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The nonlinear finite element analysis has become an important tool, for the structural design and 

assessment of prestressed reinforced concrete members. However, design and assessment of 

torsion are still done with simplified analytical or empirical design methods. This paper presents 

results from a numerical analysis using the ANSYS finite element program to simulate a pre-

stressed concrete beams subjected to static and cyclic torque. The eight- node brick elements 

SOLID65 are used for the idealization of concrete while the reinforcements are idealized by using 

3D spar element LINK8. The steel plates are idealized by using three dimensional solid elements 

SOLID45. The results showed that the general behavior of the finite element models represented 

by torque- twist angle relationships show good agreement with the experimental results from the 

Abdullah's beams. 
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1. Introduction   

Prestressed Concrete has been used extensively 
over the past decades and it has become one of the 
major structural building materials and it is widely 
used all over the world, especially in urban areas 
Nawy [5]. There are several methods for modeling 
the concrete structures through both analytical and 
numerical approaches. Modern computational tech-
niques like the finite element method have been 
used in nonlinear analysis of reinforced and pre-
stressed concrete structures.  

   The finite element method (FEM) is a numeri-
cal method which provides a tool that can accurately 
simulate the behavior of concrete structures. This 
technique that has been widely used for linear and 
nonlinear analysis of reinforced and prestressed  
concrete structures. Attention, at early stages of us-
ing finite element method, was focused on two di-
mensional and axisymmetrical models, but it was 

soon extended to include plate, shell and three-
dimensional system under general states of loading. 

   In this paper, the ANSYS [2] finite element pro-
gram is used to simulate a prestressed concrete 
beams tested by Abdullah [1]. This package pro-
vides a three-dimensional element (SOLID65) with 
the nonlinear model of brittle materials similar to 
the concrete material. The element features in a 
smeared crack analogy for cracking in tension zones 
is accommodated by the nonlinear material model 
and a plasticity algorithm to take into account the 
concrete crushing in compression zones. The truss 
element (LINK8) is used for discrete reinforcement 
modeling (prestressing strands, longitudinal and 
transverse reinforcements). However, it was as-
sumed that perfect bonding between concrete and 
steel reinforcement occurs during loading.   
    The main objective of this study was to develop a 
numerical model where nonlinear material proper-
ties of prestressed concrete beams can be included 
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in detailed analysis for cyclic torsion investigations 
in the future. A three-dimensional nonlinear of pre-
stressed concrete beams was developed by a gen-
eral purpose finite element analysis package ANSYS.  

 

2. Finite Element Formulation 

The finite element method has been adopted by a 
number of areas of engineering such as heat transfer 
and magnetic field analysis. In this study, the origi-
nal application of structural engineering is consid-
ered. In this domain, the technique broadly consists 
of discrediting a structure into a number of small 
substructures. This allows the displacement or 
stress in these elements to be approximated, the 
latter being the most common approach. These ele-
ments must then be assembled in such a way that 
stresses are continuous across element interfaces 
and the internal stresses are in equilibrium both 
with each other and with the applied loads. The fi-
nite element method can thus be thought of as a two 
stage process, the first being the construction of 
finite elements and the second their assembly into 
structural matrices. 

2.1. Matrix Structural Analysis 

The most common problem arising in structural 
analysis is to determine the deflection arising from a 
set of static loads. If the loads at these nodes -or de-
grees of freedom- are defined by a vector {F} and 
the displacements at the corresponding nodes are 
similarly defined {u}, matrix stiffness [K] is required 
to relate the load and displacement: 

      {𝐹} =  [𝐾] {𝑢}                                                         (1) 

Of most interest to dynamics is similar formula-
tion which includes inertia and damping terms:  

[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑢}  =  {𝐹}                     (2) 

Where: [M] is the mass matrix describing the dis-
tribution of mass about the structural degrees of 
freedom and {u̇} and {ü} are the first and second 
derivatives of the displacement with respect to time. 
Notice that the force applied to the system is now a 
function of time. While mass and stiffness of a struc-
ture are measured and relatively easily derived, the 
mechanism whereby energy is lost through damping 
is less easily modeled. The viscous damping model 
represented by matrix  [C] in equation (2) is com-
monly, but by no means exclusively, used being pro-
portional to velocity. Structural damping is an im-
portant area of structural dynamics which has de-
servedly received much attention. Of most im-

portance is that damping dominates the amplitude 
of vibration around resonance Ewins [3]. The un-
damping equation of motion from equation (2) is: 

