

Journal homepage www.jzs.uos.edu.krd Journal of Zankoi Sulaimani Part-A- (Pure and Applied Sciences)

Correlation and path coefficient analysis of grain yield and Agronomic characters of bread wheat (*Triticum aestivum* L.) under rainfed conditions

Shang Haseeb Abdulqader Noori

University of Sulaimani - College of Agricultural Sciences – Sulaimani – Iraqi Kurdistan Region E-mail: <u>Shang.Abdalqadr@univsul.edu.iq</u>

Article info	Abstract					
Original: 29/12/2017 Revised: 15/01/2018 Accepted: 06/02/2018 Published online:	The following study was done during the winter seasons of 2015-2016 at Qlyasan Agricultural Research Station, College of Agricultural Sciences, University of Sulaimani, using factorial ($6 \times 6 \times 4$) design conducted in Randomized Completely Block Design (RCBD) with three replicates to study the effect of planting date, plant densities and removal treatments of bread wheat (Adama 99) cultivary to establish the relationship					
Key Words: Bread wheat, Grain yield, Correlation coefficient and path analysis.	between yield components and plant traits to the yield (output) of the grain. After the collection of data on bread wheat, a correlation analysis and a path analysis were carried out. Positive and highly significant correlation recorded between grain yield and the spike length, spike weight, number of spikelets/spike, number of grains/spike, weight of grains/spike, 1000- grain weight, harvest index and biological yield. Concerning the path coefficient analysis, grain yield represented the (dependent variable) and all characters, were the (independent) ones. Maximum and positive direct effect on grain yield recorded by biological yield was (0.855) and followed by harvest index was (0.337). While number of grains/spike was (-0.045) recorded maximum negative direct effect on grain yield. These relations can be used as selection criteria in breeding studies to improve the higher yields cultivars for that region.					

Introduction:

Wheat (*Triticum aestivum* L.) is considered as one of the most crucial crop, widely cultivated throughout the world, with the main purpose of human consumption, supporting approximately 35% of the world's population and 95% of wheat grown today is bread wheat [1]. The grain yield of wheat (*Triticum aestivum* L.) is affected by several morphological and physiological processes which take place as the wheat is growing. These processes take place in different growing stages of the wheat. It is important to note that other yield components have a greater impact on grain field than others at different stages of the plant's growth [2]. In agronomic and breeding studies, correlation coefficients are generally used to determine the relation of grain yield and yield components. Simple correlations with grain yield [3], grain yield had positive correlation with spike length, grains/spike and 1000-grain weight [4]. The correlation coefficient is an important statical method which can help wheat breeders in selection for higher yields. Some of the researchers indicated the positive correlation between grain yield and yield component traits in wheat such as spike number/plant [5], grains number/spike [6], 1000 grain weight [7] and biological yield [8]. Estimation of the correlation between yield and its components alone is not sufficient to understand the importance of each one of these components in determining the grain yield reported by [8, 9 and 10].

Unlike the correlation coefficient, which measures the extent of the relationship, the path coefficient measures the magnitude of direct and indirect contribution of a component character to a complex character and it has been defined as a standardized regression coefficient which splits the correlation coefficient into direct and indirect effects [11]. Path coefficients have been used to develop selection criteria for complex

traits in several crop species of economic importance such as wheat [12 and 13]. Path analysis grains/spike followed by 1000-grain weight, spikes/plant and harvest index had positive direct effects on grain yield of bread wheat obtained from [14]. The path coefficient analysis provides more information among variables than do correlation coefficients since this analysis provides the direct effects of specific yield components on yield and indirect effects via other yield components [15 and 16]. In agriculture, path analyses have been used by plant breeders to assist in identifying traits that are useful as selection criteria to improve crop yield [17 and 18]. A study of path analysis [4], indicated that 1000-grain weight had the highest positive direct effect on yield followed by spike length and days to heading while, plant height, grains/spike and peduncle length had a negative direct effect on yield.

The main objectives of the current research study were: (i) to evaluate associations between spike length (cm), spike weight (g), number of spikelets/ spike, number of grains/ spike, weight of grains /spike (g), 1000 grain weight (g), harvest index (H.I.), and biological yield (ton/ha) with grain yield (ton/ha), (ii) to determine direct and indirect effects of yield components and plant traits on grain yield in bread wheat grown under different growing conditions.

Material and Methods:

The current research was performed at the Agricultural Research Station at Qlyasan, College of Agricultural Sciences, Sulaimani University. The research was carried out in the 2015-2016 season. In order to study the response of bread wheat (Adana-99) under six planting dates (15^{th} Nov. 2015 to 25^{th} Feb. 2016) with 20 days interval, six plant densities (120, 140, 160,180, 200 and 220) kg/ha and four removal treatments which were control; (awns removal, flag leaf removal and both (awns+flag leaf) removal) on yield and yield components. The experimental design was conducted according to the ($6 \times 6 \times 4$) factorial CRBD with three replications. Each plot consists of five rows of 2.0 m length with row spacing in each plot for wheat sowing was 0.2 m, interspacing between two replications was 1 m and the plot size was 2 m^2 .

