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Abstract: 
Unbalanced power distribution systems experience single faults and compound faults types. 

The classification of these faults is considered as one of the most important requirements for the 

fault analysis and the fault location techniques. However, existing methods for fault 

classification have been formulated to consider only single-fault types. This paper presents a 

comprehensive faults classification method for unbalanced power distribution systems. In this 

method, new fault classification indices are derived to consider all fault types including the 

compound-fault ones. The values of these indices are determined based on the transient analysis 

of the current signals using discrete wavelet transform (DWT). These indices are utilized in 

conjunction with adaptive neural-fuzzy inference systems (ANFIS) to classify all fault types. In 

order to verify the accuracy of the proposed method, a practical distribution system is used to test 

the method under different fault conditions. 

Keywords: adaptive neural-fuzzy inference systems (ANFIS), discrete wavelet transform 

(DWT), distribution systems, fault type classification, unbalanced power systems.  
 

  :الخلاصة
 أحذيشكبت. اٌ تصُيف هزِ الاػطال هى  وتتؼشض اَظًت انتىصيغ غيش انًتىاصَت بشكم يستًش انى اَىاع اػطال يفشدة 

انًىجىدة انحانيت  نتصُيف الاػطال الاػطال. ويغ رنك، فقذ سكضث انطشق  يىاقغ وتقُياث تحذيذ الاػطال تحهيم يتطهباث أهى

انًتىاصَت. في  غيش انقذسة تىصيغ أَظًت في الأػطال ػهى اَىاع الاػطال انًفشدة فقظ. يقذو هزا انبحث طشيقت شايهت نتصُيف

 رنك في بًا الاػطال أَىاع تصُيف جًيغ جذيذة وانتي يًكٍ يٍ خلانها اػطال تصُيف يؤششاث انطشيقت، تى اشتقاق  هزِ

انًشكبت. اٌ قيى هزِ انًؤششاث تحذد بالاستُاد انى تحهيم انؼابش لإشاساث انتياس باستخذاو تحىيم انًىيجاث انًُفصم  الاػطال

(DWT)انتكيفيت انضبابي انؼصبي الاستذلال أَظًت يغ بالاقتشاٌ انًؤششاث هزِ . وتستخذو (ANFIS )جًيغ أَىاع نتصُيف 

 ظم في انًقتشحت انطشيقت لاختباس ػًهي تىصيغ يستخذو في هزا انبحث َظاو تانًقتشح يٍ اجم اثباث دقت انطشيقت .الاػطال

   .يختهفت اػطال ظشوف

 أَظًت ،(DWT) انًُفصهت انًىيجاث تحىيم ،(ANFIS) انتكيفي انضبابي انؼصبي الاستذلال أَظًت :المفتاحية الكلمات

 .اَظًت انقذسة غيش انًتىاصَتانؼطم،  َىعتصُيف  انتىصيغ،
 

I. Introduction 
The classification of the fault type represents the main requirement for the fault analysis as well 

as for determining its location. Generally, different fault types have different formulation analysis 

and fault location equations [1]. Thus, correct fault analysis and accurate fault location can only be 

obtained if the fault type is accurately classified [2]. 

Accordingly, many methods were proposed to classify the fault type in power transmission 

systems [3]. These methods can be categorized into two groups. The methods of the first group 

classify the fault type based on the analysis of the symmetrical components or phase components 

determined from the measured signal at the sending-end of the transmission line [4-6]. In the second 

group, the transient current signal, measured at one-end or two-ends of the transmission line, are 

analyzed using discrete wavelet transform (DWT) or Hilbert transform to extract features for each 

fault type. These features are then utilized to classify the fault type [7-9]. However, all of these 
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methods assumed that the system is balanced and the measurements are available at each 

transmission line.   

