Ex-Modules and Related concepts
 Haibat K .Mohammadali
 Shaheed Jameel Al-Dulaimi
 Tikrit University-Education College
 Received: 3/4/2010
 Accepted: 14/11/2010

Abstract

In this work, We introduce the concept of an Ex -Module as a generalization of the concept QModule. Many characterizations and properties of Ex-Modules are obtained .Some classes of modules which are Ex-Modules are given. We investigate conditions for Ex-Modules to be Q-Modules . Modules which are related to Ex-Modules are studied. Furthermore, characterizations of Ex-Modules in some classes of modules are obtain

Key words: Ex -Module, generalization, Q-Module, characterizations, properties

Introduction

Throughout this paper, R will denoted an associative ring with identity, and all R-modules are unitary (left) R-modules. An R-module M is said to be a Q-Module if every submodule of M is a quasiinjective[2.]. An R-module, M is called an extending if every submodule of M is an essential in a direct summand of M [4] . An R-module M is called uniform, if every non submodule of M is an essential in M, where a non-zero submodule N of M is essential in M if $N \cap K \neq(0)$ for each non zero submodule K of M , which is equivalent to say that every non-zero element ${ }^{m} \in M$ there exists a non-zero element $r \in R$ such that $0 \neq m r \in N[6]$. A submodule N of an Rmodules M is called a fully invariant, if $f(N) \subseteq N$ for each $f \in \operatorname{End}_{R}(M)[15]$.

§1: Basic properties of Ex-Module

In this section, we introduce the definition of ExModules and give examples, some basic properties and characterizations of this concept.

Definition 1.1

An R-module M is called an Ex-Module, if every submodule of M is extending.

Example and Remarks 1.2

1. Every uniform R-module is an ExModule.and an R -module M is uniform if every non-zero submodule of M is an essential in M [6] .or every uniform module is an Ex-Module , but the converse is not true . Since Z_{6} as Z module, but not uniform .
2. . Every simple R-module is an Ex-Module.
3. Z_{p}^{∞} as a Z-module is an Ex-Module
4. Z_{n} as a Z-Module for $\mathrm{n}>1$ is an ExModule.
5.. Any submodule (direct summand) of an Ex-Module is an Ex-Module.
5. Z as Z -module is an Ex-module
6. The direct sum of two distinct Ex-Modules need not to be an Ex-Module for example Z-module Z_{2} and Z_{4} are an Ex-Module, but $Z_{2} \oplus Z_{4}$ is not an Ex-Module, since $Z_{2} \oplus Z_{4}$ itself is not extending Zmodule.
7. If M is an Ex-Module, then $M \oplus M$ is not necessary an Ex-Module, For example, if we take $\mathrm{M}=\mathrm{Z}_{4}$ as a Z -module, M is Ex-module, but $M \oplus M=Z_{4} \Theta Z_{4}$ is not Ex-Module, since there exists a submodule $\left\{\overline{0}_{r} \overline{2}\right\} \Theta Z_{4}$ of $Z_{2} \oplus Z_{4}$ which is isomorphic to $Z_{2} \oplus Z_{4}$ is not an extending Z-module.
Before we the give main result of this section ,we introduce the following lemma .

Lemma 1.3

Any fully invariant submodule of an extending module is an extending.

Proof.

let N be a fully invariant submodule of M , and A is any submodule of N, then A is a submodule of M. since M is an extending module , then, there exists a direct summand K of M such that A is essential in K . That is $M=K \Theta L$, where L is any submodule of M . Since N is a fully invariant submodule of M , then $N=(K \cap N) \Theta(L \cap N)$.That is $K \cap N$ is a direct summand of N since A is essential in K and N
is essential in N ,then $A=A \cap N$ is essential in $K \cap N$. Hence N is an extending submodule of M .
Recall that an R-module M is duo module, if every submodule of M is a fully invariant [15].

Proposition 1.4

Every duo extending module is an Ex-Module.

Proof

It follows directly by lemma 1.3

Proposition 1.5

If M is an extending module in which all its submodules are annihilator, then M is an Ex-Module. Proof

Let K be a submodule of M. then K is an annihilator submodule of M . That is $K=\sigma n n_{M}(l)$ for some ideal I of R . We claim that K is a fully invariant submodule of M . Let $f \in \operatorname{End}_{R}(M)$, thus $(0)=f(I K)=\mathrm{I} \mathrm{f}(K)$ and, hence $\mathrm{f}(K) \subseteq \mathrm{amm}_{R}(D)=K$. That is K is a fully invariant submodule of M. By lemma 1.3 , K is an extending submodule of M. Hence M is an ExModul
Theorem 1.6
Let M be an R -module. Then the following statements are equivalent.