The correlation coefficients were calculated to determine the degree of association of the yield and the other characters with also among the yield components themselves in phenotypic correlations were computed by using the formula given [19; 20]. The path coefficient techniques include partitioning of the correlation coefficient to determine direct (unidirectional path way `P') and indirect effects through alternative path ways (Path way `P' X correlation coefficient `r') of various variables and grain yield per plant. Grain yield was considered as the resultant variable and the others as causal variables. The path coefficient analysis was carried according to the equations as suggested by Arbuckle, 2009, Deway and Lu, 1959, Singh and Chaudhary, 1985 and Soomra, 2010 [11; 17; 20; 21] through (Analysis of Moment Structures) AMOS Ver. 18 Software.

In research, direct and indirect impacts of traits were evaluated by correlation and path coefficients.

Studied Characteristics

The spike length (cm), the spike weight (g), the number of spikelets/spike, the number of grains/spike, weight of grains/spike (g), 1000 grain weight (g), the harvest index (H.I.), the biological yield (ton/ha), and the grain yield (ton/ha).

Correlation Analysis and Path Coefficient Analysis

Calculation of correlation coefficients was done to establish the relationship between the yield and grain traits. The path coefficient technique which subdivides the correlation coefficient to determine the direct and indirect impacts of grain traits on grain yields were used as well.

Result and Discussion

Table (1) explained means of triple combination between the studied factors; Planting dates, plant density, and removal treatments and their effects on grain yield and its components Maximum number of spike length, number of spikelets/spike, number of grains/spike, weight of grains/spike and 1000 grain weight was 8.917 cm, 17.083, 40.098, 1.862 g and 38.916 g, respectively produced by the combination between (15th)

Nov. 2015 under the planting density of 120 kg/ha and the treatment of control). Maximum value of spike weight was 2.160 g exhibited by the combination between (15th Nov. 2015 under the planting densities of 140 kg/ha, and the treatment of control).Maximum value of harvest index was 0.497 produced by the combination between (15th Jan. 2016 under the planting density of 220 kg/ha and the treatment of control). While maximum values of biological yield and grain yield was 14.803 tons/ha and 5.844 ton/ ha, respectively produced by the combination between (15th Nov. 2015 under the planting density of 200 kg/ha and the treatment of control). The optimal planting date and plant densities of winter wheat breeds, due to the climate-change of habitats, not only from Agra-technical factors (sowing date), but also from the economic point of view [22]. The proper sowing date brings the highest yield in wheat grain [23].

Like planting dates, balance plant density have also a significant role in the crop production system of wheat. Wheat variety reacts in different ways to various levels of plant densities. Plant density affects the plant population, number of tillers/m², 1000 grain weight and straw yield [24]. As a result, the flag leaf, the awned and the second upper leaf blade are the most important photosynthesis part of the plant and nearly half of the dry material which is accumulated by the grain is obtained by these organs [25].

			1								
Planting Dates	Plant Density (Kg/ha)	Removal Treatments	Spike length (cm)	Spike weight (g)	No. of spikelets/ spike	No. of grains/ Spike	Weight of grains/ spike (g)	1000 grain weight (g)	Harvest index	Biological yield (Tons/ha)	Grain yield (tons/ha)
		Control	8.917	1.788	17.083	40.098	1.862	38.916	0.408	10.733	4.378
	120	Awn	8.093	1.955	16.433	34.867	1.638	37.704	0.405	10.460	4.242
		Flag leaf	8.039	1.763	15.993	35.474	1.586	34.484	0.433	9.339	4.033
		Both	7.257	1.639	15.167	32.733	1.335	33.294	0.431	8.687	3.746
		Control	8.897	2.160	15.833	39.167	1.824	38.136	0.469	9.651	4.528
	1.40	Awn	8.124	1.960	14.773	34.506	1.691	36.263	0.453	9.570	4.331
	140	Flag leaf	7.370	1.824	15.033	35.533	1.462	33.940	0.474	8.607	4.082
		Both	7.233	1.703	14.183	31.941	1.280	31.042	0.483	7.852	3.794
		Control	8.767	1.698	15.467	37.633	1.567	37.156	0.374	13.865	5.184
	1.0	Awn	7.463	1.600	14.820	33.783	1.487	35.344	0.406	12.344	5.001
015	100	Flag leaf	7.853	1.434	14.580	34.650	1.244	33.153	0.383	12.416	4.753
r. 2		Both	7.293	1.342	14.087	31.387	1.142	30.073	0.401	11.082	4.443
No	180	Control	8.283	1.614	13.833	36.040	1.334	36.122	0.387	14.403	5.566
15 th		Awn	8.430	1.438	12.967	32.633	1.263	34.222	0.389	13.571	5.276
		Flag leaf	6.570	1.305	12.067	33.400	1.032	32.025	0.370	13.364	4.936
		Both	7.223	1.161	11.633	30.000	0.931	29.638	0.389	11.746	4.567
	200	Control	8.057	1.661	14.267	34.033	1.305	36.135	0.395	14.803	5.844
		Awn	8.010	1.526	13.900	30.633	1.208	33.961	0.404	13.617	5.492
		Flag leaf	7.763	1.437	13.333	31.467	1.042	31.750	0.389	13.268	5.158
		Both	8.067	1.332	12.800	28.200	0.931	29.885	0.422	12.272	5.169
		Control	7.603	1.426	14.073	31.509	1.091	33.219	0.403	13.318	5.363
		Awn	8.280	1.338	13.687	28.833	1.007	32.157	0.416	12.619	5.248
	220	Flag leaf	7.727	1.241	13.067	29.133	0.914	29.969	0.417	11.692	4.869
		Both	6.927	1.136	12.460	24.700	0.937	28.222	0.429	10.699	4.586
		Control	8.380	1.924	16.000	38.167	1.752	31.969	0.419	9.707	4.056
	100	Awn	7.560	1.750	15.190	34.618	1.657	29.325	0.414	8.955	3.702
	120	Flag leaf	8.210	1.550	14.853	35.656	1.453	27.590	0.460	7.582	3.484
		Both	7.670	1.349	14.453	33.181	1.255	26.338	0.483	6.889	3.326
		Control	7.527	1.856	15.477	33.452	1.646	30.651	0.463	9.502	4.400
15	7.40	Awn	7.010	1.765	14.847	30.511	1.532	29.771	0.483	9.003	4.344
. 20	140	Flag leaf	6.943	1.346	14.867	30.933	1.350	27.600	0.472	8.822	4.167
Dec		Both	6.625	1.130	14.170	27.417	1.167	26.703	0.468	8.712	4.080
5th		Control	7.593	1.623	14.733	32.233	1.454	32.074	0.488	10.242	5.000
	1.00	Awn	7.063	1.436	13.930	29.766	1.356	30.961	0.494	10.017	4.949
	160	Flag leaf	7.263	1.174	13.500	29.333	1.115	30.151	0.491	9.788	4.805
		Both	7.103	0.930	12.867	26.314	1.031	28.486	0.483	9.620	4.648
		Control	7.719	1.416	14.273	32.117	1.268	30.116	0.487	11.327	5.515
	180	Awn	7.403	1.344	13.367	29.033	1.156	29.226	0.462	10.992	5.079