Recently, most distribution systems have been expanded to cover large geographical area due to 

the increase in population and urbanization. Consequently, locating the fault in distribution systems 

by using on-site inspection techniques became more difficult, especially in the case of underground 

cables. In order to decrease the outage time and the inspection cost, automated fault location 

techniques have been wildly used in the distribution systems [10]. The most important requirement 

of these techniques is the accurate classification of the fault type. It is worth mentioning that fault 

type classification (FTC) methods proposed for transmission systems are not efficient for 

distribution systems due to some special characteristics of distribution systems such as; the tree 

topological structure, the unbalanced operation and the availability of measurement only at 

substation bus. Thus, it is very important to develop a FTC method which takes the special 

characteristics of distribution systems into account. 

Several FTC methods were proposed to classify the fault type in power distribution systems. A 

FTC method, based on the symmetrical components of the fundamental fault current and fuzzy 

logic, is proposed in [11]. In this method, the discrete Fourier transform was used to determine the 

fundamental current from the transient fault current signal measured at substation bus. The 

measurement of the transient voltage signal is also required to determine the angular differences 

between the voltage and current signals. However, this method suffers from inaccuracy due to the 

effects of the exponentially decaying DC-component of the signal on the determination of the 

fundamental fault current [1]. 

In order to avoid the inaccuracy due to the utilization of the fundamental fault current, many 

FTC methods, based on the analysis of the transient fault current signals, have been developed [12, 

13]. In these methods, features which were directly extracted from the transient fault signals using 

DWT, are used for the classification. In order to get fast and accurate decision, other researches 

classify the fault type using the combination of the DWT and a classification technique such as 

fuzzy logic [14, 15], artificial neural networks [16] and adaptive neural-fuzzy inference systems 

(ANFIS) [17]. 

However, all of the mentioned methods are formulated for single-fault types while the compound 

fault types have not been considered. This drawback will adversely affect the fault analysis 

accuracy as well as the efficiency of the fault location techniques [1, 2]. In this paper, a fault 

classification method, based on DWT and ANFIS algorithm, is proposed. The transient current 

signals, captured at the substation bus, are only required to classify the single-fault and the 

compound-fault types in unbalanced power distribution systems.  
  

II. Proposed Fault Classification Method 
The proposed method classifies the single-fault types and the compound-fault types in 

unbalanced power distribution systems using four steps as shown in Figure (1). In the first step, the 

pre-fault and the during-fault current signals are obtained for each phase and neutral of the 

substation bus. These signals are then analyzed, in the second step, using DWT. Based on the 

signals analysis results, the proposed fault classification indices are determined in the third step. In 

the final step, the proposed indices are utilized to classify the fault type by using the proposed 

ANFIS algorithm. Each step will be described as follows: 
 

Data Acquisition

Signals Analysis 

Based on Discrete 

Wavelet Transform

Determination of 

Fault Classification 

Indices

ANFIS-Based 

Fault Type 

Classification

 
Figure (1): Block diagram of the proposed fault classification method 
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A. Data Acquisition 
Once the fault occurs, the pre-fault and the during-fault current signals, measured at each phase 

of the substation bus, are recorded using digital fault recorders. The positive going zero crossing 

instant of the phase-a voltage is not recorded since the phase angle calculations are not required in 

the proposed method. The proposed fault recorder is designed to capture only one cycle of the pre-

fault currents and one cycle of the during-fault current. A sampling rate of 10 kHz is utilized to 

convert the continuous signals to discrete signals. In order to minimize the storage memory of the 

digital recorder, the neutral current is calculated, instead of measured, using the following 

equations: 

  
      

      
      

                                                                        

  
      

      
      

                                                                       
 

where   
   

,   
   

 ,   
   

 and   
   

 are the pre-fault currents for phase-a, phase-b, phase-c and 

neutral, respectively.   
   ,   

    ,   
    and   

    are the during-fault currents for phase-a, phase-b, 

phase-c and neutral, respectively.  
 

B. Signals Analysis Based on Discrete Wavelet Transform  
Usually, different fault types have different effects on the behavior of the fault current signals 

[1]. Thus, analyzing these signals can provide useful information to classify the fault type. Among 

many signals analysis tools, discrete wavelet transform (DWT) has recently showed a high 

efficiency tool for analyzing the transient signals in many power system applications [18].   

