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s Hybrid CFD-ANN Scheme for Air 

Flow and Heat Transfer Across In-
Line Flat Tubes Array 
 
A B S T R A C T  
 

Flat tubes are vital components of various technical applications including modern 

heat exchangers, thermal power plants, and automotive radiators. This paper 

presents the hybridization of computational fluid dynamic (CFD) and artificial 

neural network (ANN) approach to predict the thermal-hydraulic characteristics of 

in-line flat tubes heat exchangers. A 2D steady state and an incompressible laminar 

flow in a tube configuration are considered for numerical analysis. Finite volume 

technique and body-fitted coordinate system are used to solve the Navier–Stokes 

and energy equations. The Reynolds number based on outer hydraulic diameter 

varies between 10 and 320. Heat transfer coefficient and friction are analyzed for 

various tube configurations including transverse and longitudinal pitches. The 

numerical results from CFD analysis are used in the training and testing of the 

ANN for predicting thermal characteristics and friction factors. The predicted 

results revealed a satisfactory performance, with the mean relative error ranging 

from 0.39% to 5.57%, the root-mean-square error ranging from 0.00367 to 0.219, 

and the correlation coefficient (R2) ranging from 99.505% to 99.947%. Thus, this 

study verifies the effectiveness of using ANN in predicting the performance of 

thermal-hydraulic systems in engineering applications such as heat transfer 

modeling and fluid flow in tube bank heat exchangers. 
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مة انابيب مسطحة ظام ديناميكا الموائع الحسابية والشبكة العصيبة الاصطناعية الهجين لانتقال الحرارة وجريان الهواء عبر حزن

 مرتبة بشكل خطي   

 الخلاصة

السيارات. يعرض هذا البحث  ة الحرارية، ومشعاتالأنابيب المسطحة هي المكونات الحيوية لمختلف التطبيقات التقنية بما في ذلك المبادلات الحرارية الحديثة، ومحطات الطاق

لات الحرارية ذات الانابيب للتنبؤ بالخصائص الحرارية والهيدروليكية للمباد (ANN) والشبكة العصبية الاصطناعية (CFD) استخدم عملية التهجين لديناميك الموائع الحسابية

 (finite volume technique) دودـفق وغير قابل للانضغاط في التحليل العددي. استخدمت تقنية الحجم المحالمسطحة. اعتبرت حالة الجريان مستقرة وببعدين وطباقي التد

القطر الهيدروليكي  ومعادلة الطاقة. حسب عدد رينولدز على أساس (Navier–Stokes) توكس -لحل معادلات نافير (body-fitted coordinate) ونظام تطابق الاحداثيات

الطولية. استخدمت النتائج و. تم تحليل معامل انتقال الحرارة والاحتكاك لجميع الحالات المدروسة للمسافة بين مركز الانابيب العرضية 320الى  10وب وبمدى الخارجي للأنب

عة من الشبكة العصبية ظهرت النتائج المتوقفي تدريب واختبار الشبكة العصبية الاصطناعية للتنبؤ بالخصائص الحرارية وعامل الاحتكاك. أ (CFD) العددية من تحليل الـ

 امل الارتباط، وتراوح مع0.219إلى  0.00367٪، وكان مدى مربع متوسط جذر الخطأ من 5.57٪ و0.39الاصطناعية أداء مرضيا، حيث تراوح متوسط الخطأ النسبي بين 

) 2R(  ات الحرارية والهيدروليكية استخدام الشبكة العصبية الاصطناعية في التنبؤ في أداء المنظوم٪. وبالتالي، فإن هذه الدراسة تتحقق من فعالية 99.947٪ إلى 99.505من

 .وكذلك في التطبيقات الهندسية المختلفة مثل نمذجة انتقال الحرارة وتدفق الموائع في المبادلات الحرارية ذات حزم الانابيب

1. INTRODUCTION 

The fluid flow and heat transfer in tube banks 

demonstrate the real-life applications of various 

industrially significant processes. Tube bundles are widely 

employed in cross-flow heat exchangers, and their design 

                                                           
* Corresponding author: E-mail : tahseen@tu.edu.iq ; tahseen444@gmail.com 

is based on the empirical correlations of heat transfer and 

pressure drop. Cross-flow heat exchangers with tube banks 

are essential to numerous thermal and chemical 

engineering processes [1–4]. Flat tube designs have been 

recently introduced for modern heat exchanger 

applications such as automotive radiators. Unlike circular  

http://www.tj-es.com/
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Nomenclature 

cP specific heat capacity of fluid, (J/kg K) 