Table- 1: Mean values for some morphological traits in bread wheat.

	Flag leaf	7.283	1.271	12.657	29.233	1.037	27.333	0.478	9.799	4.678
	Both	6.753	1.139	12.350	26.033	0.934	26.252	0.481	8.950	4.306
	Control	7.147	1.294	13.433	30.300	1.170	30.901	0.451	13.160	5.932
	Awn	6.933	1.261	13.233	26.900	1.040	29.412	0.450	12.867	5.791
200	Flag leaf	6.357	1.153	12.500	27.733	0.949	27.603	0.398	12.694	5.048
	Roth	5 993	1.053	11.883	23 500	0.874	26.676	0411	12 516	5 1 38
	Control	7 5 1 3	1 311	13 633	20.067	1 1 2 5	30.480	0.415	13 352	5 5 3 6
	Awn	7.043	1.011	12.867	27.000	1.135	20.155	0.410	13.332	5 373
220	Awn Elao loaf	6 725	1.190	12.007	27.000	0.020	27.000	0.410	12.121	5.084
	r iag ieaj	6 474	1.034	12.333	27.200	0.920	27.990	0.410	12.413	1.004
	Boin	0.474	1.028	12.237	23.217	0.852	27.434	0.404	12.347	4.905
	Control	7.572	1./14	14.803	34.815	1.550	35.945	0.386	11.26/	4.341
120	Awn	7.270	1.552	13.800	30.689	1.437	33.083	0.367	10.883	3.995
	Flag leaf	6.450	1.355	12.433	31.653	1.245	31.704	0.385	9.955	3.829
	Both	6.273	1.262	11.877	28.857	1.154	31.390	0.395	9.548	3.770
	Control	7.404	1.550	14.226	34.285	1.329	34.674	0.472	9.874	4.661
140	Awn	6.593	1.451	12.984	30.906	1.148	31.780	0.467	9.573	4.473
140	Flag leaf	5.980	1.273	12.333	32.015	1.025	29.797	0.487	8.226	4.006
	Both	5.630	1.161	11.817	27.800	0.953	28.483	0.481	7.963	3.829
	Control	6.578	1.451	13.273	32.333	1.217	33.393	0.446	10.853	4.843
1/0	Awn	6.371	1.349	12.537	28.607	1.132	31.196	0.467	9.830	4.597
160	Flag leaf	6.261	1.271	11.600	29.559	1.030	30.097	0.478	9.267	4.429
	Both	5.775	1.147	10.710	26.815	1.024	28.927	0.445	9.263	4.126
	Control	6.840	1.332	12.657	29.675	1.127	33.557	0.495	10.605	5.243
	Awn	6.438	1.228	10.807	26.319	1.015	32.681	0.494	10.337	5.106
180	Flag leaf	5.953	1.016	10.100	26.233	0.964	30.828	0.494	9.728	4.804
	Both	5 772	0.966	9.620	23,130	0.847	29.637	0.494	9 379	4.631
	Control	6.826	1 245	12 093	28 207	1 049	32 832	0.493	11 236	5 532
	Awn	6217	1 109	11 533	24.900	0.921	31.837	0.487	11.024	5 365
200	Elag loaf	5 698	0.923	11.335	25.633	0.843	32 088	0.407	10.868	5 365
	P utg icuj Roth	5 340	0.925	10.067	22.035	0.721	20 110	0.424	10.333	5.057
	Control	6 5 2 4	1 222	12.120	22.207	1.022	29.119	0.409	10.333	5.001
	Control	0.J24 5.927	1.232	12.150	20.020	1.022	31.023	0.451	12.742	5.491
220	Awn	5.007	1.134	11.307	23.233	0.940	30.393	0.451	12.399	5.340
	Fiag leaj	5.69/	1.045	11.11/	23.322	0.845	29.379	0.451	12.122	5.220
	Both	5.080	1.210	10.600	20.533	0.750	28.072	0.431	11.779	5.073
	Control	7.201	1.547	13.203	27.053	1.330	31.8/8	0.340	9.893	3.309
120	Awn	6.133	1.462	11.840	24.527	1.347	29.927	0.373	8.482	3.161
	Flag leaf	5.720	1.237	11.233	23.967	1.040	28.689	0.403	7.523	3.030
	Both	5.560	1.142	10.100	20.767	0.950	27.244	0.434	6.651	2.878
	Control	6.795	1.362	12.607	25.558	1.164	31.746	0.379	9.919	3.754
140	Awn	5.712	1.255	10.757	21.903	1.058	28.892	0.354	9.653	3.417
	Flag leaf	5.263	1.032	9.800	22.900	0.932	27.908	0.359	9.199	3.300
	Both	4.873	0.926	9.133	19.300	0.853	27.283	0.403	8.063	3.248
	Control	6.303	1.168	11.567	23.333	0.958	31.086	0.441	9.263	4.078
160	Awn	5.636	1.071	10.607	20.274	0.866	27.719	0.450	8.237	3.708
100	Flag leaf	5.571	0.985	10.250	21.342	0.714	27.021	0.452	8.000	3.616
	Both	5.862	0.856	9.619	17.543	0.645	26.315	0.479	7.367	3.519
	Control	7.552	1.037	11.423	22.547	0.867	30.379	0.484	9.133	4.418
100	Awn	7.051	0.950	11.357	20.430	0.730	28.714	0.488	8.559	4.177
100	Flag leaf	6.845	0.813	11.000	20.283	0.670	27.135	0.449	8.516	3.817
	Both	6.389	0.740	11.497	17.348	0.609	24.703	0.484	7.151	3.462
	Control	6.338	0.939	11.523	20.778	0.755	30.195	0.446	10.197	4.544
• • • •	Awn	6.267	0.886	11.383	19.033	0.685	28.451	0.441	9.78 <i>3</i>	4.315
200	Flag leaf	5.447	0.777	10.333	17.900	0.622	27.407	0.453	9.300	4.212
	Both	5.207	0.544	10.067	15.467	0.529	25.906	0.464	9.003	4.175
	Control	6.715	0.851	11.603	21.304	0.842	30.537	0.497	10.522	5.235
	Awn	5.970	0.819	11.333	19,450	0.763	29.347	0.472	10.061	4.752
220	Flag leaf	6.159	0.744	11.223	20.052	0.627	27.992	0.486	9.661	4.695
	Roth	5.673	0.627	10.667	17.667	0.559	26.011	0.489	8 878	4 341
	DUII	5.075	0.027	10.007	17.007	0.007	20.011	0.107	0.070	1.371

