \bigoplus Z_4$ is not an Ex-Module, since
 - $Z_2 \bigoplus Z_4$ itself is not extending Z-module.
- 8. If M is an Ex-Module, then $M \bigoplus M$ is not necessary an Ex-Module, For example, if we take $M=Z_4$ as a Z-module, M is Ex-module,

but $M \oplus M = Z_4 \oplus Z_4$ is not Ex-Module,

- since there exists a submodule $\{\overline{0}, \overline{2}\} \oplus Z_4$
- of $Z_2 \oplus Z_4$ which is isomorphic to
- $Z_2 \bigoplus Z_4$ is not an extending Z-module.

Before we the give main result of this section ,we introduce the following lemma .

Lemma 1.3

Any fully invariant submodule of an extending module is an extending.

Proof.

let N be a fully invariant submodule of M, and A is any submodule of N, then A is a submodule of M. since M is an extending module, then, there exists a direct summand K of M such that A is essential in K. That is $M = K \bigoplus L$, where L is any submodule of M. Since N is a fully invariant submodule of M, then $N = (K \cap N) \bigoplus (L \cap N)$. That is $K \cap N$ is a direct summand of N since A is essential in K and N is essential in N ,then $A = A \cap N$ is essential in

 $K \cap N$. Hence N is an extending submodule of M.

Recall that an R-module M is duo module, if every submodule of M is a fully invariant [15].

Proposition 1.4

Every duo extending module is an Ex-Module. **<u>Proof</u>**

It follows directly by lemma 1.3

Proposition 1.5

If M is an extending module in which all its submodules are annihilator, then M is an Ex-Module. **Proof**

Let K be a submodule of M. then K is an annihilator submodule of M. That is $K = ann_M(I)$ for some ideal I of R. We claim that K is a fully invariant submodule of M. Let $f \in End_R(M)$, thus (0) = f(IK) = I f(K) and, hence $f(K) \subseteq ann_R(I) = K$. That is K is a fully invariant submodule of M. By lemma 1.3, K is an extending submodule of M. Hence M is an Ex-Modul

Theorem 1.6

Let M be an R-module. Then the following statements are equivalent.

- 1) M is an Ex-Module.
- 2) M is an extending and every essential submodule of M is a fully invariant in M.
- 3) Every essential submodule of M is an extending.

 $\underline{\operatorname{Proof}}(1) \Longrightarrow (2)$

Let N be any essential submodule of M, then N is an extending . Now , let $f \in End_R(M)$ and $0 \neq n \in N$, that is n = 1. $n \in N$, $f(n) = f(1 \cdot n) = 1 \cdot f(n) \in N$, because N is an essential in M. That is $f(n) \in N$. Hence $f(N) \subseteq N$. Therefore N is a fully invariant submodule in M.

$(2) \Rightarrow (3)$

Let N be an essential submodule of M, then by hypothesis N is a fully invariant in M. Hence by lemma 1.3 N is an extending submodule of M. (3) \Rightarrow (1)

Let N be a submodule of M, then $N \oplus C$ is an essential in M where C is a relative complement of N in M[6]. Hence by hypothesis $N \oplus C$ is an extending submodule of M. which implies that N is an extending [4]. Hence M is an extending

Recall that a submodule N of an R-module M is closed in M, if N has no proper essential extension [6].

The following theorem is another characterization of an Ex-Module.

Theorem 1.7

Let M be an R-module , and N is any submodule of M, then the following statements are equivalent.

1) M is an Ex-Module.

2) Every closed submodule of N is a direct summand of N.

3) If A is a summand of the injective hull E(N) of

N, then $A \cap N$ is a summand of N.

$$\frac{\underline{\text{Proof}}}{(1) \Rightarrow (2)}$$

Since N \subseteq M, N id extending .Hence the result follows by [16, prop 2.4] is hold .

 $(2) \Rightarrow (3)$ Let A is a summand of E(N), then $E(N) = A \oplus B$ where B is a submodule of E(N). To prove that $A \cap N$ is closed in N. Suppose that $A \cap N$ is essential in K where K is a submodule of N, To prove that $A \cap N$ is closed in N. Suppose that $A \cap N$ essential K \subseteq N, so we must prove $K=N(A \cap N)$ has no proper essential extension in N), and let $k \in K$. Thus k = a+b, where a $\in A$, b $\in B$. Now if a $\notin K$, then b $\neq 0$. But Ν is essential in E(N)and $0 \neq b \in B \subseteq E(N)$. Therefore, there exists $r \in R$ such that $0 \neq rb \in N$. Now, rk = ra + rbhence $ra = rb - rk \in N \cap A \subseteq K$. and, Thus $rb = rK - ra \in B \cap K$. But $A \cap N$ is essential in K, so $(\mathbf{0}) = (A \cap N) \cap B$ is essential in $K \cap B$ and, hence $K \cap B = (0)$. Then rb = 0which is a contradiction a $\notin K$. Thus $A \cap N$ is closed in N, and hence by hypothesis $A \cap N$ is a summand of N.