1) $\quad \mathrm{M}$ is an Ex-Module.
2) $\quad M$ is an extending and every essential submodule of M is a fully invariant in M.
3) Every essential submodule of M is an extending.
Proof (1) $\Rightarrow(2)$
Let N be any essential submodule of M , then N is an extending . Now, let $f \in E n d_{R}(M)$ and $0 \neq n \in N$, that is $n=1$.
$n \in N$,
$f(n)=f(1 \cdot n)=1 \cdot \tilde{f}(n) \in N$, because N is an essential in M. That is $f(n) \in N$. Hence
$f(N) \subseteq N$. Therefore N is a fully invariant submodule in M .
$(2) \Longrightarrow(3)$
Let N be an essential submodule of M , then by hypothesis N is a fully invariant in M . Hence by lemma 1.3 N is an extending submodule of M .
(3) \Rightarrow (1)

Let N be a submodule of M , then $N \Theta C$ is an essential in M where C is a relative complement of N in M[6]. Hence by hypothesis $N \oplus C$ is an extending submodule of M . which implies that N is an extending [4]. Hence M is an extending
Recall that a submodule N of an R -module M is closed in M , if N has no proper essential extension [6].
The following theorem is another characterization of an Ex-Module.

Theorem 1.7

Let M be an R -module, and N is any submodule of M, then the following statements are equivalent.

1) M is an Ex-Module.
2) Every closed submodule of N is a direct summand of N .
3) If A is a summand of the injective hull $E(N)$ of N , then $A \cap N$ is a summand of N .

Proof

$(1) \Longrightarrow(2)$
Since $N \subseteq M, N$ id extending .Hence the result follows by [16, prop 2.4] is hold.
$(2) \Longrightarrow(3)$ Let A is a summand of $E(N)$, then $E(N)=A \oplus B$ where B is a submodule of $E(N)$. To prove that $A \cap N$ is closed in N . Suppose that $A \cap N$ is essential in K where K is a submodule of N , To prove that $A \cap N$ is closed in N . Suppose that $A \cap N$ essential $\mathrm{K} \cong \mathrm{N}$, so we must prove $\mathrm{K}=\mathrm{N}(A \cap N$ has no proper essential extension in N), and let $k \in \mathrm{~K}$. Thus $k=\mathrm{a}+\mathrm{b}$, where $\mathrm{a} \in \mathrm{A}, \mathrm{b} \in \mathrm{B}$. Now if $\mathrm{a} \in K$, then $\mathrm{b} \neq 0$. But N is essential in $E(N)$ and $0 \neq b \in B \subseteq E(N)$. Therefore, there exists $r \in R$ such that $0 \neq r b \in N$. Now, $r k=r a+r b$ and, hence $r a=r b-r k \in N \cap A \subseteq K$. Thus $r b=r K-r a \in B \cap K$. But $A \cap N$ is essential in K , so $(0)=(A \cap N) \cap B$ is essential in $K \cap B$ and, hence $K \cap B=(0)$. Then $r b=0$ which is a contradiction a \mathbb{E}. Thus $A \cap N$ is closed in N , and hence by hypothesis $A \cap N$ is a summand of N .
$(3) \Rightarrow(1)$ Let N be a submodule of M , and let A be a submodule of N , then $A \Theta B$ is essential in N [6], where B is a relative complement of A in N . Since N is essential in $E(N)$, then $A \oplus B$ is essential in $E(N)$. Thus $\mathrm{E}(\mathrm{A} \oplus \mathrm{B})=\mathrm{E}(\mathrm{A}) \Theta$ $\mathrm{E}(\mathrm{B})$. Since $E(A)$ is a summand of $E(N)$, then $E(A) \cap N$ is a summand of N . Now, $A=A \cap N$ is essential in $E(A) \cap N[6]$ and $E(A) \cap N$ is a summand of N .Hence N is an extending. Therefore M is an Ex-Module.

§ 2:Modules imply Ex-Modules

In this section we establish modules which imply Ex-Modules.
Recall that an R-module M satisfies Bares' criterion, if every submodule of M satisfies Baers criterion , where we say that a submodule N of M satisfies Baers criterion, if for each R-homomorphism
$f: N \rightarrow M, \quad$ there exists γ in R such that $f(n)=m n, \forall n \in N[1]$.