Dh hydraulic diameter of tube, (m) 

dL longitudinal diameter of tube, (m) 

dT transverse diameter of tube, (m) 

𝐺1
∗, 𝐺2

∗ contravariant velocity components 

𝐽∗ Jacobian of the transformation 

k thermal conductivity of fluid, (W/m K) 

NL number of rows in flow direction 

p pressure, (Pa) 

P1 longitudinal distance, (m) 

P2 transverse distance, (m) 

PL longitudinal pitch 

PT transverse pitch 

S source term 

T temperature, (oC) 

u, v            velocity components, (m/s) 

U1,U2         dimensionless  velocity 

x, y            Cartesian coordinates, (m) 

Dimensionless groups 

f friction factor 

j Colburn factor 

Nu overall Nusselt number 

Re Reynolds number 

Greek symbols 

𝜇 dynamic viscosity, (kg/m s2) 

𝜌 density, (kg/m3)   

𝛼, 𝛽, 𝛾         coefficients of transformation 

Subscripts 

* dimensionless quantity   

N numerical data     

out outlet 

w tube wall     

tubes, flat tubes have appropriate pressure drop 

characteristics [5-7].  

Artificial neural networks (ANN) are used in 

numerous engineering applications because these tools 

provide excellent and highly reasonable solutions [8]. 

Ermis et al. [9] used a feed-forward back-propagation 

ANN to conduct numerical and experimental analysis of 

the heat transfer resulting from the phase change process in 

finned tubes. The experimental study yielded a mean 

relative error of 5.58%, whereas that of the numerical 

model is 14.99%. Fadare and Fatona [10] studied ANN in 

modeli-ing staggered multi-row, multi-column in cross-

flow, tube-to-tube heat exchangers, as well as the 

experimental data for air flow over a bundle of tubes. 

Results demonstrated that the mean absolute relative errors 

are less than 4% and 1% for the testing and training data 

sets, respectively. Islamoglu and Kurt [11] used an ANN to 

model the predicted heat transfer in corrugated channels. 

The mean absolute error between the experimental results 

and the ANN approach was less than 4%. The developed 

ANN models for predicting heat transfer coefficient and 

friction factor in helically coiled tubes used the empirical 

data for the prediction, which is then compared with 

previously published experimental correlations [12,13]. 

This study focuses on the applicability of ANN for 

the analyses of heat transfer and friction factor in in-line 

flat tube banks. Such analyses elucidate whether the use of 

in-line flat tube banks in the design of heat exchangers 

promotes heat transfer. CFD simulation results are 

compared with ANN model results, and various 

geometrical parameters on heat transfer coefficient and 

friction factor are discussed. 

2. CFD SIMULATION AND FORMULATION 

Four horizontal flat tubes isothermal heated in the row 

at the direction of the external flow. A flat tube with two 

outside diameters, namely, transverse dT and longitudinal 

dL, as well as the surface temperature of tube Ts placed in 

the velocity 𝑢∞ and the uniform inlet free stream of 

temperature 𝑇∞ in the in-line arrangement are used. The 

three longitudinal pitch-to-outside small diameter 

(transverse) ratio, PL = P1/dT, are 3.0, 4.0, and 6.0, and the 

four transverse pitch-to-outside small diameter ratio, 

PT = P2/dT, are 1.5, 2.5, 3.5, and 4.5. A sufficiently long 

flat tube is required to neglect the end effect of the tube. 

Therefore, flow field is assumed to be two-dimensional. 

The tube configuration and flow field calculation for the 

in-line flat tube banks are presented in Fig. 1(a).  

The governing equations are transformed into 

dimensionless forms upon incorporating the following 

non-dimensional variables.  