{�̈�} + [𝐾]{𝑢}  =  {𝐹}                                               (3) 

     For free (unforced) vibrations the following rela-
tion is obeyed: 

[𝑀]{�̈�} + [𝐾]{𝑢}  = 0                                             (4) 

The solution to which can be written in the form:  

{𝑢} = {𝜓}𝑗𝑒
𝑖𝜔𝑗𝑡                                                       (5) 

where the ωj are the resonant frequencies. Sub-
stituting back into equation (4) leads to the well 
known Eigen Value problem:  

[𝑀]{𝜓}𝑗𝜆𝑗 = [𝐾]{𝜓}𝑗                                             (6) 

where (λj = ωj
2) and {ψ}j can be thought of the 

mode shapes corresponding to the system natural 
frequencies {ω}j.  While the Eigen Values have an 
exact relationship with the resonant frequencies, 
the eigenvectors are arbitrarily scaled; it is common 
practice to define a uniquely scaled set of eigenvec-
tors such that:  

[∅]𝑇[𝑀][∅] = [𝐼]                                                     (7) 

These results in: 

[∅]𝑇[𝐾][∅] = 𝑑𝑖𝑎𝑔( 𝜆)                                          (8) 

where [∅] is the matrix of mass normalized ei-
genvectors. 

2.2. Equations of Motion for Finite Elements 
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By using the principle of virtual work, it can devel-

op equations of motion for any finite element. Such 

equations include energy equivalent stiffnesses, masses, 

and nodal loads for a typical element. The derivation 

presented therein is general and can be applied to any 

element type and proposed displacement field. Assume 

that a three-dimensional finite element with zero damp-

ing exists in Cartesian coordinates x, y, and z. at any 

point within the element. If the element is subjected to 

time-varying body forces, such forces may be placed 

into a vector {b (t)}. The shape functions [𝐍]are used 

to express the time-varying generic displacements at 

any point within the element,{𝐔(𝐭)}𝐞in terms of the 

time-varying nodal displacements, {𝐮 (𝐭)}𝐞, Weaver 

and Johnston [10]    as: 

{𝑼(𝒕)}𝒆 = [𝑵]{𝒖(𝒕)}𝒆                                              (9) 

By differentiation of the displacements, the corre-

sponding time-varying strain{𝛆}𝐞, can be written as:                    

{𝜺(𝒕)}𝒆 = [𝝏]{𝑼(𝒕)}𝒆                                                     (10) 

   where [𝛛]is the matrix of differential operators. Sub-

stituting of equation (9) into (10) yields: 

{𝜀(𝑡)}𝑒 = [𝐵]{𝑢(𝑡)}𝑒                                               (11) 

where [B] is the strain-nodal displacement matrix 

given by: 

[𝐵] = [𝜕]. [𝑁]                                                            (12)  

    The stresses {σ(t)}e can be determined from the 
corresponding strains, by using the general stress-
strain relationship as: 

{𝜎(𝑡)}𝑒 = [𝐸]. {𝜀(𝑡)}𝑒                                             (13) 

where {σ(t)}e is the time-varying stress vector, 
given by: 

{𝜎(𝑡)}𝑒 = [𝜎𝑥 𝜎𝑦 𝜎𝑧𝜏𝑥𝑦 𝜏𝑦𝑧 𝜏𝑧𝑥]𝑇           (14) 

And [E] is the constitutive matrix and{ε(t)}e, is 
the strain vector given by: 

{𝜀}𝑒 =

{
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=
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{
𝑢
𝑣
𝑤
} (15) 

   Sub stitution of equation (11) into equation (13) gives 

the stress-nodal displacement relationship: 

