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Abstract 
 A theoretical model is presented        
in the analysis and prediction of the 
complete load-deflection behavior       
of fixed-horizontally restrained   
reinforced concrete polygonal slabs 

under uniform loading. The limiting cases of 
fixed reinforced concrete square and circular 
slabs are also deduced. The proposed model 
considers three stages, elastic, elasto-plastic and 
plastic. In the elastic and -elasto-plastic stages, 
the results of classical plate theory are used. The 
cracking of concrete and yielding of steel 
reinforcement are accounted for by suitably 
modifying flexural rigidity. Changes that occur in 
support conditions due to possible yielding are 
also considered. In the plastic stage a rigid plastic 
membrane analysis is presented. A method is 
proposed to predict the real ultimate load 
(including membrane action) and the deflection at 
the ultimate load. 
  
 

Key Words : Circular slabs, polygonal slab, square 
slabs, flexural rigidity, membrane action, yield 
criterion, yield-line theory. 
 
1. Introduction 
 
Extensive experimental work on restrained slabs 
[1-5] have shown the load-deflection relationship is 
in the form of ABCD shown in Fig (1). The 
ultimate load is considerably higher than that 
suggested by Johansen yield line theory [6]. This 
enhancement in ultimate load has been attributed 
to the effect of induced compressive membrane 
action. The conventional yield line theory of 
Johansen based upon rigid-plastic approximation 
has been proven successful in predicting the 
initial collapse loads of reinforced concrete slabs 
with negligible membrane forces. Several 
researchers for example, wood [1], park [7] and Al-
Hassani [8] have used similar methods to obtain 
initial collapse load with membrane forces and 
give a load –deflection relationship of the form 
HCD shown in Fig (1). 

In this paper, an attempt is made to predict the 
complete load-deflection behavior of restrained 
reinforced concrete polygonal slabs under uniform 
loading. 
 
2. Theoretical Analysis 
 
A clamped (horizontally restrained) polygonal slab 
having q number of sides each of length L1 
carrying a uniformly distributed load, is 
considered, isotropically at center and with the 
same amount of reinforcement in the top face only 
at supports, as shown in Fig (2) is analyzed 
theoretically under the action of uniform load of 
intensity P. The analysis is carried out in three 
stages: 

1. First stage (elastic). 
2. Second stage (elasto-plastic). 
3. Third stage (plastic). 

The stages of analysis are shown in Fig (3). 
 

a. First stage (elastic stage) 
 
The line OA in Fig (3) represents elastic behavior. 
The maximum bending moment and maximum 
deflection occurring at the slab center are 
calculated from classical plate theory [9, 10] as 
 
 
 Mmax = k1 PL2                              (1)  
 

                ω        =  K2  
PL4

EC Ig
                   (2) 

 
Where L: is the side length of an equivalent 
square slab having the same area as that of the 
polygonal slab, 
Thus: 
 

 L =  √
q

4 tan
180

q

L1                              (3) 

 
For the extremity q=∞ (i.e the case of a circular 
slab of radius say R) L is simply evaluated as  

 
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     L =  √π R                                  (4) 
  
This stage is terminated when first cracking 
appears at the slab center at an intensity of load 
equals pcr. This represented by point A in figure 
which can be estimated by equating Mmax to the 
cracking moment Mcr such that 
 

 Mmax =  Mcr =
    frJg    

yt 
                    (5) 

 
A combination of Eq. (1) and (5) gives 
 

 pcr =
    frJg    

k1yt L2                               (6) 

 
And when this load is substituted into Eq. (2), the 
cracking deflection wcr corresponding to point A 
will be  
 

 ωcr =  
k2

k1
   

    frL2    

yt EC
                            (7) 

 

By using fr =0.7 √fc`   and Ec =4700 √fc`  (as 
recommended by ACI code [11]  and knowing that 
Ig = h3 /12 and yt=h/2, Eqs. (6) and (7) may be 
reduced to 

 Pcr = 0.1167 
√fc

′

k1
 (

h

L
)2                   (8) 

 

 ωcr = 3 × 10−4  (
k2

k1
) (

𝐿

ℎ
)2 h                (9) 