25th Dec. 2015

15th Jan. 2016

To be continued

Table- 1: Mean values for some morphological traits in bread wheat.

Planting Dates	Plant Density (Kg/ha)	Removal Treatments	Spike length (cm)	Spike weight (g)	No. of spikelets/ spike	No. of grains/ spike	Weight of grains/ spike	1000 grain weight (g)	Harvest index	Biological yield (Tons/ha)	Grain yield (tons/ha)
		Control	6.060	1 3 1 2	10 777	24 664	(g)	20.773	0.416	5 031	2 166
		Awn	5.657	1.512	10.300	24.004	1.137	29.773	0.416	5 755	2.400
	120	Awn Flag loaf	5.653	1.100	10.50	22.033	0.042	20.075	0.413	5.755	2.392
		Roth	5.000	1.031	9717	20.517	0.828	25.930	0.416	5 325	2.200
		Control	6.457	1.015	11 533	20.317	1.046	29.719	0.417	6 736	2.214
		Awn	5 933	1.2++	10.933	27.200	0.935	29.719	0.419	6 4 4 1	2.615
	140	Flag loaf	5 533	1.114	10.555	22.400	0.955	27 265	0.417	6 187	2.582
		Roth	5 220	0.948	10.267	19 667	0.759	26 499	0.417	6.007	2.502
		Control	5.860	1 100	11 117	23 683	0.922	28,809	0.409	7.078	2.307
		Awn	5 360	1.100	10.853	21.810	0.922	20.009	0.409	6.811	2.091
91	160	Flag leaf	5.107	0.957	11.100	22.410	0.717	26.303	0.408	6.602	2.697
20		Roth	5.077	0.830	9 9 3 3	19.856	0.634	25 135	0 409	6311	2 579
eb.		Control	5.757	1.069	10,300	23.675	0.936	29.823	0.435	7.917	3.444
4		Awn	5,253	0.923	10.233	20.600	0.863	27.716	0.435	7.079	3.078
Ś	180	Flag leaf	4.933	0.833	9.967	20.333	0.753	26.620	0 440	7.037	3.093
		Roth	4.420	0.700	9.733	15,933	0.736	24.764	0.435	6.461	2.810
		Control	6.060	0.983	10,133	21.067	0.947	27.994	0 4 3 3	8.082	3.501
	200	Awn	5.463	0.966	9.317	19.100	0.842	25.992	0.432	7.513	3.249
		Flag leaf	5.407	0.829	9.567	19.383	0.761	24.900	0.432	7.198	3.113
		Roth	5.120	0.700	9.300	15.667	0.679	23.997	0.432	6.920	2.992
	220 120	Control	4.327	0.956	9.053	21.510	0.793	27.539	0.455	8.210	3.734
		Awn	3.807	0.891	8.533	19 400	0.741	24 251	0.455	7.229	3.288
		Flag leaf	4.396	0.744	8.830	18.630	0.641	22,350	0.455	6.665	3.031
		Both	4.167	0.713	8.667	15.444	0.574	21.049	0.455	6.280	2.855
		Control	5.600	1.235	10.533	22.077	1.039	28.311	0.324	4.771	1.546
		Awn	5.200	1.148	9.830	19.300	0.940	27.290	0.347	4.609	1.599
		Flag leaf	4.938	0.991	9.367	19.257	0.838	24.381	0.333	4.167	1.387
		Both	4.667	0.901	9.233	14.417	0.779	21.964	0.331	3.603	1.193
		Control	5.153	1.120	10.720	22.010	0.956	29.069	0.337	5.207	1.756
		Awn	4.680	0.911	10.467	19.333	0.841	28.234	0.341	4.997	1.706
	140	Flag leaf	4.470	0.763	10.267	19.333	0.743	23.557	0.353	4.041	1.422
		Both	3.883	0.684	9.670	15.833	0.648	21.020	0.337	3.766	1.269
		Control	5.380	1.049	10.900	21.667	0.915	27.022	0.347	5.669	1.967
		Awn	5.113	0.929	10.833	18.600	0.847	25.845	0.343	5.499	1.883
910	160	Flag leaf	4.885	0.824	11.133	18.867	0.762	24.650	0.339	5.294	1.796
2.2		Both	4.500	0.752	10.367	15.667	0.659	23.155	0.347	4.856	1.687
Fel		Control	4.709	0.925	10.633	20.700	0.811	27.028	0.341	6.511	2.222
Sth	100	Awn	4.410	0.844	10.500	17.767	0.755	26.218	0.343	6.117	2.099