{𝜎(𝑡)}𝑒 = [𝐸]. [𝐵]{𝑢(𝑡)}𝑒                                     (16) 
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   The principle of virtual displacements of deformed 

body is used to establish the governing equations of 

dynamic equilibrium. It means that, if a general struc-

tural in dynamic equilibrium is subjected to a system of 

small virtual displacements with a compatible state of 

deformation, the virtual work of external ac-

tions(𝛅𝐖𝐞𝐱𝐭)is equal to the virtual strain energy of in-

ternal stresses(𝛅𝐖𝐢𝐧𝐭), Weaver and Johnston [10]    

thus: 

(𝜹𝑾𝒆𝒙𝒕) = (𝜹𝑾𝒊𝒏𝒕)                                                  
(17) 

   For the external virtual work, an infinitesimal element 

with components of applied body forces 𝐛(𝐭) and the 

internal body forces 𝛒�̈�𝐝𝐕 due to the acceleration�̈�. 

The symbol 𝛒 in these expressions represents the mass 

density of the material, which is defined as the inertial 

force per unit acceleration per unit volume. Note that 

the inertial forces act in directions that are opposite to 

the positive senses of the acceleration. Thus, it adds the 

external virtual work of nodal and distributed body 

forces as follows: 

𝜹𝑾𝒆𝒙𝒕 = 𝜹{𝒖}
𝑻{𝑷𝒊(𝒕)} + ∫𝜹{𝑼}

𝑻{𝒃(𝒕)}𝒅𝑽 − ∫𝜹{𝑼}𝑻𝝆 {�̈�}𝒅𝑽  (18) 

      where {𝐏𝐢(𝐭)} is a time-varying nodal action. The 

internal virtual strain work is given by: 

𝜹𝑾𝒊𝒏𝒕 = ∫𝝏{𝜺}
𝑻{𝝈(𝒕)}𝒅𝑽                                    (19) 

  Substitution of equations (18) and (19) into equa-

tion (17) produces: 

𝜹{𝒖}𝑻{𝑷𝒊(𝒕)} + ∫𝜹{𝑼}
𝑻{𝒃(𝒕)}𝒅𝑽 − ∫𝜹{𝑼}𝑻𝝆{�̈�}𝒅𝑽 =

∫𝝏{𝜺}𝑻{𝝈(𝒕)}𝒅𝑽                                                              (20) 

The above expression represents the equation of 

dynamic equilibrium for a general body. Therefore, by 

making use of equation (9), (11), and assume that{�̈�} =
[𝐍]{�̈�}, and substitute into equation (20) to obtain: 

𝜹{𝒖}𝑻 ∫𝝆[𝑵]𝑻[𝑵]𝒅𝑽{𝒖}̈ + 𝜹{𝒖}𝑻 ∫[𝑩]𝑻[𝑬]. [𝑩]𝒅𝑽{𝒖} =

{𝒖}𝑻{𝑷𝒊(𝒕)} + 𝜹{𝒖}
𝑻 ∫[𝑵]𝑻{𝒃(𝒕)}𝒅𝑽                                   (21) 

Cancellation of 𝛅{𝐮}𝐓and rearrangement of the re-

sulting equations of motion is given in equation (3.3). 

where,      [𝑲]𝒆 = ∫[𝑩]𝑻[𝑬][𝑩] )𝒅𝑽                         (22)  

And,          [𝑴]𝒆 = ∫𝝆[𝑵]𝑻[𝑵] 𝒅𝑽                            (23) 

    Matrix [K] in equation (22) is the element stiffness 

matrix, which contains stiffness coefficient that is ficti-

tious actions at nodes due to unit values of nodal dis-

placements. Equation (23) gives the form of the con-

sistent- mass matrix, in which   the terms are energy-

equivalent actions at nodes due to unit values of nodal 

accelerations Weaver and Johnston [10]. Finally, the 

vector ∫[𝐍]𝐓{𝐛(𝐭)}𝐝𝐕 in equation (21) consist of 

equivalent nodal loads due to body forces in the vec-

tor{𝐛(𝐭)}. Other equivalent nodal loads due to initial 

strains or stresses could be derived Weaver and John-

ston [9], but analyses for such influences are considered 

to be statics problems. 