Basically, DWT decomposes the discrete signal into components on different frequency bands. 

The DWT of a discrete signal is defined as [19]: 
 

           
     ∑ [ ]  [
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where   
  is a scale factor,     

      is a time shift factor,    and   are integer numbers,  [ ] is the 

mother wavelet and   is the sample number of the original signal.  

One of the best approaches of DWT is the multi-resolution analysis (MRA) [20]. In this 

approach, the discrete signal is decomposed into high frequency components (called details    ) 
and low frequency components (called approximation (  ), with different resolution levels. The 

implementation of this approach is equivalent to successive pairs of low-pass and high-pass filters. 

The outputs of these filters represent the details and the approximation of the original signal for a 

specific resolution level.  

Consider the block diagram, as shown in Figure (2), which represents the structure of two-level 

of the MRA approach. For the first-level, the discrete signal is passed through low-pass and high-

pass filters, separately. The band-width of these filters is designed to be equal. The output signal of 

each filter is then down sampled or decimated by a factor of two to return the samples number of 

the output signals equal to those of the original signal. Accordingly, the frequency band of the high 

frequency component (  ), which is obtained from the high-pass filter after decimating, is      
               , where    is the sampling frequency. By the same manner, the frequency band of 

the low frequency component (  ), which is obtained from the low-pass filter after decimating, 

is                 .  

For the second level, the low frequency component (  ), obtained from the first level, is broken 

down into high frequency component (  ) and low frequency component (  ) using another pair of 

low-pass and high-pass filters. Down sampling is also utilized in this level for the same reason 

mentioned above. Accordingly, the frequency band of    is                      whereas the 

frequency band of    is                . The same decomposition processes can be used for 

other levels to obtain lower resolution components.  

 
 



Journal University of Kerbala , Vol. 16 No.1 Scientific . 2018 
 

399 

 

X[k]

2

2

D1

A1
Low-pass 

Filter

High-pass 

Filter

2 D2
High-pass 

Filter

2 A2
Low-pass 

Filter

Level-1 Level-2

 
Figure (2): Structure diagram of the MRA approach 

 

In this paper, the discrete electrical current signals, obtained from the first step of the proposed 

method (data acquisition), are analyzed using discrete wavelet transform. As mentioned before, the 

analyzed signals include the electrical current signals of the three phases and the neutral for the 

cases of the pre-fault and the during-fault periods. Four levels of the MRA approach are utilized to 

decompose these signals. The Daubechies-2 wavelet (db2) is selected as the mother wavelet. The 

energy ( ) of the high frequency component obtained from the fourth level of the MRA approach 

(  ) is determined for each signal using Equation (4): 

  ∑|     |
 

 

                                                                             

 

where       is the      sample of the   . 

Accordingly, the energies of eight analyzed signals are determined in this section, and 

subsequently used in the next section to determine the fault classification indices. 
 

C. Determination of Fault Classification Indices 
In this step of the proposed method, seven indices are determined to classify the fault type in the 

power distribution system. The mathematical expressions for these indices are given as: 
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Where    is the     fault classification index,   
   

 is the energy of the high frequency component 

(  ) for the case of the pre-fault current of the phase-  or the neutral, and   
    is the energy of the 

high frequency component (  ) for the case of the during-fault current of the phase-  or the neutral. 

   ,    ,    ,    and    are given as: 
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The first three indices represent the percentage of the energy difference between pre-fault and 

during-fault energies of a specific phase with respect to its during-fault energy. These indices are 

determined for the phases a, b and c, respectively. The forth index represents the energy difference 

between pre-fault and during-fault energies of the neutral. The main advantage of subtracting the 

pre-fault energy from the during fault energy is to eliminate the effect of harmonics produced due to 

the presence of nonlinear loads in the system and to consider only the effects of the faults on the 

proposed indices. 

For all possible single fault types, the faulty phase can be identified according to the values of 

the indices   ,    and    while    is used to identify the ground fault type. Generally, the transient 

current signal of the faulty phase contains a dc-offsets component and multiple harmonic orders [1]. 