(𝑥∗, 𝑦∗) =
(𝑥, 𝑦)

𝐷ℎ
,   𝑝∗ =

𝑝

𝜌 × (𝑢∞)
2
,

 (𝑈1, 𝑈2) =
(𝑢, 𝑣)

𝑢∞
,   𝑇∗ =

𝑇 − 𝑇∞
𝑇s − 𝑇∞

,    

𝑅𝑒𝐷ℎ =
𝑢∞ × 𝐷ℎ

𝜐
, 𝑃𝑟 =

𝜇 × 𝑐𝑃
𝑘

          }
  
 

  
 

                          (1) 

The outer side hydraulic diameter of the flat tube can 

be written as follows: 

𝐷h =
4 × [

𝜋
4
𝑑T
2 + (𝑑L − 𝑑T) × 𝑑T]

𝜋𝑑T + 2(𝑑L − 𝑑T)
                                 (2) 

where (x, y) are the Cartesian coordinates, m; ρ is the air 

density, kg/m3; p is pressure, N/m2; uin is the air inlet 

velocity, m/s; (u, v) is the velocity components of fluid, 

m/s; T is the fluid temperature, °C; Tin is the inlet free 

stream temperature, °C; Tw is the surface temperature of 

tube, °C; Dh is the outside hydraulic diameter of the tube, 

m; dL is the outside longitudinal diameter of tubes, m; dT is 

the outside transverse diameter, m; μ is the air dynamic 

viscosity, kg/(m s); cP is the air specific heat, J/(kg K); and 

k is the air thermal conductivity, W/(m K). 

The following assumptions are made in developing 

the model: (i) the physical properties of air flow are 

constant; (ii) the air flow is incompressible and laminar 

flow; and (iii) steady-state flow and heat transfer. The 

governing equations for 2D continuity and Navier–Stokes 

for momentum and energy can be written as follows [14]: 

The continuity equation 

∇. v = 0                                                                                    (3) 

Momentum (Navier-Stokes) equation 

ρ∇(vv) = −∇𝑃 + 𝜇∇. (∇v)                                                  (4) 

Energy equation 
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∇(vT) =
𝑘

𝜌 𝑐𝑃
∇. (∇T)                                                            (5) 

In Eqs. (3) and (4), 𝑣 is the velocity vector (𝑢, 𝑣). 

The physical system considered in this study is 

illustrated in Fig. 1(a). The boundary conditions used for 

the solution domain are uniform inlet velocity, fully 

developed outflow, and combined symmetry and no-slip 

tube surfaces at the bottom and top boundaries. To 

complete the formulation, boundary conditions are 

determined to simplify the 2D solution domain as 

presented in Fig. 1(a). The boundary conditions can 

summarize as below: 

The entrance the domain:   

 𝑈1 = 1, 𝑈2 = 𝑇
∗ = 0 

Symmetric lines: 

 𝜕𝑈1 𝜕𝑦∗ = 0,   𝑈2 = 0,  𝜕𝑇
∗ 𝜕𝑦∗ = 0  ⁄    ⁄  

The exit of the domain: 

𝜕𝑈1 𝜕𝑥∗ = 0,   𝜕𝑈2/𝜕𝑥
∗ = 0,  𝜕𝑇∗ 𝜕𝑥∗ = 0 ⁄  ⁄  

The surface of tubes: 

 𝑈1 = 0, 𝑈2 = 0, 𝑇
∗ = 1 

The set of conservation Eqs. (3) to (5) can be 

generally written in Cartesian coordinates as Eq. (6). 

𝜕(𝑈1𝜙)

𝜕𝑥∗
+
𝜕(𝑈2𝜙)

𝜕𝑦∗
=

𝜕

𝜕𝑥∗
(Г
𝜕𝜙

𝜕𝑥∗
) +

𝜕

𝜕𝑦∗
(Г
𝜕𝜙

𝜕𝑦∗
) + 𝑆𝜙

∗     (6) 

The continuity equation, Eq. (3), without diffusion and 

source terms, can be used to derive an equation for 

correcting pressure. The grid generation scheme based on 

elliptic partial differential equations is used in the present 

study to generate curvilinear coordinates. Eq. (6) can be 

transformed from the physical to computational domain on 

the basis of the following transformation 

𝜉∗ = 𝜉∗(𝑥∗, 𝑦∗), 𝜂∗ = 𝜂∗(𝑥∗, 𝑦∗) [15, 16]. The schematic 

of the computational grid is illustrated in Fig. 1(b). 