 
The constants k1 and k2 (the moment and 
deflection coefficients corresponding to fixed edge 
conditions) are listed in Table (1) [9, 10]: 
 

b. Second stage (Elasto- plastic) 
 
This stage starts from the cracking load at point 
A to Johansen yield line theory load at point D of 
Fig (3). The effect of cracking of concrete and 
yielding of steel is included by choosing a 
decreasing moment of inertia function (Ie) 
analogous to that specified by section (9.5.3.4) of 
ACI code [11] , but was modified and related to the 
load intensities as; 
 

      Ie = ( 
pcr

pa
)3 Ig + [ 1 − ( 

pcr

pa
)3] Icr  ≤  Ig      (10) 

 
The ACI code equation 
 

      Ie = ( 
Mcr

Ma
)3 Ig + [ 1 − ( 

Mcr

Ma
)3] Icr     (11) 

 

cannot be applied for region CD, since points C 
and D have the same moment capacity given by 
Eq. (18) 
Where  
 Pcr  = cracking load  
 Pa    = The intensity of uniformly 
distributed load at the stage for which the 
deflection is calculated  
 
 Ig   = Gross moment of inertia of section    
= h3/12  = h3/12     
 Icr   = moment of inertia of cracked 
transformed section 
 

 Icr  = 
b d3

3
 [k3 + 3nρ (1 − k)2]         (12) 

Where  

 k =  √(ρn)2 + 2ρn − ρn                (13) 
 
 n  = the modular ratio = ES/EC 

 
For continuous members, ACI code stipulates that 
Ie may be taken as the average values obtained 
from Eq. (11) for the critical positive and negative 
moment section. Thus, for clamped polygonal 
slabs, the fallowing expression may be used; 
 
                Ie = 0.5 (Ie(c) +  Ie(e))                (14) 
 
Where the subscript c and e refer to center and 
the edges, respectively. 
Referring to Fig (3), the elasto-plastic stage is 
subdivided into three intermediate stages 
represented by portions AB, BC and CD of the 
load –deflection curve. 
 

Portion AB 
 
During this portion of the load- deflection curve, 
the slab has tension cracks penetrating all the 
way to the neutral axis and spreading outward 
from slab center, When the terminating point B is 
reached, the steel bars commence to yield at the 
slab center and the moment capacity of the slab at 
this section is simply the yield moment Μy which 
can be easily calculated on the basis of the stress 
distribution shown in Fig (4) as 
 

                 My = ρ fy d2 (1 − 
k

3
 )                  (15) 

 
The corresponding load and deflection are 
 

 py =  
My

k1 L2                                    (16) 
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and  

 ωy = ωcr +  k2  
 (py− pcr )

L4    

 Ec (Ie)y
            (17) 

 
 

Portion BC 
 
Along portion BC, the slab continues to yield and 
a heavy spread of cracks may be witnessed 
accompanied by inelastic stress distribution of 
concrete until when point C is reached the section 
of the slab at center has reached its ultimate 
moment capacity (Mu) where 
 

 Mu = ρ fy d2 (1 −  0.59 ρ
fy

fc′
 )          (18) 

 
The corresponding load and deflection are 
 

 pu =  
Mu

k1 L
2                                    (19) 

and   

   ωu = ωy + k2   
( pu− p

y) L4

EC (Ie)u
                (20) 

 
 

Portion CD  
 
Further increments in loading allow a complete 
yield line pattern to form in slab as shown in Fig. 
(5) with positive yield lines accompanied by 
circumferential negative yield lines. The 
Johansen`s yield line theory load PJ 

(corresponding to point D) for the q-sided 
restrained polygonal slab under consideration is 
determined using the equilibrium method and 
taking moment about axis of rotation of a typical 
slab element gives 
  

 PJ =  
24 ( Mu

++ Mu  
− )

LI
2 cot2 

180

q

                            (21) 

If the slab is square, 
 

 PJ =  
24 ( Mu

++ Mu  
− )

LI
2 

                            (22) 

 
When the slab is circular of radius R, 
 

 PJ =  
6 ( Mu

++ Mu  
− )

R2 
                            (23) 

 
And for the special case of hexagonal slab, 
 

 PJ =  
8 ( Mu

++ Mu  
− )