2.3. Coordinate Transformation 

If local axes for a finite element are not parallel 
to global axes for the whole structure, rotation of 
axes transformations must be used for nodal loads, 
displacements, accelerations, stiffness, and con-
sistent masses. Thus, when the elements are assem-
bled, the resulting equation of motion will pertain to 
the global directions at each node. The formulation 
of the elemental matrices described above has for 
convenience and generality been relative to a set of 
axes local to the element itself. To convert elemental 
stiffness matrices from local set of coordinates 
(x̅, y̅, z̅) within which they were formulated into the 
global coordinates (x, y, z) of the structure of which 
they must form a part a transformation is required. 
This is given by: 

{
𝑥¯
𝑦¯
𝑧¯
} = [𝑇] {

𝑥
𝑦
𝑧
} =

[
 
 
 
 
𝜕�̅�
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𝜕�̅�

𝜕𝑦

𝜕�̅�

𝜕𝑧

𝜕�̅�

𝜕𝑥

𝜕�̅�

𝜕𝑦

𝜕�̅�

𝜕𝑧

𝜕𝑧 ̅

𝜕𝑥

𝜕𝑧 ̅

𝜕𝑦

𝜕𝑧 ̅

𝜕𝑧]
 
 
 
 

{
𝑥
𝑦
𝑧
} (24) 

where, T is the transformation matrix. Forces in-
elemental coordinates can similarly be transformed: 

[�̅�]𝑇 = [𝑇][𝐹]                                                            (25) 

     Equating work done in the local coordinates with 
that done in global coordinates, it can be shown 
that: 

[F]T[u] = [F̅]T[u̅] = [F]T[T]T[T][u]                          (26) 

   Considering work done once more and now in-

cluding the local elemental stiffness [K̅] = [F̅][u̅]−1 

and the global elemental stiffness [K]: 

[�̅�]𝑒
𝑇[𝐾]𝑒[�̅�]𝑒 = [𝑢]𝑒

𝑇[𝐾]𝑒[𝑢]𝑒 = [�̅�]𝑒
𝑇[𝑇]𝑇[𝐾]𝑒[𝑇][�̅�]𝑒   (27) 
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where [K]e=[T]T[K̅]e[T], represents the element 

stiffness matrix in global coordinates. 

3. Finite Element Analysis Using ANSYS 

The philosophy behind the "analysis" phase is to 
find the mathematical model which describes the 
most resemblance behavior of the member. Alt-
hough there are many methods of analysis for struc-
tures, no single one is ideal for all problems. This 
requires that the actual properties of the test piece 
to be taken into consideration. The appropriate pa-
rameters for the actual properties are; stiffness, 
mass distribution, and boundary conditions Rad [6]. 
The finite element method is the most popular simu-
lation method to predict the physical behavior of 
systems and structures. The ANSYS software is one 
of the leading commercial finite element programs 
in the world and can be applied to a large number of 
applications in engineering. Finite element solutions 
are available for several engineering disciplines 
such as static, dynamic, heat flow, fluid flow, elec-
tromagnetic, and also coupled field problems. In this 
study, three types of analysis are used. 

3.1. Static Analysis 

A static analysis calculates the effects of steady 
loading conditions on a structure, while ignoring 
inertia and damping effects in equation (2). It de-
termines the displacement, stresses, strains, and 
forces in structures or components caused by loads 
under static loading condition. A static analysis can 
be either linear or nonlinear. All types of nonlineari-
ties are allowed- large deformations, plasticity, 
creep, stress stiffening, contact elements, and hy-
perelastic elements.  

3.2. Model Analysis 

A modal analysis is used to determine the vibra-
tion characteristics of a structure, while it is being 
designed. Hence, the goal of modal analysis is to de-
termine the natural frequencies and mode shapes of 
a structure. The natural frequencies and mode 
shapes are important parameters in the design of a 
structure for dynamic loading conditions. Modal 
analysis calculated according to equation (4) where 
damping ignored and unforced. It is a linear analy-
sis. In this study, using modal analysis to determine:  

A. Mode Shape: a mode shape is a specific pat-
tern of vibration executed by a mechanical 
system at a specific frequency. Different 
modes will be associated with different fre-
quencies. The mode shape that caused tor-

sion mode used in this study. Figure (1) was 
shown torsion mode.  