Proposition 2.1

If M is an extending module which satisfies Bear's criterion, then M is an Ex-Module.
Proof
Let K be a submodule of M, then K satisfies Bears' criterion, hence K is a fully invariant submodule of M (since for each $\mathrm{f} \in E n d_{R}(M)$ and for each $\mathrm{k} \in \mathrm{K}, f(k)=\mathrm{rk} \in K$, for some $r \in R$. That is $f(k) \in K$. Which implies that $f(K) \subseteq K) . \quad$ By lemma 1.3 K is an extending. Hence M is an Ex-Module.
Recall that a submodule N of an R-module M is annihilator, if $N=\sigma \pi n_{M}(l)$ for some ideal I of R [15].

Proposition 2.2

If M is extending module such that every cyclic submodule of M is a fully invariant in M . Then M is an Ex-Module.

Proof.

Let K be a submodule of M., then for each $f \in \operatorname{End}_{R}(M)$ and for each $\mathrm{x} \in \mathrm{K}$, we have $f((x)) \subseteq(x) \subseteq K$. Thus, $f(x) \subseteq K$. Hence $f(K) \cong \mathrm{K}$. That is K is a fully invariant in M . By lemma 1.3 K is an extending submodule of M . Therefore, M is an Ex-Module.

Proposition 2.3

If M is an extending module such that every submodule of M is closed, then M is an Ex-Module.
Proof
Let K be a submodule of M , then K is closed submodule and K is a direct summand of M, hence K is an extending [4]. Therefore M is an Ex-Module.
The following proposition shows that under a certain condition Ex-Modules and uniform modules are equivalent.

Proposition 2.4

Let M be an indecomposable R-module. Then M is uniform if and only if M is an Ex-Module.

Proof

(\Longrightarrow) By examples and remarks 1.2
(三) directly from [16,pro 2., p20] ,Since every Ex-Module is extending .Hence M is a uniform .
Recall that an R -module M is torsion free, if $T(M)=\{m \in M: r m=0$ for
some $r \in R]=(0)[6]$.

Proposition 2.5

Let M be a torsion free R-module over principle ideal domain R, such that every submodule of M is a finitely generated, then M is an Ex-Module.

Proof

Let N be a submodule of M , and let A be a submodule of N , and C be a submodule of N
containing A such that $\frac{C}{A}$ is a torsion free submodule of $\frac{N}{A}$. Since N is a finitely generated, then $\frac{N}{C}$ is a finitely generated. Hence by the third isomorphism theorem $\frac{N}{C} \cong \frac{\frac{N}{A}}{\frac{C}{A}} . B u t \frac{N}{C}$ is a finitely generated and torsion free R-submodule. Then $\frac{N}{c}$ is a free [7]. Now, consider the following short exact sequence $0 \rightarrow \mathrm{C} \xrightarrow{i} \mathrm{~N} \xrightarrow{f} \frac{N}{c} \rightarrow 0$ where i is the inclusion mapping and f is the natural epimorphism. Since $\frac{N}{C}$ is a free R-module, the sequence is split [7]. Thus, C is a direct summand of N .Now let $0 \neq y \in C$, and $y \in A$, then $y+A \neq A$, but $\frac{C}{A}$ is torsion submodule of $\frac{N}{A}$, so there exists $0 \neq r \in R$, such that $r y+A=A$. But N is a torsion free, then $0 \neq r y \in A$. Thus, A is essential in C and C is a direct summand of A in N . Hence N is an extending. Therefore M is an Ex-Module.
Recall that An R-module M is π-injective, if $f(M) \subseteq M \quad$ for \quad every \quad idempotent $f \in \operatorname{Erd}(E(M))[4]$ equivalent, M is $\pi-\mathrm{inj}$ $\leftrightarrow \mathrm{M}$ is extending $+\mathrm{C}_{3}$

Proposition 2.6

Let M be an R-module such that every submodule of M is a π-injective, then M is an a ExModule.

Proof

Since $\pi-\mathrm{inj} \leftrightarrow \mathrm{M}$ is extending $+\mathrm{C}_{3}$
Let every submodule is π-injective .we get immediately every submodule is extending. Hence M an Ex-Module Module.
Recall that An R-module M is a projective, if for each epimorphism $g: A \longrightarrow B$ (where A, B be Rmodules) and for each R-homomorphism $f: M \rightarrow B$, there exists an R-homomorphism $h: M \rightarrow A$ such that $g \rho h=f \quad[7]$.