The final form of the transformed equation can be 

written as Eq. (7):

𝜕

𝜕𝜉∗
(𝜙𝐺1

∗) +
𝜕

𝜕𝜂∗
(𝜙𝐺2

∗) =
𝜕

𝜕𝜉∗
[
Г

𝐽
(𝛼

𝜕𝜙

𝜕𝜉∗
+ 𝛾

𝜕𝜙

𝜕𝜂∗
)] +

𝜕

𝜕𝜂∗
[
Г

𝐽
(𝛽

𝜕𝜙

𝜕𝜂∗
+ 𝛾

𝜕𝜙

𝜕𝜉∗
)] + 𝐽∗ × 𝑆𝜙

∗                                                 (7) 

 
(a) 

 

   
Entrance domain Inner (main) domain Exit domain 

 (b) 

Fig.  1. In-line flat tube bank (a) tube arrangement and computational domain, and (b) schematic of computational grid 

systems generated by the body-fitted coordinates. 

which are expressed as follows:   

𝐺1
∗ = 𝑈1

𝜕𝑦∗

𝜕𝜂
− 𝑈2

𝜕𝑥∗

𝜕𝜂
,        

 𝐺2
∗ = 𝑈2

𝜕𝑥∗

𝜕𝜉
− 𝑈1

𝜕𝑦∗

𝜕𝜉
,        

      

𝐽 =
𝜕𝑦∗

𝜕𝜉
 
𝜕𝑥∗

𝜕𝜂
−
𝜕𝑥∗

𝜕𝜉
 
𝜕𝑦∗

𝜕𝜂
,

𝛼 = (
𝜕𝑥

𝜕𝜂
)
2

+ (
𝜕𝑦

𝜕𝜂
)
2

,         
        

𝛽 = (
𝜕𝑥

𝜕𝜉
)
2

+ (
𝜕𝑦

𝜕𝜉
)
2

,         

 𝛾 = (
𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂
) + (

𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂
)   

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                                                 (8) 

This study determines the overall Nusselt number, the 

Coburn j-factor, the friction factor or the resulting air flow, 

and the temperature fields, which are expected to represent 

the total pressure drop for the flat tube bank system. 

The overall Nusselt number, (Nu), is defined as follows: 

Nu =
ℎ × 𝐷ℎ
𝑘

                                                                          (9) 

The calculation of the Colburn j-factor is presented 

through the following non-dimensional parameter: 

𝑗 =
Nu

Re𝐷ℎ × Pr
1/3
                                                               (10) 

The friction factor in the expiration is calculated as 

follows [17]: 
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𝑓 =
(𝑝in − 𝑝out)

2𝜌 × (𝑢max)
2 × 𝑁L

                                                   (11) 

where NL is the number of transverse rows, which is 

regarded as  

4 in this study. 

The mass velocity at minimum flow area can be 

calculated by Eq. (12) [18]: 

𝑢max = 𝑢∞ ×
𝑃𝑇

(𝑃𝑇 − 1)
                                                     (12) 

2.1. Numerical Methods 

The governing equations are solved numerically with 

the use of FORTRAN 95 (FTN95). The computer code 

solved the equation of continuity, momentum, and energy, 

which are discretized by a finite-volume technique. The 

technique is based on a non-orthogonal coordinate system 

with Cartesian velocity components and a non-staggered 

(collocated) grid [19] with the SIMPLE algorithm [20]. 

The convergence of the steady state is monitored using the 

determined iterator-to-iterator variations of a field variable 

that is normalized by its domain. The normalized 

maximum root-mean-square (RMS) is defined as follows: 

RMS =
|𝜒𝑛𝑒𝑤 − 𝜒𝑜𝑙𝑑|

(𝜒𝑚𝑎𝑥 − 𝜒𝑚𝑖𝑛)
                                                      (13) 

where  are U1, U2, p*, and T*.  

The RMS values are checked in every nodal location, 

and the determined convergences of the upper values of 

RMS are typically less than 1 × 10–4. 

2.2. Code Validation and Grid Independent 
Testing 

Code validation is an essential aspect of numerical 

investigation. This section aims to address the code 

validation issue. The validation with FORTRAN95 

(FTN95) code resolved numerous test problems and 

predictions, which were compared with the code developed 

from exact solutions, experimental data, or standard 

problems from previous studies. The numerical model was 

validated with the publication of certain standard 

problems. Comparison of the results of this study and 

Bahaidarah's research [21] are illustrated in Table 1. The 

results presented in Table 1 include the numerical forecasts 

of heat transfer by the code, which completely match the 

numerical forecasts by Bahaidarah [21]. The maximum 

deviation in the overall Nusselt number is 3.034% or less. 