 $(3) \Longrightarrow (1)$ Let N be a submodule of M, and let A be a submodule of N, then $A \oplus B$ is essential in N [6], where B is a relative complement of A in N. Since N is essential in E(N), then $A \oplus B$ is essential in E(N). Thus E ($A \oplus B$) =E(A) \oplus E(B). Since E(A) is a summand of E(N), then $E(A) \cap N$ is a summand of N. Now, $A = A \cap N$ is essential in $E(A) \cap N$ [6] and $E(A) \cap N$ is a summand of N. Hence N is an extending. Therefore M is an Ex-Module.

§ 2:Modules imply Ex-Modules

In this section we establish modules which imply Ex-Modules.

Recall that an R-module M satisfies Bares' criterion, if every submodule of M satisfies Bares' criterion ,where we say that a submodule N of M satisfies Bares' criterion, if for each R-homomorphism $f: N \longrightarrow M$, there exists $r \ in R$ such that $f(n) = rn, \forall n \in N$ [1].

Proposition 2.1

If M is an extending module which satisfies Bear's criterion, then M is an Ex-Module. **Proof**

Let K be a submodule of M, then K satisfies Bears' criterion, hence K is a fully invariant submodule of M (since for each $f \in End_R(M)$ and for each $k \in K$, $f(k) = \operatorname{rk} \in K$, for some $r \in R$. That is $f(k) \in K$. Which implies that $f(K) \subseteq K$). By lemma 1.3 K is an extending. Hence M is an Ex-Module.

Recall that a submodule N of an R-module M is annihilator, if $N = ann_M(I)$ for some ideal I of R [15].

Proposition 2.2

If M is extending module such that every cyclic submodule of M is a fully invariant in M. Then M is an Ex-Module.

Proof.

Let K be a submodule of M., then for each $f \in End_R(M)$ and for each $x \in K$, we have $f((x)) \subseteq (x) \subseteq K$. Thus, $f(x) \in K$. Hence $f(K) \subseteq K$. That is K is a fully invariant in M. By lemma 1.3 K is an extending submodule of M. Therefore, M is an Ex-Module.

Proposition 2.3

If M is an extending module such that every submodule of M is closed, then M is an Ex-Module. **Proof**

Let K be a submodule of M, then K is closed submodule and K is a direct summand of M, hence K is an extending [4]. Therefore M is an Ex-Module. The following proposition shows that under a

certain condition Ex-Modules and uniform modules are equivalent.

Proposition 2.4

Let M be an indecomposable R-module. Then M is uniform if and only if M is an Ex-Module. **Proof**

 (\Rightarrow) By examples and remarks 1.2

(⇐) directly from [16,pro 2., p20], Since every Ex-Module is extending. Hence M is a uniform.

Recall that an R-module M is torsion free, if $\mathcal{T}(M) = \{m \in M : rm = 0 \text{ for } \}$

some $r \in R$ = (0) [6].

Proposition 2.5

Let M be a torsion free R-module over principle ideal domain R, such that every submodule of M is a finitely generated, then M is an Ex-Module. **Proof**

Let N be a submodule of M ,and let A be a submodule of N, and C be a submodule of N

containing A such that $\frac{c}{d}$ is a torsion free submodule of $\frac{N}{4}$. Since N is a finitely generated, then $\frac{N}{4}$ is a finitely generated. Hence by the third isomorphism theorem $\frac{N}{c} \cong \frac{\overline{A}}{\underline{c}}$. But $\frac{N}{c}$ is a finitely generated and torsion free R-submodule. Then $\frac{N}{c}$ is a free [7]. Now, consider the following short exact sequence $0 \rightarrow C \xrightarrow{i} N \xrightarrow{f} \frac{N}{c} \rightarrow 0$ where *i* is the inclusion mapping and f is the natural epimorphism. Since $\frac{N}{c}$ is a free R-module, the sequence is split [7]. Thus, C is a direct summand of N .Now let $0 \neq y \in C$, and $y \notin A$, then $y + A \neq A$, but $\frac{c}{A}$ is torsion submodule of $\frac{N}{4}$, so there exists $0 \neq r \in R$, such that ry + A = A. But N is a torsion free, then $0 \neq ry \in A$. Thus, A is essential in C and C is a direct summand of A in N. Hence N is an extending. Therefore M is an Ex-Module. Recall that An R-module M is π -injective, if $f(M) \subseteq M$ for every idempotent $f \in End(E(M))$ [4].equivalent, M is π -inj \leftrightarrow M is extending +C₃ **Proposition 2.6**

Let M be an R-module such that every submodule of M is a π -injective, then M is an a Ex-Module.