~	180	Flag leaf	4.220	0.619	10.567	17.933	0.653	24.731	0.347	5.643	1.958
		Both	4.075	0.549	10.240	15.200	0.491	22.549	0.414	5.178	2.142
		Control	4.850	0.842	10.117	20.267	0.731	26.481	0.342	7.411	2.532
	200	Awn	4.777	0.730	9.633	18.267	0.671	24.478	0.368	6.268	2.304
	200	Flag leaf	4.547	0.628	9.717	17.967	0.540	22.859	0.373	5.919	2.206
		Both	3.853	0.516	9.500	14.667	0.492	21.520	0.354	5.815	2.058
		Control	4.393	0.833	9.500	16.993	0.629	24.525	0.369	7.069	2.610
	220	Awn	4.037	0.751	9.033	15.143	0.547	22.850	0.369	6.742	2.488
	220	Flag leaf	3.893	0.661	8.867	15.080	0.465	21.709	0.366	6.398	2.344
		Both	3.903	0.520	8.867	12.133	0.392	20.131	0.359	6.051	2.171
	Grand mean		6.211	1.155	11.825	25.020	0.992	28.923	0.423	8.940	3.318

Correlation among characters

The results of the correlation coefficient analysis between the grain yield and the yield traits show in Table (2). From the results, spike length recorded positively and high significantly correlative with spike weight ($r=0.829^{**}$), number of spikelets/spike ($r=0.896^{**}$), number of grains/spike ($r=0.883^{**}$), weight of

grains/spike (r= 0.804**), 1000 grain weight (r= 0.823**), harvest index (r= 0.325**), biological yield (r= 0.718**), and grain yield (r= 0.712**). Spikes weight gave positive and highly significant correlation with number of spikelets/ spike (r= 0.870**), number of grains/spike (r= 0.919**), weight of grains/spike (r= 0.961**), 1000 grain weight (r= 0.836**), biological yield (r= 0.508**) and grain yield (r= 0.471**). Number of spikelets/spike were recorded positive and highly significant correlation with the number of grains/ spike (r= 0.911**), weight of grains/spike (r= 0.881**), 1000 grain weight (r= 0.767**), harvest index (r= 0.222**), biological yield (r= 0.595**) and grain yield (r= 0.577**). Number of grains/spike exhibited positive and highly significant correlated with weight of grains/spike (r= 0.909**), 1000 grain weight (r= 0.847**), harvest index (r= 0.246**), biological yield (r= 0.642**) and grain yield (r= 0.619**). Weight of grains/spike was recorded positive and highly significant correlation with 1000 grain weight (r= 0.805**), biological yield (r= 0.643**) and grain yield (r= 0.243**), biological yield (r= 0.691**). Weight of grains/spike was recorded positive and highly significant correlated with harvest index (H.I.) (r= 0.243**), biological yield (r= 0.691**) and grain yield (r= 0.691**). While harvest index (H.I.) (r= 0.243**), biological yield (r= 0.691**) and grain yield (r= 0.664**). While harvest index exhibited positive and highly significant correlated with harvest index (r= 0.577**) and biological yield (r= 0.691**) and grain yield (r= 0.664**). While harvest index exhibited positive and highly significant correlated with biological yield (r= 0.243**) and grain yield (r= 0.577**) and biological yield correlated positive and highly significant with grain yield (r= 0.944**).