B. Natural Frequencies: the natural frequency 
is the rate at which an object vibrates when 
it is not disturbed by an outside force. Each 
degree of freedom of an object has its own 
natural frequency. The equations to calcu-
late the natural frequency depended on 
equations (4), (5), and (6). The undamped 
natural frequency is equal to the square 
root of the ratio of stiffness matrix to mass 
matrix (ω = √K/m

2 ). The natural frequency 
calculated from modal and harmonic analy-
sis and then chosen the minimum frequen-
cy (critical) for torsion mode shape. 

 

Figure 1.Mode shape (Torsion). 

3.3. Cyclic Analysis 

For calculation of cyclic analysis by ANSYS used 
transient analysis. Transient dynamic analysis or 
time-history analysis is a technique used to deter-
mine the dynamic response of a structure under the 
action of any general time- dependent loads. It de-
termines the time- varying displacements, strains, 
stresses, and forces in a structure as its responses to 
any combination of static, transient, and harmonic 
loads.The time scale of the loading is such that the 
inertia or damping effects are considered to be im-
portant. The basic equation of motion solved by a 
transient dynamic analysis is equation (2).  In this 
study, to determine the cyclic loading the damping 
effect is ignored and the force is applied as a func-
tion displacement according to equation follow Ti-
moshenko et. al.  [7]: 

𝐹𝑢𝑛𝑐.𝑡𝑖𝑚𝑒∗ = −1 ∗ (𝑢𝑦𝑐𝑟 + 𝑡𝑖𝑚𝑒) ∗ 𝑆𝑖𝑛(𝑓𝑟𝑒𝑞.∗ 𝑡𝑖𝑚𝑒)  (28) 

  where, Func.time is displacement Function of Time 
(mm), uycr is displacement in (Y-axis) at Cracking 
Torque in Static Analysis (mm), timeis time in sec. 
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andfreq. is natural Frequency in Modal analysis 
(rad/sec).* This function represents the time history 
for all specimens, which are given by trial and error 
then chooses the best time history.A transient dy-
namic analysis is more involved than a static analy-
sis because it generally requires more computer 
resources in terms of the "engineering" time in-
volved. There are three solution methods available 
to a transient dynamic analysis; full, reduced, and 
mode superposition. 

3.3.1 Full Method 

The full method does not reduce the dimension of 
the considered problem since original matrices are 
used to compute the solution. As a consequence it is 
simple to use, all kinds of nonlinearities may be 
specified, automatic time stepping is available, and 
all types of loads (nodal forces, imposed (non-zero) 
displacements, and element loads (pressures and 
temperatures)) may be specified. It uses full matri-
ces, masses matrixes are not assumed to be concen-
trated at the nodes and finally all results are com-
puted in a single calculation. The main disadvantage 
of the full method is the fact that the required solu-
tion times will increase with the size of the consid-
ered model. This method uses in this study. The 
procedure for analyzing nonlinear transient behav-
ior is similar to that used for nonlinear static behav-
ior. The main difference between the static and 
transient procedures is that time- integration ef-
fects. Basic information about nonlinear analysis is 
presented in ANSYS Structural Analysis Guide, but in 
a transient nonlinear analysis must specify 
steppedor ramped loads.If a load is stepped, then its 
full value is applied at the first substep and stays 
constant for the rest of the load step, as shown in 
figure (2a). If a load is ramped, then its value in-
creases gradually at each substep, with the full value 
occurring at the end of the load step, as shown in 
figure (2b).  

 

 

 

 

 

 

 

 

 

 

Figure 2.stepped and ramped loads.  ANSYS [2] 

3.3.2 Reduced Method 

    The reduced method originates from earlier years. 
Because of the reduced system matrices which are 
used to solve the transient problem, this method has 
an advantage when compared with the full method 
with respect to the required solution time. However, 
the user has to specify master degrees of freedom 
which represent the dynamic behavior as good as 
possible. The only nonlinearity which can be speci-
fied is node to node contact via a gap condition. 
However, automatic time stepping is not possible. 
Consequently, this method is not very popular any-
more since all its disadvantages do not really com-
pensate the advantage of lower costs in solution 
time. 