Grid independence test was conducted by modifying 

the grid numbers with various expansion and contraction 

factors. The general mesh testing matches the independent 

solution of the grid. A study was conducted on grid 

independence test; PL = 4.0 and PT = 2.5 at ReDh = 160 in 

the domain, and the overall Nusselt number and the friction 

factor are increased. The study indicated that 601 nodes 

(along the x-direction) by 21 nodes (along the y-direction) 

cater to the best results, whereas increases in the number of 

grids do not affect the result. Table 2 presents the summary 

of the independent results of the grid. Therefore, to 

minimize the error and optimum uses of CPU resources, 

the ideal shape of the grid is 601 × 21.  

 

Table 1 

Comparison of overall Nusselt number between the present 

simulation results and Bahaidarah et al. [21]. 

 
Bahaidarah  

et al. [21] 

Present  

simulation 

Deviation 

(%) 

Re𝐷ℎ   = 50 

2nd 

HEM 
9.228 9.508 3.034 

3rd HEM 9.229 9.207 0.238 

4th HEM 9.229 9.157 0.780 

Re𝐷ℎ  = 200 

2nd 

HEM 
12.440 12.631 1.535 

3rd HEM 12.430 12.532 0.821 

4th HEM 12.420 12.424 0.032 

% Deviation =  |NuProv − Nupres| Nuprov × 100⁄  

HEM: heat exchanger module 

3. CALCULATION PROCEDURE FOR ANN 
MODEL 

ANNs are information processing systems that 

possess certain properties that work effectively with 

biological neural networks. ANNs are one of the most 

commonly used and developed models in investigating the 

relationship between linear or non-linear input-output 

patterns. The neural network is a mapping between its 

inputs and outputs based on a number of known sample 

input-output pairs. Moreover, ANNs facilitate the training 

and the approximation of the test team. Performance of 

ANN usage has predictable success. The literature 

provides numerous detailed ANN types that are related to 

the approximation function [22,23]. Schematic diagrams 

for specific artificial intelligence models used in the 

analysis are shown in Fig. 2. The first input layer feeds data 

to a hidden intermediate layer. The hidden layer processes 

the data and transports it to the 

 
(a) 

 
(b) 

Fig.  2. Typical scheme for system models (a) input and 

output, and (b) Configuration on a 3-5-3 the neural 

networks.
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Table 2 

Results of grid independence test and proportional error analysis with different grid sizes at PL = 4.0, PT = 2.5 and 

ReDh = 160. 

No. of grids in 

x*-direction 

No. of grids in 

y*-direction 

Overall Nusselt 

number 

Nu 

% diff. 

Friction 

factor  

𝒇 

% diff. 

401 21 16.1702 - 0.0265 - 

501 21 15.8731 1.872 0.0270 1.852 

601 21 15.7470 0.801 0.0272 0.735 

601 21 15.7227 0.155 0.0273 0.366 

601 21 15.7125 0.065 0.0273 0.0 

601 31 15.7117 0.005 0.0274 0.365 

601 41 15.7104 0.008 0.0275 0.364 

% diff = |𝜑(i+1) − 𝜑i| 𝜑(i+1) × 100⁄  ; 𝜑 is any parameters. 
 

output layer. Only the tap weights between the hidden layer 

and the output layer are modified during training. Each 

hidden layer neuron represents a basis function of the 

output space with respect to a particular center in the input 

space. The second layer is the hidden layer which is 

composed of nonlinear units that are connected directly to 

all of the nodes in the input layer.  It is of high enough 

dimensions which serves a different purpose from  

that in a multilayer perceptron. Each hidden unit takes its 

input from all the nodes at the components of the input 

layer and the hidden units contain a basis function, which 

has the parameters center and width. The transformation 

from the input space to the hidden unit space is nonlinear, 

whereas the transformation to the hidden unit space to the 

output space is linear. The neural networks were 

determined with the use of MATLAB program, and all of 

the tests were implemented in a computer. Activating the 

error function in this study is a function of the logistic 

sigmoid and the standard total of the squared error 

function. 

The data that was numerically evaluated in this study 

were normalized to obtain the values by using the 

following Eq. (14): 

where the maximum and minimum are the maximum and 

minimum data values, respectively, such that, the low is the 

minimum normalized data value = 0.1, and the high is the 

maximum normalized data value = 0.9 [20]. In general, the 

proposed correlations formula can be assessed statistically 

by measuring the coefficient of determination, R2, as 

pointed out by Kvalseth [25]. The R2–value is mostly 

computed with the use of data points. The R2–value is the 

standard of the appropriateness of the regression model 

designed for the fitted test data [26]. R2 = 1 refers to the 

perfect correlation when all of the residuals (the difference 

between the estimated and the actual data values at each 

test point) are equal to zero. 