The results consent with the positive and highly significant correlation between grain weight/spike and 1000 grain weight obtained by [26; 27]. Positive and significant relationships existed between grain yield and biological yield and number of spike/plant, respectively [28]. Some authors also reported positive and significant correlations between yield and grain number [5; 29] and above ground biomass [30]. Some researchers reported a positive association between total number of grain/spike and 1000 grain weight [31; 32]. Grain yield had positive correlation with spike length, number of spikelets/spike, number of grain/spike, 1000 grain weight and harvest index at both phenotypic and genotypic level [33]. Positive and significant correlation between spike length, number of grains/spike, 1000 grain weight, biological yield and harvest index with grain yield there is a possibility to increase grain yield of bread wheat [34; 35].

Characters	Spike length (cm)	Spike weight (g)	No. of spikelets/ spike	No. of grains/ spike	Weight of grains/ spike (g)	1000 grain weight (g)	Harvest index	Biological yield (Tons/ha)
Spike weight (g)	0.829**							
No. of spikelets/spike	0.896**	0.870**						
No. of grains/spike	0.883**	0.919**	0.911**					
Weight of grains/spike (g)	0.804**	0.961**	0.881**	0.909**				
1000 grain weight (g)	0.823**	0.836**	0.767**	0.847**	0.805**			
Harvest index	0.325**	$0.142^{n.s}$	0.222**	0.246**	$0.133^{n.s}$	0.234**		
Biological yield (Tons/ha)	0.718**	0.508**	0.595**	0.642**	0.443**	0.691**	0.286**	
Grain yield (tons/ha)	0.712**	0.471**	0.577**	0.619**	0.415**	0.664**	0.577**	0.944**

Table -2: Correlation coefficient analysis, among the studied characters.

*. Correlation is significant at the 0.05 level (2-tailed), $t_{0.05}$ (142)=1.977

**. Correlation is significant at the 0.01 level (2-tailed), $t_{0.01}$ (142)=2.611

Path coefficient analysis

All the direct and indirect traits can be seen in Table (3). In the current study, the grain yield (ton/ha) (which is the response variable) together with spike length (cm), spike weight (g), number of spikelets/ spike, number of grains/ spike, weight of grains /spike (g), 1000 grain weight (g), harvest index and biological yield (ton/ha) (which are the determinative variables) are applied in the path coefficient analysis.

From the results in Table (3), it can be observed that the biological yield had the highest positive direct impact on the grain yield with (0.855), researches that have reported similar findings include [36], and followed by harvest index which was (0.337). Number of grains/spike with (-0.045) recorded maximum

negative direct effect on grain yield. The character spike length recorded maximum positive indirect effect on grain yield via biological yield (0.614), followed by 1000 grain weight via biological yield (0.591), while the maximum negative indirect effect recorded by spike weight via a number of grains/spike reaching (-0.041), number of spikelets/spike via a number of grains/spike reaching (-0.041), and weight of grains/spike via a number of grains/spike reaching (-0.041).

The path coefficient analysis showed that harvest index and biological yield had the maximum positive direct effect on grain yield of wheat [8]. The highest positive direct effect on grain yield were exhibited by biological yield, which had positive and significant correlation with grain yield [33]. In most of previous studies, biological yield and harvest index had a positive direct effect on the grain yield [37; 38].

Characters	Spike length (cm)	Spike weight (g)	No. of spikelets/spi ke	No. of grains/spike	Weight of grains/spike (g)	1000 grain weight (g)	Harvest index	Biological yield (Tons/ha)
Spike length (cm)	-0.036	-0.030	-0.032	-0.032	-0.029	-0.030	-0.012	-0.026
Spike weight (g)	-0.015	-0.018	-0.016	-0.016	-0.017	-0.015	-0.003	-0.009
No. of spikelets/spike	0.050	0.049	0.056	0.051	0.050	0.043	0.013	0.034
No. of grains/spike	-0.040	-0.041	-0.041	-0.045	-0.041	-0.038	-0.011	-0.029
Weight of grains/spike (g)	0.003	0.004	0.003	0.004	0.004	0.003	0.001	0.002
1000 grain weight (g)	0.025	0.025	0.023	0.026	0.024	0.030	0.007	0.021
Harvest index	0.109	0.048	0.075	0.083	0.045	0.079	0.337	0.096
Biological yield (Tons/ha)	0.614	0.434	0.509	0.549	0.379	0.591	0.245	0.855
Grain yield Correlation	0.712**	0.471**	0.577**	0.619**	0.415**	0.664**	0.577**	0.944**

Table- 3: Path coefficient analysis of direct and indirect effect of different traits on grain yield.