3.3.3Modal Superposition Method 

The modal superposition method usually reduc-
es the dimension of the original problem as well 
since the transient analysis is finally performed in 
the modal subspace which has the dimension of the 
number of mode shapes used for the superposition. 
The main advantage is again the reduction of solu-
tion time. It turns out that this method is actually 
the most efficient one compared with the other two. 
The accuracy just depends on the number of mode 
shapes used for the modal superposition. Even if a 
few modes shapes are taken the requested solution 
time might still be less when compared with the full 
and the reduced method. The time step has to be 
chosen as constant which means that automatic 
time stepping is not available for this method. The 
solution process consists basically of two analysis, 
the modal analysis and transient analysis in the 
modal subspace. Since for most problems in struc-
tural dynamics the natural frequencies of a struc-
ture are of interest this is not really a disadvantage. 
Summing up, using the modal superposition tech-
nique for a transient analysis reduces not only solu-
tion time, but the user also obtains information 
about the natural frequencies and the undamped 
mode shapes, respectively. 
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A prestressed concrete beams were cast and 
tested by Abdullah [1]. Four beams have been se-
lected for present study [A1, A2, B2, and C2] all 
these beams subjected to cyclic torque but the beam 
A1 subjected to static torque; the dimensions of all 
specimens are geometrically similar, having rectan-
gular cross section, of dimension 
(125x250x2500mm). The amount of the lateral re-
inforcement was varied and the loading history was 
similar. The beams were pretensioned eccentrically 
by four 10mm diameter placed inside a plastic sew-
age 16 mm diameter. The distribution of prestress-
ing stresses was varied linearly from zero at the up-
per section to the maximum value at the lower sec-
tion equivalent to 45% of ultimate compressive 
strength. Dimensions and Reinforcement details of 
the beams are given in figure (3) while table (1) 
shows the details of beams and material properties    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.Dimensions and Reinforcement Details of the Beams 

(A1, A2, B2, and C2). Abdullah [1] 

Table 1. Details of beams and material properties 
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A1 43.29 4.91 5.59 30720 50 76.1 

A2 47.19 4.93 6.35 32250 50 82.95 

B2 44.99 4.8 6.35 31550 75 79.08 

C2 51.89 5.25 6.69 32710 100 91.21 
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5. Materials Modeling 

5.1. Concrete Modeling 

    ANSYS software provides a three-dimensional 
element SOLID65 with nonlinear model of brittle 
materials similar to the concrete material. This ele-
ment has eight nodes with three translation degrees 
of freedom u, v and w in the x, y and z directions 
respectively. Cracking of concrete and stress-strain 
relation in tension is modeled by a linear elastic be-
havior, taking to consideration tension stiffening 
after cracking. In the present study the ability of 
concrete to transfer shear forces across the crack 
interface is accounted for by using two different 
shear retention factor (𝛃) for cracked shear modu-
lus, it is assumed equal to 0.15 for opened crack and 
0.5 for closed crack for beams under cyclic torque 
while it is assumed to equal to 0.38 and 0.7 for 
opened and closed crack for beam A1, respectively. 
Many models for the stress-strain curve of concrete 
under uniaxial compression have been proposed in 
past years. The Vecchio- Collins stress- strain curve 
is more suitable for reinforced concrete members 
subjected to torsion Hsu and Mo [4]. In the present 
study used the Hognestad parabola relationship to 
determine the compressive stress 𝐟𝐜 corresponding 
to the compressive principal strain 𝛆𝐜  according to 
Vecchio and Collins[8] and given as: 

 

ƒ𝒄 =

{
 
 

 
 −ƒ𝒑 [𝟐 (

𝜺𝒄

𝜺𝒑
) − (

𝜺𝒄

𝜺𝒑
)
𝟐

] , 𝟎 > 𝜺𝒄 > 𝜺𝒑       (𝒂) 