The relative error (Er) for variable (𝜓), and the mean 

relative error (MEr) between the empirical and predicted 

data is estimated by Eq. (15) [27]: 

Er(%) =
|𝜓𝑁 − 𝜓𝑃|

𝜓𝑁
× 100            

MEr(%) =
1

𝑛
∑Er(%)𝑖

𝑛

𝑖=1

               
}
 
 

 
 

                              (15) 

The root mean square error (RMSE) can be evaluated by 

Eq. (16) [28]: 

RMSE = [
1

𝑛
∑(𝜓𝑁 − 𝜓𝑃)𝑖

2

𝑛

𝑖=1

]

1 2⁄

                                     (16) 

The correlation coefficient (R2) is defined by [29]: 

 

𝑅2 = 1 −
∑ (𝜓𝑁 − 𝜓𝑃)𝑖

2𝑛
𝑖=1

∑ (𝜓𝑁)𝑖
2𝑛

𝑖=1

                                              (17) 

where (N) is the numerical data, (P) is the predicted result, 

and (n) is the number of numerical data.  

4. RESULTS AND DISCUSSION 

Numerical evaluations were conducted to verify the 

results of the ANN model. Sixty numerical simulation data 

were utilized to produce the ANN model. To improve the 

proposed model, data from 46 cases (approximately 

76.67%) were used for training, and the remaining 14 cases 

were used for the testing performance (approximately 

23.33%) to evaluate the ANN model. The original data 

(CFD) that were employed to produce the ANN model are 

listed in Table 3.  

Results of the developed ANN model with the 

training data are shown in Fig. 3. The figure shows the 

overall Nusselt number, Colburn j-factor, and friction 

factor. An excellent agreement exists between the output 

data from the ANN model and the data obtained from the 

simulations; the maximum relative error are approximately 

±3.84%, ±5.87%, and ±13.87%, and the mean relative error 

are approximately 1.43%, 2.43%, and 5.57%, for the 

Nusselt number, Colburn j-factor, and friction factors, 

respectively. For the overall Nusselt number, the best 

agreement between the ANN predictions and the CFD 

simulation results (R2=99.916%) are provided in Fig. 3(a). 

The j-factor predictions of ANN that were in excellent 

agreement with the numerical simulation results 

(R2 = 99.947%) are depicted in Fig. 3(b). The predictions 

of the ANN for the friction factor that were in best 

agreement with the CFD simulation results (R2 = 99.914%) 

are indicated in Fig. 3(c), which is a powerful indication of 

excellent data fitting. Performance through the ANN 

models is assessed on the basis of the statistical evaluation  

 

(
Actual − Minimum

Maximum −Minimum
)
data

× (High data − Low data) + Low data (14) 
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Table 3 

The original (CFD) values using in the training and testing of the ANN model. 