Conclusion

Correlation analysis obtained from bread wheat (Adana-99) showed that the association of grain yield/plant was positive and highly significant correlated with spike length, spike weight, number of spikelets/spike, number of grains/spike, weight of grains/spike, 1000 grain weight, the harvest index and biological yield. Path coefficient analysis indicated that the direct effect of spike length, spike weight and number of grains/spike in grain yield were weakly negative. The direct effect of number of spikelets/spike, weight of grains/spike, 1000 grain weight, harvest index and biological yield was strongly positive, while the spike length, spike weight and number of grains/spike had a strongly negative effect. Therefore, the character of spike length and number of grains/spike can be used as selection criteria to increase grain yield in bread wheat in the region.

References

- [1] Debasis, P. and Khurana, P. "*Wheat biotechnology; A mini review*", Electronic J. Biotechnol, ISSN:0717-3458. (2001).
- [2] Ashfaq, M., Khan, A.S. and Ali, Z. "Association of morphological traits with grain yield in wheat", Int. J. Agri. Biol., Vol. (5), pp.262-264. (2003).
- [3] Reza N., Ali, K., Farzad P., Saeed V. and Barary, M. "Correlation, path analysis and stepwise regression in yield and yield component in wheat (Triticum aestivum L.) under the temperate climate of Ilam province, Iran", Indian Journal of Fundamental and Applied Life Sciences, Vol. (4), No.4, pp.188-198. (2014).

- [4] Iftikhar, R., Khaliq, I., Kashif, M., Ahmad, M. and Ullah, S. "Study of morphological traits affecting grain yield in wheat (Triticum aestivum L.) under field stress condition", Middle-East Journal of Scientific Research, Vol. (11), pp.19-23. (2012).
- [5] Mondal, S.k. and Khajuria, M.R. "*Correlation and path analysis in bread wheat* (Triticum aestivum *L.*) *under rainfed condition*", Environment and Ecology, Vol. (18), No.2, pp.405-408. (2001).
- [6] Kashif, M. and Khaliq, I. "Heritability, correlation and path coefficient analysis for some metric traits in wheat", International Journal of A griculture & Biology, Vol. (6), No.1, pp.138-142. (2004).
- [7] Akbar, M., Khan, N.I. and chowdhry, M.H. "Variation and interrelationship between some biometric characters in wheat (Triticum aestivum L.)", J. Agric. Res., Vol. (33), pp.247-254. (1995).
- [8] Ali, I.H. and Shakor, E.F. "Heritability, variability, genetic correlation and path analysis for quantitative traits in durum and bread wheat under dry farming conditions", Mesopotamia J. of Agri., Vol. (40), No.4, pp.27-39. (2012).
- [9] Anwar, J., Ali, M., Hussain, M., Sabir, W., Khan, M., Zulkiffal, M. and Abdullah, M. "Assessment of yield criteria in bread wheat through correlation and path analysis", Journal of Animal and Plant Sciences, Vol. (19), pp.185-188. (2009).
- [10] Bhutta, W.M., Akhtar, J., Anwar-ul-Haq, M. and Ibrahim, M. "Cause and effect relations of yield components in spring wheat (Triticum aestivum L.) under normal conditions", Caderno de Pesquisa Sér. Bio., Santa Cruz do Sul, Vo. (17), No.1, pp.7-12. (2005).
- [11] Arbuckle, J. L. "Amos 18 User's Guide- Amos Development Corporation", SPSS Inc., USA. ISBN-13: 978-1-56827-404-1. (2009).
- [12] Larik, A.S. "Correlation and path coefficient analysis of yield components in mutants of (Triticum aestivum L.)", Wheat Inform, Serv., Vol. (50), pp.36-40. (1979).
- [13] Aydin, N., Ermet, C., Mut, Z., Bayramo, H.O. and Özcan, H. "Path analyses of yield and some agronomic and quality traits of bread wheat (Triticum aestivum L.) under different environments", Afric J. Biotech. Vol. (9), No.32, pp.5131-5134. (2010).
- [14] Majumder, D.A.N., Shamsuddin, A.K.M. Kabir, M.A. and Hassan, L. "Genetic variability, correlated response and path analysis of yield and yield contributing traits of spring wheat", J. Bangladesh Agril. Univ., Vol. (6), No.2, pp.227-234. (2008).
- [15] Arshad, M., Ali, N. and Ghafoor, A. "Character correlation and path coefficient in soybean Glycine max (L.) Merrill", Pakistan Journal of Botany, Vol. (38), No.1, pp.121-130. (2006).
- [16] Del Moral, L., Rharrabti, Y., Villegas, D. and Royo, C. "Evaluation of grain yield and its components in durum wheat under Mediterranean conditions", Agronomy Journal, Vol. (95), No.2, pp.266-274. (2003).
- [17] Dewey, D.R. and Lu, K.A. "Correlation and path-coefficient analysis of components of crested wheatgrass seed production", Agronomy Journal, Vol. (51), No.9, pp.515-518. (1959).
- [18] Milligan, S., Gravois, K., Bischoff, K. and Martin, F. "Crop effects on genetic relationships among sugar cane traits", Crop Science, Vol. (30), No.4, pp.927-931. (1990).
- [19] Webber, C.R. and B.R. Moorthy. "Heritable and Non- heritable Relationship and Variability of oil content and Agronomic characteristics in the F2 Generation of soy bean Crosses", Agron. J., Vol. (44), pp.202-209. (1952).
- [20] Singh, R.K. and Chaudhary, B.D. "Biometrical Methods in Quantitative Genetic Analysis", Kalyani Publishers, New-Delhi Revised Edition, India, pp.318. (1985).
- [21] Soomra, Z.A. "Estimation of Geen action and selection parameters in quantitative and qualitative traits of (Gossypium hirsutum L.)", Ph.D. Thesis, Sindh Agriculture university, through Department of plant Breeding and Genetics, Faculty of crop production, Tandojam. (2010).
- [22] Kristo, I., Szel, M.H., Gyapjas, J. and Szekeres, A. "Effect of sowing date and seeding rate on different winter wheat cultivars", Field crop Res. Vol. (102), No.3, pp.163-171. (2006).
- [23] C. P., Zhang, Y.Q., Zhang, D.Y. and Dang, J.Y. "Effects of sowing date and planting density on the grain's protein component and quality of strong and medium gluten winter wheat cultivars", The J. Applied. Ecol. Vol. (19), No.8, pp.1733-1740. (2008).