LI
2 

                             (24) 

 
At point D in Fig (2) it is assumed that the slab 
has yield along the boundaries, thus resulting in 

slightly altered edge conditions. Thus, the slab is 
assumed to be partially restrained and the 
deflection corresponding to point D is determined 
from 
 

 ωJ = ωu + k3   
( pJ− pu) 

EC (Ie)J
                (25) 

 
And k3= the average of the deflection coefficients 
corresponding to the fixed and simply supported 
edge condition are listed in table (2) [9, 10] In this 
way, the load-deflection plot in the second 
stage is determined. 
 

c. Third stage 
 
As the slab deflects more, the lower part of the 
slab at the boundary has a tendency to move 
outward against the boundary element resulting 
in the development of inplane compressive forces 
(compressive membrane forces) in the slab. The 
compressive membrane forces will cause the 
ultimate load of the slab to be considerably 
greater than the ultimate load calculated using 
Johansen`s yield line theory. At larger 
deflections, the slab edges tend to move inward 
and tensile membrane forces will be induced 
which will enable the slab to carry further load by 
catenary action. 
The analysis of membrane action is carried in two 
parts using the following assumption: 
1- The materials are rigid- perfectly plastic 
2- The form of failure is pyramid as determined 
by yield line theory method 
3- The adopted failure mode does not change with 
deformations. 
First part: The behavior of the slab under 
compressive membrane action. This is represented 
by portion DE of the load –deflection curve of    
Fig (3). The analysis is carried out by first 
establishing a yield criterion similar to that 
developed by wood [1] for a slab section under 
simultaneous action of a yield moment M and 
axial force N, each per-unit width, acting at the 
mid–depth of the slab (Fig. (4). The stress block 
parameters are based on ACI code instead of 
British standard code of practice CP114 (1957) [12] 
which were adopted by wood. 
Referring to the stress distribution at ultimate 
stage shown in the Figure, 
 
          N = 0.85 fc

′ a − As fy                          (26) 

           M = 0.85 fc
′ a ( 

h

2
− 

a

2
 ) + As fy  ( d − 

h

2
)     (27) 



                                       Sulaimani Journal for Engineering Sciences  / Volume 4 - Number 5 – 2017 

  

45 

 
A substitution of (a) obtained from Eq. (26) into 
Eq. (27) leads to the fallowing non- dimensional 
yield criterion 

        
M

Ma 
= 1 +  α (

N

T 
) –  β (

N

T
)

2

                  (28) 

Where Mu  : is as given by Eq.(18) 

 T = As fy = ρ dfy                            (29) 

 α =  

1

2
 
h

d
−1.18 ρ 

fy

fc
′

1−0.59 ρ 
fy

fc
′

                             (30) 

and        β  =  
0.59 ρ 

fy

fc
′

1−0.59 ρ 
fy

fc
′

                            (31) 

The maximum moment is reached when  

 
N

T
=  

α

2β
                                         (32) 

giving  
Mmax

Mu
= 1 +  

α2

4β
                             (33)  

Which is an enhancement factor for horizontally 
restrained slab. This implies that the ultimate 
load which corresponds to zero deflection since it 
is based on assuming that the slab behaves in a 
rigid- perfectly plastic manner will be  

 
Pmi

pJ
= 1 +  

α2

4β
                              (34)  

From which  Pmi = [ 1 + 
α2

4β
  ] PJ                        (35) 

 

Where  pmi  = initial ultimate load including 
membrane action  

This correspond to point H in the Fig (3) 
It is worth re-emphasizing here that the value of 
the ultimate load according to Eq. (35) is 
somewhat exaggerated. If elastic strains, for 
instance had been introduced in the analysis, the 
value of the ultimate load would have been 
reduced and will be given as  
 
 Pma = F  Pmi                             (36) 

 
where   Pma =   Actual ultimate load including 
membrane action  
            F  = Reduction factor   
From the results of the extensive series of test, 
Wood [1] suggested the following reduction factors 
for the ultimate load. 