Proof

Since π —inj \hookrightarrow M is extending +C₃

Let every submodule is π -injective .we get immediately every submodule is extending . Hence M an Ex-Module Module.

Recall that An R-module M is a projective, if for each epimorphism $g: A \longrightarrow B$ (where A, B be Rmodules) and for each R-homomorphism $f: M \longrightarrow B$, there exists an R-homomorphism $h: M \longrightarrow A$ such that goh = f [7].

Proposition 2.7

Let M be an R-module and N is any submodule of M such that for every summand A of E(N),

A + N is a projective, then M is an Ex-Module.

Proof

Let N be a submodule of M, and A be a summand of E(N). To prove that $A \cap N$ is a summand of N. Consider the following short exact sequences.

 $0 \rightarrow A \cap N \xrightarrow{i_1} N \xrightarrow{f_1} \frac{N}{A \cap N} \rightarrow 0..(1)$

 $\mathbf{0} \rightarrow A \stackrel{i_2}{\rightarrow} A + N \stackrel{f_2}{\rightarrow} \stackrel{A+N}{A} \rightarrow 0 .. (2)$

Where i_1, i_2 are the inclusion homomorphism and f_1, f_2 are the natural epimorphism. By the second isomorphism theorem

isomorphism theorem $\frac{N}{A \cap N} \cong \frac{A + N}{A}$. It is clear A is a summand of

A + N. Thus the second sequence splits. Since A + N is a projective, then $\frac{N}{A \cap N} \cong \frac{A+N}{A}$ is a projective. Hence the first sequence splits. Thus $A \cap N$ is a summand of N. Hence by theorem 1.5

M is an Ex-Module.

Recall that An R-module M is a P-Module, if every submodule of M is a pseudo-injective. [11] .

The following results show that the P-Modules implies to Ex-Modules.

Proposition 2.8

Any P-Module over a principle ideal domain is an Ex-Module.

Proof

Let N be a submodule of M, then N is a pseudoinjective, then N is a quasi-injective [14]. Hence N is an extending [8]. Therefore M is an Ex-Module.

Proposition 2.9

Any P-Module over a Dedekind domain is an Ex-Module

Proof

Let N be a submodule of M, then N is a pseudoinjective . Thus N is a quasi-injective [13], then N is an extending [8] . Hence M is an Ex-Module.

§3:Ex-Modules and Q-Modules

In this section the relation between Ex-Modules and Q-Modules are studied. Since every a quasiinjective R-module is an extending but the converse is not true [8], then every Q-Module is an Ex-Module, but the converse is not true ,since Z as Zmodule is an Ex-Module but it is not a Q-Module .Thus we put a conditions for an Ex-Module to be Q-Module.

proposition 3.1

Let M be a non-singular P-Module, then M is a Q-Module if and only if M is an Ex-Module.

Proof

(\Rightarrow) Trivial.

(\Leftarrow) Let N be a submodule of M, then N is a Pseudo-injective, since M is a non-singular, then N is a non-singular [8]. To prove that N is a quasiinjective, let A be a submodule of N and $f: A \rightarrow N$ be an R-homomorphism. Since M is an Ex-Module, then A is an extending submodule of M, then $A = B \bigoplus C$ where B, C are a direct summand of A such that Kerf is an essential submodule in C. Since $\frac{A}{kerf}$ is embeded in N and N is a non-singular, then $\frac{A}{kerf}$ is a non-singular, so, kerf is a closed submodule of A. That is $A = B \oplus kerf$. It is clear that f is restricted to B which is a monomorphism. Since N is an extending, then $N = B_1 \oplus D$ where B is an essential in B_1 . Since B_1 is a pseudo-injective, then f restricted to B extended to a homomorphism $g: B_1 \to B_1$. For any $x \in N$, we have x = b + d, where $b \in B_1$ and $d \in D$. Define a mapping $h: N \to N$ by setting h(x) = g(b). Then it is clear that h is an R-homomorphism of $N \to N$ that extends f. Thus, N is a quasi-injective. Hence M is a Q-Module.

corollary 3.2

Let M be a non-singular Ex-Module, then M is a Q-Module if and only if M is a P-Module.