- [24] Amanullah, Z., Ahmad, K. and Jan, D. "Performance of wheat cultivars sown at different seeding rate under drought stress condition", Archives of Agronomy and soil Sci. Vol. (56), pp.99-105. (2008).
- [25] Melahat, A.B. "Effect of removal of some photosynthetic structures of some yield components in wheat", Tarim Bilimleri Dergisi, Vol. (11), No.4, pp.364-367. (2005).
- [26] Zecevic, V., Knezevic, D. and Micanovic, D. "Genetic correlations and path coefficient analysis of yield and quality components in wheat (Triticum aestivum L.)", Genitica, Vol. (36), No.1, pp.13-21. (2004).
- [27] Dolotovskiy, I.M. and Nikonov, V.I., "Genetic correlation of some yield components in spring wheat", Russia. Plant breeding and seed production, Vol. (4), pp.19-21. (1989).
- [28] Fellahi, Z. Hannachi, A., Bouzerzour, H. and Bouekrabt, A. "Correlation between Traits and Path Analysis coefficient for Grain yield and other Quantitative Traits in Bread Wheat under Semi Arid conditions", Journal of Agriculture and Sustainability, Vol. (3), No.1, pp.16-26. (2013).
- [29] Siahbidi, M.M.P., Aboughadareh, A.P., Tahmasebi, G.R., Seyedi, R. and Jasemi, M. "Factor analysis of agro-morphological characters in durum wheat (Triticum durum Desf.) lines", International Journal of Agriculture and Crop Sciences, Vol. (4), No.23, pp.1758 - 1762. (2012).
- [30] Khan, H.A., Mohammad, S.H. and Mohammad, S. "Character association and path coefficient analysis of grain yield component in wheat", Crop Research-Hisar, Vol. (17), No.2, pp.229-233. (1999).
- [31] Moghaddam, M., Ehdaie, B. and Waines, J.G. "Genetic variation and interrelationships of agronomic characters in landraces of bread wheat from southern Iran", Euphytica, Vol. (95), pp.361-369. (1997).
- [32] Karimizadeh, R., Mohtasham, P. and Mohammadi, M. "Correlation and path coefficient analysis of grain yield and yield components in durum wheat under two irrigated and rainfed condition", International Journal of Agriculture: Research and Review, Vol. (2), No.3, pp.277-283. (2012).
- [33] Mecha B., Alamerew, S., Assefa, A., Assefa E. and Dutamo, D. "Correlation and Path Coefficient Studies of Yield and Yield Associated Traits in Bread Wheat (Triticum aestivum L.) Genotypes", Adv. Plants & Agric. Res., Vol. (6), No.5. (2017).
- [34] Dutamo D., Alamerew S., Eticha F. and Assefa E. "Path Coefficient and Correlation Studies of Yield and Yield Associated Traits in Bread Wheat (Triticum aestivum L.) Germplasm", World Applied Sciences Journal, Vol. (33), No.11, pp.1732-1739. (2015).
- [35] Muhammad F.A., Iqbal, M., Masood, M.S., Rabbani M.A. and Munir, M. "Assessment of genetic diversity among the Pakistan wheat (Triticum aestivum L.) advanced breeding lines using RAPD and SDS-PAGE", Electronic Journal of Biotechnology, Vol. (13), No.3. (2010).
- [36] Sherwan I.T., D.A. Abdulkhaleq, Sh.J. Hama and Sh.H. Abdulqader. "Correlation and Path Analysis in Barley Under Rainfall Conditions", Journal of Zankoi Sulaimani, Vol, (18), No.3, pp.99-106. (2016).
- [37] Singh, S.P. and Diwivedi, V.K. "Character association and path analysis in wheat (Triticum aestivum L.)", Agric. Sci. Digest, Vol. (22), No.4, pp.225-257. (2002).
- [38] Leilah, A. A. and Al- Khateeb, S. A. "Statical analysis of what yield under drought conditions", Journal of Arid Environments, Vol. (61), pp.483-496. (2005).