Thus, the during-fault energy of the faulty phase has a high value compared with the normal 

condition and the corresponding index will be also high. On the other hand, the during-fault energy 

of the healthy phase and the corresponding index will have low values. Similarly, the during-fault 

energy of the neutral current and the index    have high values if an unbalanced fault is occurred, 

otherwise the values of the energy and the index will be low.  

However, for the cases of the compound fault types; such as a AG fault combined with a BC 

fault, the four indices (  ,   ,    and   )  will have high values. Consequently, the fault is classified 

as compound fault type but the exact configuration cannot be determined (Which two phases are 

connected to each other? and Which phase is connected to ground?). In order to remedy this 

problem, the last three indices (  ,    and   ) are proposed. 

The indices (  ,    and   ) represent the linearly normalized value of the energy difference 

between the two phases   ,    and   , respectively. The differences between the energies of the 

pre-fault and during-fault periods are also considered. These indices can help to identify the phase-

to-phase faults in the compound fault types. As an example, if a fault is occurred between the 

phases   and  , the energies of these phases should be approximately equaled and the difference 

between them should be a low value. On the other hand, the value of the energy difference between 

any other phases should be high. 

According to the aforementioned dissection, the proposed rules which are developed to classify 

all possible fault types are presented in Table (1). 

However, it is very difficult to find the threshold value which differentiates between the ranges 

of low values and high values. Therefore, the fault type is classified, in this paper, using an ANFIS 

algorithm which has good classification ability even without the availability of the threshold value.  
 

Table (1): Proposed fault classification rules 
Single fault types 

Fault type                      

AG High Low Low High - - - 

BG Low High Low High - - - 

CG Low Low High High - - - 

ABG High High Low High - - - 

BCG Low High High High - - - 

CAG High Low High High - - - 

ABCG/ABC High High High Low - - - 

AB High High Low Low - - - 

BC Low High High Low - - - 

CA High Low High Low - - - 

https://www.electrical4u.com/voltage-or-electric-potential-difference/
https://www.electrical4u.com/voltage-or-electric-potential-difference/
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Compound fault types 

Fault type                      

AG &BC High High High High High Low High 

BG & CA High High High High High High Low 

CG & AB High High High High Low High High 
 

D. ANFIS-Based Fault Type Classification 
ANFIS is a fuzzy inference system whose membership function parameters have been tuned by 

using neural-adaptive learning methods [21]. The basic structure of ANFIS with two inputs is 

illustrated in Figure (3). It consists of five layers. In the first layer, fuzziness of inputs is determined 

based on the adaptive membership functions. Firing strength of each rule is determined in the 

second layer while their normalization is determined in the third layer. In the last two layers, the 

consequent parameters of the rule and fuzzy system output are determined, respectively. 
 

A1

A2

B1

B2

x 

y 

Π  
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f1

f2

fΣ   

𝑤1     𝑤1 
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Layer-1 Layer-2 Layer-3 Layer-4 Layer-5

 

Figure (3): Basic structure of ANFIS 
 

The ANFIS algorithm proposed in this paper is implemented in MATLAB environment. The 

seven classification indices, described before, are used as an input while the output refers to the 

fault type. The relations between the fault types and the approximate outputs of the ANFIS 

algorithm are presented in Table (2). Two membership functions are used for each input. The 

triangular membership function is selected. The thirteen rules illustrated in Table (1) are adopted in 

the proposed algorithm. The block diagram of the proposed ANFIS algorithm is presented in Figure 

(4). In the final stage of the ANFIS implementation, input and output patterns, for different fault 

conditions, are required to train and test the proposed algorithm. 
 

Table (2): Approximate ANFIS output for each fault type 

 Fault type Approximate ANFIS output 

Single-Fault type 

AG 1                
BG 2                
CG 3                

ABG 4                
BCG 5                
CAG 6                

ABCG 7                
AB 8                
BC 9                
CA 10                 

Compound-Fault 

type 

AG & BC 11                  
BG & CA 12                 
CG & AB 13                  
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Figure (4): Block diagram of the Proposed ANFIS algorithm 

 

III. Case Study 
The case study, considered in this paper, is the IEEE 37-bus feeder, as shown in Figure (5). This 

system is an actual feeder located in California. It represents one of the best case studies provided 

by IEEE Power and Energy Society to evaluate the capability of the methods to handle the 

unbalanced characteristics of the distribution systems. The relevant data for this feeder are 

described in [22]. 
 