 $\frac{Proof}{(\Longrightarrow)} \text{ See [11]}$

(⇐) Follows from proposition 3.1

The following result is another sufficient condition for an Ex-Module to become Q-Module.

proposition 3.3

If M is a P-Module over Noetherian ring, then M is a Q-Module if and only if M is an Ex-Module.

Proof

(⇒) Trivial.

(\Leftarrow) Let N be a submodule of M, then N is an extending submodule of M. Thus N is a direct sum of a uniform submodule of M [10]. Since M is a P-Module, then N is a pseudo-injective. But a direct summand of a pseudo-injective is a pseudo-injective, therefore N is a direct sum of a uniform pseudo-injective submodule. Hence N is a quasi-injective [13]. Thus M is a Q-Module.

Corollary 3.4

If M is an Ex-Module over a Noetherian ring, then M is a Q-Module if and only if M is a P-Module.

Proof

(**⇒**) See [11]

(\Leftarrow) By proposition 3.3 .

§4:Ex-Modules and multiplication modules

An R-module M is called multiplication module, if every submodule of M is of the from IM for some ideal I of R [3]. In this section we study the relation of multiplication modules with Ex-Modules We preface our section by the following theorem which gives the relation between Ex-Modules over R and Ex-Modules over S=End_R(M) .

Theorem 4.1

If M is a multiplication R-module, then M is an Ex-Module over R if and only if M is an Ex-module over S where $S = End_R(M)$.

<u>Proof</u> (⇒)

Let N be S-submodule of M. It is clear that N is an R-submodule of M , so that N is extending. Hence M is an Ex-Module over S .

(\Leftarrow) Since M is a multiplication R-module, then $S = End_R(M)$ is commutative ring and each Rsubmodule of M is an S-submodule [5]. Let N be Rsubmodule of M, so N is an S-submodule of M. Since M is an Ex-Module over S, then N is an extending, so M is an Ex-module over R.

The following proposition shows that the two concepts Ex-Modules and extending modules are equivalent in the class of multiplication modules.

Proposition 4.2

If M is a multiplication R-module, then M is an Ex-Module if and only if M is an extending. **Proof**

(\Leftarrow) Let N be a submodule of M. Then N = IMfor some ideal I of R. Let $f \in End_R(M)$, then $f(N) = f(IM) = I f(M) \subseteq IM = N$. That is N is a fully invariant submodule of M. Since M is an extending, then by lemma 1.3 N is an extending. Hence M is an Ex-Module.

Theorem 4.3

Let M be a multiplication module with $ann_R(M)$ is a prime ideal of R. Then M is an Ex-Module if and only if every a quasi- invertible submodule of M is an extending.

<u>Proof</u>

Module.

(\Leftarrow) Let N be a submodule of M, then $N \oplus K$ is essential submodule of M, where K is the relative complement of N in M. Then $N \oplus K$ is a quasiinvertible submodule of M. Since N \oplus M is essential in M,N \oplus M is quasi in [9,Th 3.11,P.18] which implies that $N \oplus K$ is a quasi-invertible submodule of M. Hence by [4, p.55]. N is an extending submodule of M.. Therefore M is an Ex-

<u>§5:characterizations of Ex-Modules in some</u> <u>types of modules.</u>

In this section, we give characterizations of an Ex-Module in some types of modules.

The following theorem gives many characterization of an Ex-Module in class of non-singular modules $\ .$ Theorem 5.1

Let M be a non-singular R-module. Then the following statements are equivalent.

1.M is an Ex-Module.

2. Every a quasi-invertible submodule of M is an extending.

3. Every dense submodule of M is an extending.

Proof

 $(1) \Rightarrow (2)$ Trivial

 $(2) \Rightarrow (3)$

Let N be a dense submodule of M, then N is an essential submodule of M [8]. We claim that N is a quasi-invertible submodule of M. Let $f \in Hom_R\left(\frac{M}{N \oplus K}, M\right)$, $f \neq 0$. Thus there exists $x \in M$, such that $f(x + N) = m \neq 0$, where $m \in M$. Let $r \in R$ and $r \notin ann_R(M)$. Hence, $rx \notin N$. Since N is an essential submodule of M, then there exists a non-zero element $s \in \mathbb{R}$ such that srx is a non-zero element of N. Thus 0 = f(srx + N) = sr f(x + N) = srm, this implies that $sr \in ann_R(m)$. Therefore $ann_R(m)$ is an essential ideal of R. Since M is a non-singular, then f = 0. Therefore m = 0and, hence $Hom_R\left(\frac{M}{N},M\right) = 0$, which implies that N is a qausi-invertible submodule of M. Hence N is an extending. $(3) \Rightarrow (1)$ Let N be a submodule of M, then

 $N \oplus K$ is an essential submodule of M, where K is the a relative complement of N in M. Since M is a non-singular, then $N \oplus K$ is a dense submodule of

M [8]. Hence $N \bigoplus K$ is an extending submodule of M. Hence N is an extending submodule of M [4]. Therefore M is an Ex-Module.