% reinforcement  ρ reduction factor F 

ρ > 0.8 0.70 

                 0.8 >   ρ > 0.4 0.60 

ρ < 0.4 0.50 

Eq. (28) is valid for deflections between 
ωJ and ω′, where ω′  represent the limiting 
deflection at which the slab is cracked throughout 
its depth at center and is found to be  

 ω′ =  ωJ +  
4

3
 h                             (37) 

The second part of this stage belongs to all values 
of the deflection greater than  ω′ where the slab 
will be cracked throughout its depth in the 
central region. Thus, for the cracked –through 
slab section, the yield criterion becomes 

 
N

T
=  −1                                        (38) 

 
M

Mu
= 1 −  α −  β                                     (39) 

Using the plastic potential theory with total strain 
approach [6], the load –deflection relationship for 
the first part of this stage is established by 
determining first the position of the neutral axis 
along the yield lines through a combination of 
geometrical consideration and inplane 
equilibrium. Thereafter, the yield criteria [Eq. (28)] 

together with Eq. (26) are used to evaluate 
moments and membrane forces along the yield 
lines. The yield load is then found from moment 
equilibrium of one of the (q) triangular elements 
of the collapsed slab. The corresponding load- 
deflection relationship is found as follows: 

For  ωs  ≤  ω ≤ ω′ 

P

PJ
= 1 + 

∝2

4β
− 

∝

4
 (

∝

β
+ 2)

ω

h 
+ 

5

64
β (

∝

β
+ 2)2 (

ω

h
)2    (40) 

Eq. (40) reduced to Eq. (34) with ω = 0 

For ω > ω′ 

P

PJ
= 1 +  β +

∝

2
 (

∝

β
+ 2) + β (

∝

β
+ 2) (

∝

β
+ 2.5) (

ω

h
) +

1

3
 β(

∝

β
+ 2)2 [(

ω

h
)2 − √(

ω

h
) × (2 +

ω

h
)3]             (41) 

In Eqs. (40) and (41), the effect of the number of 
sides (q) on the load –deflection behavior of the 
fixed polygonal slab is included in the load term 
pJ . 

The load - deflection relationship given by Eqs. 
(40) and (41) will have the shape shown by the 
dotted curve HEFG shown in Fig (3). Point H of 
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the curve corresponds to the theoretical peak 
load. The coordinates of point E corresponds to 
the actual peak load and determined by first 
calculating pma using Eq. (36), then the 
corresponding deflection ωma may be obtained by 
the substituting into Eq. (40), thus 

 
ωma

h
=  

B− √B2−4AC

2A
                  (42) 

where  A =  
5

64
 β ( 

α

β
+ 2)2                            (43) 

              B =  
α

4
 ( 

α

β
+ 2)                 (44) 

              C = 1 +  
α2

4β
−  

Pma

pJ
                           (45) 

 

3. Summary of theoretical analysis  

A complete load –deflection diagram for a 
horizontally restrained polygonal slab can be 
obtained with reference to Fig (3) as follows  

1- The values of the coordinates of the points A, 
B, C, D and E are calculated using the 
appropriate equation as indicated below 

 
Point No. of Eq. used to evaluate the 

(deflection)                  (load) 

A 9 8 

B 17 16 

C 20 19 

D 25 21 

E 42 36 

 

2- The referred points O, A, B, C, D and E are 
connected by straight lines to obtain part 
OABCD of the load- deflection diagram 

3- The remaining part (the rigid- perfectly 
plastic curve) of the load-deflection diagram 
represented by EFG is drawn using Eqs. (40) 
and (41) for ω ≥ ωma given by Eq (42) 

 

4. Illustration of the procedure and discussion 
of results: 

To illustrate the theoretical procedure, Fig (6) is 
constructed which shows the difference in the 
load- deflection curves between different shapes of 
model concrete slabs (square, hexagonal and 
circular) all of which are fixed, uniformly loaded, 
isotropically reinforced at the bottom face and the 

same reinforcement percentage is used as 
negative (top) steel around the edges. They have 
the following identical properties, 

Area of slab =1m2, h=30mm, d=26 mm, ρ= 0.25% 
fc’=20 MPa, fy=414 MPa and Es = 200 000 MPa 

A complete load-deflection diagram for each shape 
can be obtained as follows: 

1-  The values of the coordinates of the points 
A, B, C, D and E are calculated using the 
appropriate equation as indicated previously. 
The results are as shown below. 