Proposition 2.7

Let M be an R -module and N is any submodule of M such that for every summand A of $E(N)$, $A+N$ is a projective, then M is an Ex-Module.

Proof

Let N be a submodule of M , and A be a summand of $E(N)$. To prove that $A \cap N$ is a summand of N . Consider the following short exact sequences.
$0 \rightarrow A \cap N \xrightarrow{i_{1}} N \xrightarrow{f_{1}} \frac{N}{A \cap N} \rightarrow 0 . .(1)$

0 , $A^{i_{7}} A \mid N_{\lambda} \stackrel{f_{2}}{A+N} \underset{A}{ }$, $0 . .(2)$
Where i_{1}, i_{2} are the inclusion homomorphism and f_{1}, f_{2} are the natural epimorphism. By the second isomorphism theorem
$\frac{N}{A \cap N} \cong \frac{A+N}{A}$. It is clear A is a summand of $A+N$. Thus the second sequence splits. Since $A+N$ is a projective, then $\frac{N}{A \cap N} \cong \frac{A+N}{A}$ is a projective. Hence the first sequence splits. Thus $A \cap N$ is a summand of N . Hence by theorem 1.5 M is an Ex-Module.
Recall that An R-module M is a P-Module, if every submodule of M is a pseudo-injective. [11] .
The following results show that the P-Modules implies to Ex-Modules.

Proposition 2.8

Any P-Module over a principle ideal domain is an Ex-Module.

Proof

Let N be a submodule of M , then N is a pseudoinjective, then N is a quasi-injective [14]. Hence N is an extending [8]. Therefore M is an Ex-Module.

Proposition 2.9

Any P-Module over a Dedekind domain is an ExModule
Proof
Let N be a submodule of M , then N is a pseudoinjective. Thus N is a quasi-injective [13], then N is an extending [8]. Hence M is an Ex-Module.

§3:Ex-Modules and Q-Modules

In this section the relation between Ex-Modules and Q-Modules are studied. Since every a quasiinjective R-module is an extending but the converse is not true [8], then every Q-Module is an ExModule, but the converse is not true ,since Z as Z module is an Ex-Module but it is not a Q-Module .Thus we put a conditions for an Ex-Module to be Q-Module.

proposition 3.1

Let M be a non-singular P -Module, then M is a Q-Module if and only if M is an Ex-Module.

Proof

\Rightarrow) Trivial.
(三) Let N be a submodule of M , then N is a Pseudo-injective, since M is a non-singular, then N is a non-singular [8]. To prove that N is a quasiinjective, let A be a submodule of N and $f: A \rightarrow N$ be an R-homomorphism. Since M is an Ex-Module, then A is an extending submodule of M , then $A=B \oplus C$ where B, C are a direct summand of A such that Kerf is an essential submodule in C. Since $\frac{A}{k e r f}$ is embeded in N and N is a non-singular,
then $\frac{A}{k e r f}$ is a non-singular, so, ker f is a closed submodule of A. That is $A=B \oplus$ ker f. It is clear that f is restricted to B which is a monomorphism. Since N is an extending, then $N=B_{1} \Theta D$ where B is an essential in B_{1}. Since B_{1} is a pseudo-injective, then f restricted to B extended to a homomorphism $g: B_{1} \rightarrow B_{1}$. For any $x \in N$, we have $x=b+d$, where $b \in B_{1}$ and $d \in D$. Define a mapping $h: N \rightarrow N$ by setting $h(x)=g(b)$. Then it is clear that h is an R-homomorphism of $N \rightarrow N$ that extends f . Thus, N is a quasi-injective. Hence M is a Q Module.

corollary 3.2

Let M be a non-singular Ex-Module, then M is a Q-Module if and only if M is a P -Module.

Proof

(\Longrightarrow) See [11]
(\Longleftarrow) Follows from proposition 3.1
The following result is another sufficient condition for an Ex-Module to become Q-Module.

proposition 3.3

If M is a P-Module over Noetherian ring, then M is a Q-Module if and only if M is an Ex-Module.

Proof

(\Longrightarrow) Trivial.
(三) Let N be a submodule of M , then N is an extending submodule of M . Thus N is a direct sum of a uniform submodule of M [10]. Since M is a PModule, then N is a pseudo-injective. But a direct summand of a pseudo-injective is a pseudo-injective, therefore N is a direct sum of a uniform pseudoinjective submodule. Hence N is a quasi-injective [13]. Thus M is a Q-Module.