Recall that the Jacobson radical of an R-module M denoted by J(M), is defined to be intersection of all maximal submodule of M .[6]

Theorem 5.2

Let M be an R-module such that J(End(M)) = (0), then M is an Ex-Module if and only if M is an extending and every a quasi-invertible submodule of M is an extending. **Proof**

(\Leftarrow) Let N be a submodule of M, then $N \bigoplus K$ is an essential submodule of M (where k is a relative complement of N in M). We claim that $N \bigoplus K$ is a quasi-invertible submodule of M. Let $f \in Hom_R(\frac{M}{N \bigoplus K}, M)$ and $f \neq 0$. Define $g = f \circ \pi$ where $\pi: M_{\longrightarrow \frac{M}{N \bigoplus K}}$ is natural homomorphism. Hence $g \in Snd_R(M)$ and $g \neq 0$ and $N \bigoplus K \subseteq kerg$. Since $N \bigoplus K$ is an essential submodule of M and hence $g \in J(End_R(M))$ then g = 0, this implies that f = 0, this is a contradiction. Therefore $Hom_R(\frac{M}{N \bigoplus K}, M) = (0)$, and hence $N \bigoplus K$ is a quasi-invertible submodule of M. Thus $_{N \bigoplus K}$ is an extending. Hence N is an extending [4]. Therefore M is an Ex-Modul

REFERENCES

- [1]. Abbas M.S. "On fully stable modules" Ph.D. thesis, Univ. of Baghdad, 1990.
- [2]. AL-Rikaby, H. K. "Q-Modules" Ph.D. thesis, Univ. of Tikrit, 2005.
- [3]. Barnard, A. "Multiplication modules" J. of Algebra, 71, (1981), 174-178.
- [4]. Dung, N. V., Huynh, D. V., Simith, P. F. and Wisbauer R. "Extending Modules" Pitman Research Note in Mathematics series 313, Longman, New-York, 1994.
- [5]. EL-Bast, Z. A. and Simth, P. F. "Multiplication modules" comm. In Algebra, 16 (4), (1988), 755-795.
- [6]. Goodearl, K. R. "Ring theory" Marcel Dekker, New-York, 1976.
- [7]. Kasch, F. "Modules and Rings" Acad. Press, London, 1982.
- [8]. Lam, T. Y. "Lecture on modules and ring" Springer Verlag, New-York, 1998.
- [9]. Mijbass, A. S. "Quasi-Dedekind modules" Ph.D. thesis, Univ. of Baghdad, 1997.

- [10]. Okada, M. "On the decomposition of extending modules" Math. Japonica, 29 NO. 6, (1984) 939-941.
- [11]. Shalaby, M. A. "P-Modules" Msc. thesis, Univ. of Tikrit, 2008.
- [12]. Singh, S. and Jain, S. K. "On pseudoinjective modules and self-pseudoinjective rings" J. of Math. Sci. 2, (1967), 23-31.
- [13]. Singh, S. and Wason, K. "Pseudoinjective modules over commutative rings" J. of Indian, Math. Soc. 34, (1970), 61-65.
- [14]. Surjeet, S. "On pseudo-injective modules" Riv. Math., Univ. Parma, 2(9), (1968), 59-65.
- [15]. Weakly, W. D. "Modules whose distinct submodules are not isomorphic" Comm. Algebra, 15, (1987), 1569-1587.
- [16]. S.HMohamed and B.J.Muller ,Continuous and Discrete Modules ,London Math .Soc LNS147 Cambridge Unuv . Press, Cambridge , 1990.

المقاسات من النمط - EX و مفاهيم أخرى

هيبة محمد كريم شهيد جميل الدليمي E.mail: <u>scianb@yahoo.com</u>

الخلاصة:قدمنا في هذا البحث مفهوم جديد سمي المقاسات من النمط – E x كتعميم للمقاسات من النمط – Q . العديد من التشخيصات والصفات لهذا المفهوم وجدت . المقاسات التي علاقة مع المقاسات من النمط – Ex درست . فضلا عن ذلك تشخيصات أخرى للمقاسات من النمط – Ex في بعض أصناف المقاسات وجدت . العلاقة بين المقاسات من النمط – E والمقاسات من النمط – Q أعطيت .