IV. Results and Discussion 
In order to test the accuracy and the ability of the proposed method to classify all possible fault 

types including the compound-fault types, IEEE 37-bus feeder was simulated with 

PSCAD/EMTDC [23]. Simulations of different fault types with different fault and load conditions 

were carried out.  For each simulation case, the pre-fault and during-fault current signals were 

recorded by using the PSCAD recorder and the proposed setting which is described in Section II.A. 

Figure (6) shows these signals for the case of an AG fault occurred at bus-737 with fault resistance 

of 0 ohm. 
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Figure (5): IEEE 37-bus feeder 
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Figure (6): Pre and during fault current signals 

 

The recorded signals were then exported to the MATLAB environment for analyzing by using 

DWT. From the analysis results, the proposed fault classification indices were determined and then 

used to train and test the proposed ANFIS algorithm.  

In order to train ANFIS algorithm, simulations for ten fault locations, thirteen fault types, three 

fault resistances, five fault inception angles and three load conditions, as shown in Table (3), were 

carried out. It can be seen from the table that the fault resistances are assumed to be 0, 20 and 40 

ohm. The fault inception angles (FIA) are      ,     ,   ,     and     whereas the load cases are 

assumed to be 25%, 50% and 100% from the base case of the system load. Due to the impossibility 

of listing all these data in this paper, samples of them are presented in Tables (4) and (5).                            

For the testing process, other simulation cases, as shown in Table (6), were carried out. In these 

cases, the variation of fault resistances, locations, inception angles and loads were considered. The 

total number of simulation cases for each fault type was 160.  

Due to the space limitations of this paper, some of the testing results are illustrated in Table (7). 

In this table, the first five columns represent the fault type, fault location, fault resistance, FIA and 

load percentage of the simulation cases, respectively. The last column represents the output of the 

ANFIS algorithm. It can be seen form the table that the fault type is accurately classified for all 

illustrated cases. For the case of AG fault, the output of the ANFIS algorithm was 0.89 which is 

within the range of the AG fault type                that was presented in Table (2). In 

addition, for the case of CG fault combined with AB fault, the output was 12.68 which is also 

within the specified range                .     

In this paper, the classification accuracy for each fault type was determined using Equation (17) 

and the results were presented in Figure (7). 
 

         
     

  
                                                                

where; 

  : Number of testing cases per fault type. 

  : Number of testing cases per fault type which are misclassified. 

It can be seen form Figure (7) that all fault types are accurately classified with an accuracy of 

100% except the cases of ABG, BCG and CAG fault types. However, classification accuracies for 

these three types are 98.1%, 99.3% and 98.7%, respectively, which are still very high and 

acceptable for practical applications. In addition, the overall accuracy of the proposed method 

including all fault types is 99.7% where only 6 cases from 2080 cases are misclassified. These 

results verify the proposed method accuracy to classify the single and compound faults types in a 

practical system. Beside the accuracy, these results demonstrate the superiority of the proposed 

method over other methods which did not consider the compound-fault types.  
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V. Conclusions 
A comprehensive faults classification method which is applicable for the single and the 

compound fault types in unbalanced power distribution systems, was proposed in this paper. This is 

in contrast with the existing methods which are formulated for only single types. Therefore, the 

proposed method is considered promising for practical applications. In the proposed method, four 

steps were used to classify the fault types. In the first step, proposed fault recorder was designed in 

PSCAD/EMTDC software to capture the transient current signals at the substation bus. These 

signals were analyzed, in the second step using DWT implemented in MATLAB. In the third step, 

novel fault classification indices were derived to consider all possible fault types. In the final step, 

the classification was obtained using proposed ANFIS algorithm. The proposed indices were used 

as the input to the algorithm while the output was the fault type. In order to test the proposed 

method, simulations for different fault conditions were carried out on a practical power distribution 

system. The results verified the accuracy and superiority of the proposed method over the existing 

methods.   