Corollary 3.4

If M is an Ex-Module over a Noetherian ring, then M is a Q -Module if and only if M is a P Module.

Proof

(\Longrightarrow) See [11]
(\Longleftarrow) By proposition 3.3 .
§4:Ex-Modules and multiplication modules
An R-module M is called multiplication module, if every submodule of M is of the from IM for some ideal I of R [3]. In this section we study the relation of multiplication modules with Ex-Modules We preface our section by the following theorem which gives the relation between Ex-Modules over R and Ex-Modules over $\mathrm{S}=\operatorname{End}_{\mathrm{R}}(\mathrm{M})$.

Theorem 4.1

If M is a multiplication R -module, then M is an Ex-Module over R if and only if M is an Ex-module over S where $S=E n d_{R}(M)$.

Proof $(\Longrightarrow$)

Let N be S -submodule of M . It is clear that N is an R-submodule of M , so that N is extending. Hence M is an Ex-Module over S .
(三) Since M is a multiplication R-module, then $S=E n d_{R}(M)$ is commutative ring and each Rsubmodule of M is an S -submodule [5]. Let N be R submodule of M , so N is an S -submodule of M . Since M is an Ex-Module over S , then N is an extending, so M is an Ex-module over R.
The following proposition shows that the two concepts Ex-Modules and extending modules are equivalent in the class of multiplication modules.

Proposition 4.2

If M is a multiplication R -module, then M is an Ex-Module if and only if M is an extending.
Proof
(三) Let N be a submodule of M . Then $N=I M$ for some ideal I of R. Let $f \in \operatorname{End}_{R}(M)$, then $f(N)=f(I M)=I f(M) \subseteq I M=N$. That is N is a fully invariant submodule of M. Since M is an extending, then by lemma 1.3 N is an extending. Hence M is an Ex-Module.

Theorem 4.3

Let M be a multiplication module with $\operatorname{ann}_{R}(M)$ is a prime ideal of R . Then M is an ExModule if and only if every a quasi- invertible submodule of M is an extending.
Proof
(\Leftarrow) Let N be a submodule of M , then $N \oplus K$ is essential submodule of M , where K is the relative complement of N in M . Then $N \oplus K$ is a quasiinvertible submodule of M. Since $N \oplus M$ is essential in $\mathrm{M}, \mathrm{N} \oplus \mathrm{M}$ is quasi in [9,Th 3.11,P.18] which implies that $N \oplus K$ is a quasi-invertible submodule of M. Hence by [4 ,p.55]. N is an extending submodule of M .. Therefore M is an ExModule.

§5:characterizations of Ex-Modules in some types of modules.

In this section, we give characterizations of an Ex-Module in some types of modules.
The following theorem gives many characterization of an Ex-Module in class of non-singular modules .

Theorem 5.1

Let M be a non-singular R-module. Then the following statements are equivalent.
1.M is an Ex-Module.
2.Every a quasi-invertible submodule of M is an extending.
3.Every dense submodule of M is an extending.

Proof

$(1) \Rightarrow$ (2) Trivial
(2) \rightarrow (3)

Let N be a dense submodule of M ,then N is an essential submodule of M [8]. We claim that N is a quasi-invertible submodule of M . Let $f \in \operatorname{Hom}_{R}\left(\frac{M}{N \oplus R}, M\right), f \neq 0$. Thus there exists $x \in M$, such that $f(x+N)=m \neq 0$, where $m \in M$. Let $r \in R$ and $r \mathscr{E} a n n_{R}(M)$. Hence, $r x \in N$. Since N is an essential submodule of M, then there exists a non-zero element $s \in R$ such that $s r x$ is a non-zero element of N . Thus $0=f(s r x+N)=s r f(x+N)=s r m$, this implies that $s r \in a m m_{R}(m)$. Therefore $\quad a n m_{R}(m)$ is an essential ideal of R. Since M is a non-singular, then $m=0 \quad$ and, hence $\quad f=0$.Therefore $\operatorname{Hom}_{R}\left(\frac{M}{N}, M\right)=0$, which implies that N is a qausi-invertible submodule of M . Hence N is an extending.
$(3) \Longrightarrow(1)$ Let N be a submodule of M , then $N \oplus K$ is an essential submodule of M , where K is the a relative complement of N in M. Since M is a non-singular, then $N \Theta K$ is a dense submodule of M [8]. Hence $N \oplus K$ is an extending submodule of M . Hence N is an extending submodule of M [4].Therefore M is an Ex-Module.
Recall that the Jacobson radical of an R-module M denoted by $\mathrm{J}(\mathrm{M})$, is defined to be intersection of all maximal submodule of M.[6]

Theorem 5.2

Let M be an R-module such that $/(\operatorname{End}(M))=(0)$, then M is an Ex-Module if and only if M is an extending and every a quasiinvertible submodule of M is an extending.