−ƒ𝒑 [𝟏 − (
𝜺𝒄−𝜺𝒑

𝟐𝜺𝟎−𝜺𝒑
)
𝟐

] , 𝜺𝒑 > 𝜺𝒄 > 𝟐𝜺𝟎    (𝒃)

   (29) 

 

where: ƒ𝒑and 𝛆𝐩 are the peak stress and correspond-
ing strain, respectively. The strain at peak stress is 
calculated as 2𝐟𝐜`/𝐄𝐜, where:  𝐄𝐜 is the initial slope 
of the parapola. The peak stress will be the cylinder 
strength  𝐟𝐜

′  which occurs at the strain𝛆𝟎, for the case 
of uniaxial compression. The resulting multilinear 
isotropic stress-strain curve for concrete is shown 
in figure (4).   

 

 

 

 

 

 

 

Figure 4.Vecchio and Collins' Stress- Strain Curve for Concrete. 

5.2. Reinforcement Modeling 

Modeling of reinforcing steel in finite elements is 
simpler than modeling of concrete. LINK8 element 
was used to model steel reinforcement. This ele-
ment is a 3D spar element and it has two nodes with 
three degrees of freedom- translations in the nodal 
x, y, and z direction. This element is also capable of 
plastic deformation. 

5.3. Strands 

In the present study a multilinear isotropic 
stress- strain is adopted for prestressing strands by 
using equations (31) or (32) below: 

𝜀𝑝𝑠 ≤ 0.008 ⟹ 𝑓𝑝𝑠 = 193100 . 𝜀𝑝𝑠 (𝑀𝑃𝑎)  (30) 

𝜀𝑝𝑠 > 0.008 ⟹ 𝑓𝑝𝑠 = 1930 −
0.517

𝜀𝑝𝑠−0.0065
<

 0.98 𝑓𝑝𝑢 (𝑀𝑝𝑎)(32) 

The elastic modulus of prestressing strands is taken 
equal to 193100 MPa. The adopted stress-strain 
curve is shown in figure (5). The prestressing forces 
are input as strain in the LINK8 element that is cor-
responding to the allowable effective stresses of the 
strands. 

5.4 Longitudinal and Stirrups   

Only horizontal lines should be used within a tab-
leTypical stress- strain curves for longitudinal and 
stirrups reinforcing bars used in concrete construc-
tion are obtained from Abdullah [1] tests as shown 
in figure (5), while yielding stress (𝐟𝐲) equal to 
433MPa and 392 MPa for longitudinal and stirrups, 
respectively.  

 

Figure 5. Stress- Strain relationship for reinforcement. 
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to avoid local failure of concrete at the load and an-
chorage locations. This element is defined with eight 
nodes having three degrees of freedom at each 
node-translation in the nodal x, y, and z directions. 
The adopted behavior for the loading and anchorage 
plates are assumed as Bilinear Kinematics Harden-
ing (BKIN). The adopted yielding stress is equal to 
400MPa and hardening modulus is taken to 
200MPa; while the elastic modulus is equal to 
200000 MPa and Poisson's ratio is equal to 0.3. 

6. Finite Element Idealization, Loading 
and Boundary Condition 

The total effective length of the beam was con-
sidered in the finite element analysis with 2500 el-
ements for beams (A1, A2, and C2) and with 4320 
elements for beam B2. The concrete and reinforce-
ment elements are arranged as shown in figure (6); 
also boundary condition of beam is shown. The 
beam was restrained against movement in lateral, 
vertical and axial directions at mid span. At free end 
on the lever arm, the cyclic torque is represented by 
an equivalentset of displacement function for time 
according to equation (30). 