 

 
Point 

slab shape 

square circle hexagon 

Def. load Def. load Def. load 

A 0.52 20.9 1.78 18.6 1.2 19.25 

B 0.96 28.4 3.3 25.3 2.22 26.2 

C 1.03 29.4 3.54 26.2 2.4 27.2 

D 1.65 32.6 3.54 26.2 2.7 28.3 

H 0 110.2 0 88.66 0 96.0 

E 29.12 56.4 31.0 45.3 30.17 48.9 

F 41.65 48.1 43.54 38.65 42.7 41.71 

G 90 60.6 90 48.7 90 52.6 

 

The referred points are connected by straight 
lines to obtain a complete load-deflection 
relationship for each shape similar to that of Fig 
(3). These are shown in Figs (6).  

2- It is seen that the predicted load –deflection 
relationships are fairly comparable with 
typical load –deflection relationships of 
restrained slabs as indicated in Fig (1). They 
have one common characteristic feature. 
Unfortunately, there is no experimental data 
available in hand to show the discrepancies. 

3- The proposed method enables the 
determination of the deflections at the 
ultimate load [Eq. (36)]. It is seen from the 
above table that the computed deflection at 
ultimate load for the square, circular and 
polygonal slabs was almost equal to the slab 
thickness. This prediction agrees with that 
obtained by Hopkins and Park [2] through 
testing a ¼ scale nine panel (three by three) 
reinforced concrete slab and beam floor.  

4- Comparing the predicted actual ultimate load 
(peak load) with that of Johansen’s yield line 
theory, there is 73% increase in the ultimate 
load for this particular case. 
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5. Conclusions: 

A method is presented for prediction of the 
complete load-deflection behavior of regular q-
sided reinforced concrete polygonal slabs that are 
fully restrained on all sides and subjected to 
uniform loading. 
The main conclusions to be drawn from the 
present study are: 
1- The predicted load-deflection curves are very 

comparable in shape with the typical 
experimental load –deflection curves of 
restrained slabs. Unfortunately, there is no 
experimental data available in hand to show 
the discrepancies. 

2- The method of analysis is applicable to any 
restrained regular q-sided polygonal slabs 
including the limiting cases of square slabs 
(q=4) and circular slabs (q=∞) 

3- The actual ultimate load including the 
compressive membrane action is much higher 
than predicted by Johansen’s yield line theory 
and ACI code. 

4- The proposed method enables the prediction 
of the deflection at ultimate (peak) load. 
According to this method, the predicted 
deflection at ultimate load is almost equal to 
the slab thickness. This result confirms with 
that obtained from tests. 

 

Notation  

As = Area of tensile reinforcement per unit              
width        width of slab 
a = Depth of the equivalent rectangular 
compressi  compression  block of concrete  
d = Effective depth of slab 
Ec = Modulus of elasticity of concrete  
Es = Modulus of elasticity of steel 
F = Load reduction factor 
fc′ = Concrete cylinder strength 
fy = Yield stress of steel reinforcement 
h = Overall depth of slab  
Ig = Moment of inertia of the slab gross section 
11            per unit width 
Icr = Moment of inertia of the slab cracked             
t               transformed section per unit width 
Ie = Effective moment of inertia per unit width f               
o               for computation of deflection 
Ie(c) =Ie at slab center 
Ie(e) =Ie at slab edges 
k  = Ratio of neutral axis depth to effective   d    
e               pth, defined by Eq. (13).  
k1          = Constant in equation for load for given fixed      
slab          slab 

k2 = Constant in equation for deflection for given 
fixed         fixed slab 
k3 = Constant in equation for deflection for given 
partially     partially fixed edge 
L1 = Side length of polygonal slab 
L = Side length of an equivalent square slab 
having       having the same area as that of the      
polygonal   polygonal slab 
M = Bending moment per unit width of slab 
Ma = Bending moment per unit width of slab at 
stage         stage deflection is calculated 
Mcr = Bending moment at first cracking  
My = Bending moment at yielding at slab center 
Mu = Ultimate bending moment without 
membrane  membrane action 
N = Axial force at mid-depth per unit width of 
slab 
n = Modular ratio = Es / Ec 