Proof

(\Longleftarrow) Let N be a submodule of M , then $N \Theta K$ is an essential submodule of M (where k is a relative complement of N in M). We claim that $N \oplus K$ is a quasi-invertible submodule of M. Let $f \in \operatorname{Hom}_{R}\left(\frac{M}{W \in K}, M\right)$ and $f \neq 0$. Define $g=f \circ \pi \quad$ where $\pi: \mathrm{M}_{\rightarrow \frac{M}{w \oplus s}}$ is natural homomorphism. Hence $g \subset S_{n a d_{R}(M)}$ and $g \neq 0$ and $N \oplus K \subseteq$ kerg. Since $N \oplus K$ is an essential submodule of M and hence $g \in J\left(E n d_{R}(M)\right)$ then $g=0$, this implies that $f=0$, this is a contradiction. Therefore $\operatorname{Hom}_{R}\left(\frac{M}{N \Theta R}, M\right)=(0)$, and hence $N \oplus K$ is a quasi-invertible submodule of M. Thus $N \oplus K$ is an extending. Hence N is an extending [4]. Therefore M is an Ex-Modul

REFERENCES

[1]. Abbas M.S. "On fully stable modules" Ph.D. thesis, Univ. of Baghdad, 1990.
[2]. AL-Rikaby, H. K. "Q-Modules" Ph.D. thesis, Univ. of Tikrit, 2005.
[3]. Barnard, A. "Multiplication modules" J. of Algebra, 71, (1981), 174-178.
[4]. Dung, N. V., Huynh, D. V., Simith, P. F. and Wisbauer R. "Extending Modules" Pitman Research Note in Mathematics series 313, Longman, New-York, 1994.
[5]. EL-Bast, Z. A. and Simth, P. F. "Multiplication modules" comm. In Algebra, 16 (4), (1988), 755-795.
[6]. Goodearl, K. R. "Ring theory" Marcel Dekker, New-York, 1976.
[7]. Kasch, F. "Modules and Rings" Acad. Press, London, 1982.
[8]. Lam, T. Y. "Lecture on modules and ring" Springer Verlag, New-York, 1998.
[9]. Mijbass, A. S. "Quasi-Dedekind modules" Ph.D. thesis, Univ. of Baghdad, 1997.
[10]. Okada, M. "On the decomposition of extending modules" Math. Japonica, 29 NO. 6, (1984) 939-941.
[11]. Shalaby, M. A. "P-Modules" Msc. thesis, Univ. of Tikrit, 2008.
[12]. Singh, S. and Jain, S. K. "On pseudoinjective modules and self-pseudoinjective rings" J. of Math. Sci. 2, (1967), 23-31.
[13]. Singh, S. and Wason, K. "Pseudoinjective modules over commutative rings" J. of Indian, Math. Soc. 34, (1970), 61-65.
[14]. Surjeet, S. "On pseudo-injective modules" Riv. Math., Univ. Parma, 2(9), (1968), 59-65.
[15]. Weakly, W. D. "Modules whose distinct submodules are not isomorphic" Comm. Algebra, 15, (1987), 1569-1587.
[16]. S.HMohamed and B.J.Muller ,Continuous and Discrete Modules ,London Math .Soc LNS147 Cambridge Unuv . Press, Cambridge , 1990 .

هيبة محمد كريم @ شميل الدليمي
E.mail: scianb@yahoo.com

$$
\begin{aligned}
& \text { الخلاصـة:قدمنا في هذا البحث مفهوم جديد سـمي المقاسـات من النمط - E x كتعميم للمقاسات من النمط - . . العديد من النتخخيصـات } \\
& \text { والصفات لهذا المفهوم وجدت . المقاسات التي علاقة مع المقاسات من النمط - Ex درست . فضلا عن ذلك تشخيصات أخرى للمقاسات }
\end{aligned}
$$