 

 

 

 

 

 

 

 

 

 

Figure (6): Finite Element Model for Beams 

7. Numerical Analysis and Comparison of 
Results  

The experimental and numerical torque-twist 
curves obtained for these beams are shown in fig-
ures (7), (10), (13) and (16). It reveals that the finite 
element solution give good results compared with 
experimental results throughout the entire range of 
behavior. The numerical, the experimental ultimate 

torque, cracking torque, the ratio of the numerical 
ultimate torque to experimental ultimate torque, 
ratio of the numerical to experimental cracking 
torque and ultimate twist angle were given in table 
(2).    Figures (8), (11), (14) and (17) show the de-
formation shape resulting from torsion moment by 
finite element analysis, while figure (9), (12), (15) 
and (18)   show the location of cracks and their 
types for Beams (A1, A2, B2 and C2) respective-
ly.The predicted ultimate torque, cracking torque 
and ultimate twist angle compared with the experi-
mental Abdullah's beams are given in Table (2). It is 
clearly seen from figures (5), (8), (11) and (14) that 
the predicted results of the proposed model used in 
finite element analysis using ANSYS software show a 
good agreement with the experimental observation 
for torque-twist relationships and ultimate torque. 
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A1 12 1.051 0.88  

A2 11.97 1.088 0.853  

B2 10.6 0.986 0.782  

C2 11.71 11.42 0.62  

 

 

Figure 7. Static Torque-Twist Angle Relationship for 

Experimental and Numerical Results for Beam (A1). 
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Figure 8. Deformed Shape at Static Torque Analysis for Model 

(A1). 

 

 

Figure 9.  Crack Pattern at Static Torque Analysis for Model 

(A1). 

 

 

Figure 10.  Cyclic Torque-Twist Angle for Experimental and 

Numerical for Beam (A2). 

 

Figure 11. Deformed Shape at Cyclic Torque Analysis for 

Model (A2). 

 

 

Figure 12. Crack Pattern at Cyclic Torque Analysis for Model 

(A2). 

 

 

Figure 13. Cyclic Torque-Twist Angle for Experimental and 

Numerical for Beam (B2). 
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Figure 14. Deformed Shape at Cyclic Torque Analysis for 

Model (B2). 

 

 

Figure 15. Crack Pattern at Cyclic Torque Analysis for Model 

(B2). 

 

 

Figure 16. Cyclic Torque-Twist Angle for Experimental and 

Numerical for Beam (C2). 

 

 

Figure 17. Deformed Shape at Cyclic Torque Analysis for 

Model (C2). 

 

 

Figure 18. Crack Pattern at Cyclic Torque Analysis for Model 

(C2). 

 

8. Conclusions 

From the predicted results of nonlinear analysis 
of prestressed concrete beams under pure cyclic 
torsion, the predicted results of verification models 
used in finite element analysis using ANSYS soft-
ware show a good agreement with the experimental 
results for torque - twist angle and ultimate torque 
at static and cyclic analysis. 

Nomenclature 

English System 

Ec 
Modulus of elasticity of concrete, 
MPa  

f'c 
The cylinder concrete compressive 
strength, MPa 

fly 
Yielding stress of longitudinal rein-
forcement, MPa   

fp Peak stress, MPa 
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fr 
Modulus of rupture for concrete, 
MPa  

fsy 
Yielding stress of transverse rein-
forcement, MPa   

ft 
Splitting tensile strength for con-
crete, MPa  

fy 
Specified yield strength of steel 
reinforcement, MPa 

S Spacing of stirrups, mm 

Tcr Cracking torsional Strength, kN.m 

Tu Torque resistance at failure, kN.m 

u, v, w 
Displacement coordinates in x, y, 
and z Cartesian coordinates 

x, y, z Cartesian coordinates 

[u ̈] 
Second derivatives of the dis-
placement with respect to time  

[u ̇] 
First derivatives of the displace-
ment with respect to time  

[B] Strain displacement matrix 

[C] Viscous damping matrix  

[D] Material stiffness matrix 

[K] Global stiffness matrix  

[k] 
Stiffness matrix for particular ele-
ment 

[M] Mass matrix 

Greek  System 

{e} The out of balance force vector 

γ1,γ2, γ3 Shear retention parameters 

Ni(ξ, η, ζ) 
The element interpolation function 
corresponding to node i 

v Poisson’s ratio 

εc 
Compressive principal strain for 
concrete  

εc Strain at cylinder strength fc' 

εp Peak strain 

θ 
Angle of inclination of the concrete 
stuts  

{F} Nodal loads 

{p} 
Vector of the nodal force equiva-
lent to the internal stress level 

{u} Nodal displacements 

{ε} Element strains 

{σ}  Elements stress 
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