Run 

no. 
PL PT ReDh Nu 𝒋 𝒇 

Run 

no. 
PL PT ReDh Nu 𝒋 𝒇 

1,TS 3 1.5 10 7.236 0.811 0.935 31,TS 4 3.5 10 5.885 0.659 0.293 

2,TS 3 1.5 40 10.339 0.290 0.246 32,TR 4 3.5 40 8.576 0.240 0.074 

3,TR 3 1.5 80 12.311 0.172 0.117 33,TR 4 3.5 80 10.324 0.145 0.036 

4,TR 3 1.5 160 14.344 0.100 0.058 34,TR 4 3.5 160 14.173 0.099 0.019 

5,TR 3 1.5 320 18.127 0.063 0.038 35,TR 4 3.5 320 15.874 0.056 0.013 

6,TS 3 2.5 10 6.512 0.730 0.401 36,TS 4 4.5 10 5.629 0.631 0.276 

7,TR 3 2.5 40 9.305 0.261 0.099 37,TR 4 4.5 40 8.216 0.230 0.069 

8,TR 3 2.5 80 11.080 0.155 0.047 38,TR 4 4.5 80 9.890 0.139 0.034 

9,TR 3 2.5 160 12.910 0.090 0.023 39,TR 4 4.5 160 13.577 0.095 0.018 

10,TR 3 2.5 320 16.314 0.057 0.015 40,TR 4 4.5 320 15.207 0.053 0.012 

11,TS 3 3.5 10 5.868 0.658 0.300 41,TS 6 1.5 10 7.238 0.811 0.975 

12,TR 3 3.5 40 8.384 0.235 0.074 42,TR 6 1.5 40 10.645 0.298 0.154 

13,TR 3 3.5 80 9.983 0.140 0.035 43,TR 6 1.5 80 12.781 0.179 0.139 

14,TR 3 3.5 160 11.632 0.081 0.017 44,TR 6 1.5 160 17.769 0.124 0.076 

15,TR 3 3.5 320 14.699 0.051 0.012 45,TR 6 1.5 320 19.877 0.070 0.052 

16,TS 3 4.5 10 5.615 0.629 0.263 46,TS 6 2.5 10 6.586 0.738 0.437 

17,TR 3 4.5 40 8.023 0.225 0.065 47,TR 6 2.5 40 9.687 0.271 0.115 

18,TR 3 4.5 80 9.554 0.134 0.031 48,TR 6 2.5 80 11.631 0.163 0.058 

19,TR 3 4.5 160 11.131 0.078 0.015 49,TR 6 2.5 160 16.169 0.113 0.032 

20,TR 3 4.5 320 14.067 0.049 0.010 50,TR 6 2.5 320 18.088 0.063 0.022 

21,TS 4 1.5 10 7.238 0.811 0.955 51,TS 6 3.5 10 5.943 0.666 0.322 

22,TS 4 1.5 40 10.564 0.296 0.261 52,TR 6 3.5 40 8.742 0.245 0.085 

23,TR 4 1.5 80 12.717 0.178 0.127 53,TR 6 3.5 80 10.495 0.147 0.043 

24,TR 4 1.5 160 17.458 0.122 0.067 54,TR 6 3.5 160 14.591 0.102 0.023 

25,TR 4 1.5 320 19.554 0.068 0.047 55,TR 6 3.5 320 16.322 0.057 0.016 

26,TS 4 2.5 10 6.514 0.730 0.420 56,TS 6 4.5 10 5.700 0.639 0.277 

27,TR 4 2.5 40 9.508 0.266 0.106 57,TR 6 4.5 40 8.383 0.235 0.073 

28,TR 4 2.5 80 11.445 0.160 0.051 58,TR 6 4.5 80 10.065 0.141 0.037 

29,TR 4 2.5 160 15.713 0.110 0.027 59,TR 6 4.5 160 13.993 0.098 0.020 

30,TR 4 2.5 320 17.599 0.062 0.019 60,TR 6 4.5 320 15.653 0.055 0.014 

TR, TS are the training and testing data selected for training and testing the ANN model, respectively. 

 

functions mentioned in Eqs. (15)-(17), as commonly 

employed [11,23,29]. 

The predicted results of the testing deviation values for 

overall Nusselt number were MEr = 0.39%, RMSE 

=3.28×10-2, whereas in predicting j-factor the values were 

MEr = 1.54%, RMSE = 8.88×10-3, and for friction factor, 

they were MEr = 4.50%, RMSE = 2.11×10-2. The 

comparisons of testing data sets for the predicted value 

results of the overall Nusselt number, j-factor, and friction 

factor of the developed ANN and the original data (CFD 

simulation) are plotted in Fig. 4, where the solid line refers 

the ideal fit (predicted equal original data). The excellent 

agreement of the figures among the ANN predicted results 

and the original values with the correlation coefficient 

higher than R2 = 99.505% are notable. Furthermore, lower 

MRE and MSE values of the test data sets, as well as the 

difference between the values of acceptable deviation to 

teas and train data sets, refers to the verification of the 

ANN models. In addition, the overall Nusselt number, j-

factor, and friction factor for the testing data predicted by 

ANN and actual (CFD) with different geometry and flow 

parameters are tabulated in Table 4. The maximum relative 

error was determined at approximately ±1.068%, ±4.369%, 

and ±6.592%, for overall Nusselt number, j-factor, and 

friction factor, respectively. 

Utilizing the Eq. (15) on the original CFD value to 

produce the relative error results of the ANN model for the 

training and testing data is shown in Fig. 5. Fig. 5(a) clearly 

illustrates the maximum relative errors (Ermax) for overall 

Nusselt number are approximately ±1.07% for testing and 

±3.85% for training, with the mean relative error (MEr) at 

0.39% and 1.43%, respectively. The relative error of j-

factor is presented in Fig. 5(b). The Ermax are 

approximately ±4.39% for testing and ±5.87% for training, 

with the MEr at 1.55% and 2.43%, respectively. The f 

factor's ANN prediction against the CFD values are 

presented in Fig. 5(c). The ANN yields Ermax at approxim- 
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Table 4 

 Comparison the overall Nusselt number, j-factor and friction factor of numerical and ANN model for testing data. 