Table (3): Different simulation cases for training process 

Location (bus) 701, 703, 708, 724, 725, 729, 735, 737, 741, 742 

Fault resistance (ohm) 0, 20, 40 

FIA (deg.) -90, -30, 0, 30, 90 

Load (%) 25, 50, 100 

Total simulation cases 5850 
 

Figure (7): Fault classification accuracy 
 

Table (4): Training sets for different faults occurred on bus-708 

with 100% load,      ohm and FIA =      
Fault type F1 F2 F3 F4 F5 F6 F7     

AG 64.19 2.37 5.61 4.13 0.96 0 1 1 

BG 1.14 86.32 2.74 9.19 0.98 1 0 2 

CG 0.38 6.08 67.57 6.34 0 1 0.98 3 

ABG 96.72 98.23 1.85 2.08 0 1 0.91 4 

BCG 0.91 98.64 97.41 1.41 1 0 0.85 5 

CAG 92.98 0.95 94.14 3.00 0.82 1 0 6 

ABCG 95.87 98.99 97.18 0 1 0.56 0 7 

AB 97.01 98.01 4.06 0 0 0.85 1 8 

BC 1.132 98.62 97.42 0 1 0 0.86 9 

CA 92.71 6.480 94.12 0 0.78 1 0 10 

AG & BC 62.38 98.60 97.45 4.58 1 0 0.89 11 

BG & CA 92.80 85.96 94.03 9.32 0.74 1 0 12 

CG & AB 96.97 98.08 69.27 6.31 0 0.91 1 13 
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Table (5): Training sets for different faults occurred on bus-741 

with 50% load,       ohm and FIA =     
Fault type F1 F2 F3 F4 F5 F6 F7     

AG 42.19 0.47 0.01 0.82 0.99 0 1 1 

BG 5.81 58.51 4.02 0.97 0.86 1 0 2 

CG 2.43 0.84 45.83 1.26 0 0.97 1 3 

ABG 30.21 62.29 0.15 0.63 0.16 1 0 4 

BCG 1.87 68.04 67.11 0.47 0.40 0 1 5 

CAG 59.58 1.35 54.97 0.72 1 0.75 0 6 

ABCG 46.88 68.35 69.00 0 0 0.59 1 7 

AB 60.20 70.37 7.46 0 0 0.88 1 8 

BC 1.36 80.20 70.90 0 0.99 0 1 9 

CA 66.35 3.65 70.54 0 0.81 1 0 10 

AG & BC 37.45 80.14 70.83 0.80 0.98 0 1 11 

BG & CA 66.45 58.21 67.54 0.98 0.97 1 0 12 

CG & AB 57.02 71.38 48.27 1.25 0 1 0.73 13 
 

 

Table (6): Different simulation cases for testing process 

Location (bus) 702, 704, 706, 710, 712, 722, 728, 731, 732, 740 

Fault resistance (ohm) 5, 30 

FIA (deg.) -70, -10, 10, 70 

Load (%) 40, 85 

Total simulation cases 2080 
 

Table (7): Classification results for different fault conditions 

Fault type 
Location 

(bus) 
   

(ohm) 

FIA 

(deg.) 

Load 

(%) 
    

AG 702 5 -70 40 0.89 

BG 704 30 -10 85 1.97 

CG 706 5 10 40 2.85 

ABG 710 30 70 85 4.42 

BCG 712 5 -70 40 4.87 

CAG 722 30 -10 85 6.41 

ABCG 728 5 10 40 7.25 

AB 731 30 70 85 8.11 

BC 732 5 -70 40 8.78 

CA 740 30 -10 85 9.99 

AG & BC 702 5 10 40 10.78 

BG & CA 704 30 70 85 11.80 

CG & AB 706 5 -70 40 12.68 
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