P = Intensity of uniform load 
Pa = Intensity of uniform load at stage deflection 
is              is calculated 
Pcr = Intensity of uniform load at first cracking 

PJ = Johanse`s yield line theory load 

Pma = Actual ultimate load including membrane 
action        action 
Pmi = Initial ultimate load including membrane 
action        action 
Pu = ultimate load without membrane action 

Py = Intensity of load at yielding at slab center 

q = Number of sides of polygon slab  
R = Radius of circular slab 
yt = Distance from centroidal axis of gross 
section       section 

∝, β = Constants in equation for yield criterion 
ρ = Ratio of steel area to effective area of a slab 
section       section of unit width = As/d 
ω = Vertical deflection at center of slab 
ωcr = Vertical deflection at cracking at center of 
slab           slab 
ωJ = Vertical deflection at Johanse`s load at 

center        center of slab 
ωmax = Vertical deflection at actual ultimate load 
(Pma)          (Pma) at center of slab  
ωu = Vertical deflection at ultimate load (Pu) at 
center        center of slab 
ωy = Vertical deflection at first yielding of steel 

at              at center of slab 
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 المسلحة الخرسانية للبلاطات والاود الحمل بين العلاقة

 جانبيا والمقيدة المثبتة الحافات ذات الشكل المضلعة

 

      م.د. علي فليح حسنأ.
  دهوك جامعة -كلية الهندسة-دنيةالمهندسة القسم     

 

   :المستخلص
 الحمل بين المتكاملة العلاقة لايجاد نظريا نموذجا البحث يقدم

 ذات الشكل المضلعة الخرسانية للبلاطات والاود المنتظم
 استنباط ايضا البحث يشكل. جانبيا والمقيدة المثبتة الحافات
 المربعة المسلحة الخرسانية بالبلاطات المتمثلة الخاصة الحالات

 الرئيسية الثلاثة المراحل النموذج يغطي. الشكل والدائرية
 مرحلة وفي واللدونة اللامرونة المرونة، بمراحل والمتمثلة

 للفعل المهم التاثير الاعتبار بنظر الاخذ يتم الاخيرة اللدونة
 الحمل لاحتساب طريقة تقديم وتم. البلاطة في الغشائي
 .الحمل هذا عند الاود مع الحقيقي الاقصى

 

, المضلعة البلاطات, الدائرية البلاطات    الكلمات المفتاحية:
 نظرية, الخضوع معايير, الغشائي الفعل, الانثناء جساءة

  .الخضوع خط
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Fig.1: Load – deflection relationship for horizontally 
restrained R.C. slab. 

Fig.2: Polygonal slab with fixed edges. 
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Fig.3: Idealized load –deflection curve for a horizontally restrained polygonal slab.   
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Fig.4: Stress distribution on slab section. 
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(a) Yield line pattern of  q –sided R.C.  
polygonal slab with fixed support. 

 

(b)  Pyramid of failure. 

(c) Condition at the center of slab 
with a pyramid collapse mode. 

Fig.5, (a,b,c) : Yield line pattern for q-sided fixed polygonal slab with pyramid collapse mode. 
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Table1: Factors k1 and k2 for different  Shapes of fixed polygonal slabs. 

Type of polygonal slab k1 k2 

Square slab 
q=4 

0.0231 0.0012 

Circular slab 
q= ∞ 

0.0259 0.0046 

Hexagonal slab 
q= 6 * 

0.025 0.0030 

* The values of k1 and k2 for hexagonal slabs are suggested, since they are not available in literature. 

 

 

 

 
Table 2: Factors k1 and k2 for different  Shapes of partially restrained 

polygonal slabs 

Type of polygonal slab k1 k2 

Square slab 
n=4 

0.0326 0.0027 

Circular slab 
n= ∞ 

0.0445 0.0058 

Hexagonal slab 
n= 6  

0.0388 0.0045 

In this way, the load-deflection plot in the second stage is determined. 

 

Fig.6: Theoretical prediction for different types of R.C. polygonal slabs. 