Run no. 1 2 6 11 16 21 22 26 31 41 46 51 56 

Overall Nusselt number 

CFD 7.236 10.339 6.512 5.868 5.615 7.238 10.564 6.514 5.875 5.629 7.238 6.586 5.943 

ANN 7.243 10.339 6.582 5.837 5.626 7.174 10.564 6.527 5.832 5.651 7.238 6.618 5.909 

%Er 0.096 0.001 1.068 0.519 0.190 0.884 0.001 0.205 0.734 0.403 0.006 0.481 0.580 

%MEr 0.390 

Colburn j-factor 

CFD 0.811 0.290 0.730 0.658 0.629 0.811 0.296 0.730 0.659 0.631 0.811 0.738 0.666 

ANN 0.815 0.278 0.736 0.663 0.637 0.807 0.309 0.726 0.650 0.619 0.799 0.747 0.679 

%Er 0.527 4.159 0.787 0.862 1.248 0.579 4.396 0.570 1.353 1.836 1.470 1.152 1.884 

%MEr 1.535 

Friction factor 

CFD 0.935 0.246 0.401 0.300 0.263 0.955 0.261 0.420 0.293 0.276 0.975 0.437 0.322 

ANN 0.987 0.230 0.411 0.320 0.278 0.958 0.246 0.393 0.297 0.263 0.965 0.410 0.305 

%Er 5.664 6.283 2.489 6.469 5.640 0.326 5.722 6.592 1.384 4.805 1.017 6.169 5.142 

%MEr 4.500 

 

 

 

Fig.  4. The testing results evaluated using ANN for (a) 

overall Nusselt number, (b) 𝒋-factor and (c) 𝒇 factor. 

 

 

 

Fig.  5. The relative error for training and testing data 

using (a) overall Nusselt number (b) 𝑗-factor and (c) 𝑓 

factor. 
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ately ±6.59% for testing and ±13.87% for training, with the 

MEr at 4.50% and 5.57%, respectively.  

 
(a) 

 
(b) 

 

Fig.  6. Comparison of numerical with ANN results 

against Reynolds number of the training data for (a) 

overall Nusselt numbers, (b) 𝑗-factor and (c) 𝑓 factor. 

In general, a small relative error was found in the 

testing data for overall Nusselt number, j-factor, and 

friction factor. The determined ANN predictions were 

close to the CFD data with minimal deviations for each 

point of overall Nusselt number. These results indicate that 

the ANN model is appropriate in predicting the heat 

transfer coefficient. The numerically calculated data 

compared with the predicted ANN results for the training 

data when PL = 3.0 and PT = 2.5 relative to Reynolds 

number are presented in Fig. 6. The used base value (CFD) 

are shown in Table 3 with numbers 7 to 10, as well as 

predicted ANN data for overall Nusselt number, j-factor, 

and friction factor. As expected, Nu increases with the rise 

of the Reynolds number as shown in Fig. 6(a). In contrast, 

j- and friction factors decrease with increasing Reynolds 

number, as demonstrated in Fig. 6(b) and (c). The 

maximum relative error is found at approximately ±2.79%, 

±4.03%, and ±7.78% for overall Nusselt number, j-factor, 

and friction factor, respectively. These trends are 

extremely similar to the existing CFD results, such that, the 

initial conditions provided in the ANN model can predict 

the output variable without implementing any simulation 

run. 

5. CONCLUSIONS 

The developed ANN model is applied to estimate the 

thermal-hydraulic characteristics of in-line flat tubes bank. 

For all heat transfer and flow parameters, the MEr of the 

ANN approach range from 1.43% to 5.57% for the training 

data and from 0.39% to 4.5% for the testing data. The 

RMSE ranged from 3.67 × 10–3 to 0.219 for the training 

data and from 8.88 × 10–3 to 3.27 × 10–2 for the testing data. 

The correlation coefficient for all heat and flow parameters 

are extremely close to match the lowest value, R2 = 

99.505%. Predicting the thermal-fluids characteristics 

using ANN approach resulted in a good agreement with the 

simulation data. Thus, this method is proposed as it offers 

fast, reliable, and accurate results, as well as initial 

estimates for an engineer to address complex heat transfer 

and fluid flow problems. 
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