On The Sub-implicative Ideal of a BH-algebra
 حول المثثالية شبه الاستنتـاجية في جبر-BH

Assist. Lecture Suad Abdulaali Neamah
University of Kufa
Faculty of Education for Girls
Department of Mathematics
Email: suada.alshabib@uokufa.edu.iq

Assist. Lecture Ayat Abdulaali Neamah University of Kerbala
Faculty of Education for pure sciences
Department of Mathematics
Email: Ayat.math@yahoo.com

Abstract

In this paper, we study the notions of sub-implicative ideal of a BH-algebra and we state and prove some theorems which determine the relationships among this ideal with the intersection, union, image of function, inverse function for sub-implicative ideals of BH -algebra and also we give some properties of this ideal and relate it with other types of concepts of a BH-algebra.

: Unt**)
في هذا البحث، درسنا مفاهيم حول المثالية شبه الإستتتاجية من الجبر - BH و اعطينا و بر هنا بعض النظريات التي تحدد العلاقات بين هذه المثالية مع التقاطع، الاتحاد، صورة الاالة، معكوس الدالة لمثاليات شبه الاستتناجية في الجبر-BH و كذللك أعطينا بعض خصائص هذه المثالية وصلتها مع أنواع أخرى من الهفاهيم جبر-BH.

1. Introduction:

In 1998, Jun et al, the notion of BH-algebras and more Characteristics on BH-algebras was formulated Y. B. Jun, E. H. Roh, H. S.Kim [6]. H. H. Abbass and H. D. Dahham submit the concept of a completely closed ideal and on the other hand, defined a new concept, namely b-completely closed ideal of a BH-algebra [2]. In 2014, H. H. Abbass and S. A. Neamah introduced the notions of an implicative ideal of a BH -algebra and On the other hand, a new concept, namely a b-implicative ideal of a BH-algebra [3].

2. Preliminaries :

This section is devoted to some basic ordinary concepts of BH -algebra, ideal, sub-implicative ideal and homomorphism in BH-algebra, we give some basic concepts about the image of function, the inverse image, positive implicative and translation ideal of a BH-algebra with some propositions and theorems.

Definition(2.1): [6]
A BH-algebra is a nonempty set X with a binary operation * satisfying the following conditions:
i. $\quad a * a=0$, for all $a \in X$.
ii. $\quad a * b=0$ and $b * a=0$ imply $a=b$, for all $a, b \in X$.
iii. $\quad a * 0=a$, for all $a \in X$.

Definition (2.2): [6]

Let I be a nonempty subset of a BH-algebra X . Then I is named an ideal of X if it satisfies:
i. $\quad 0 \in \mathrm{I}$.
ii. $\quad a^{*} b \in I$ and $b \in I$ imply $a \in I$.

Definition (2.3): [3]

A nonempty subset I of a BH -algebra X is named sub-implicative ideal of X if:
i. $0 \in \mathrm{I}$.
i. $\left(\left(a^{*}\left(a^{*} b\right)\right)^{*}\left(b^{*} a\right)\right)^{*} c \in I$ and $c \in I$ imply $b^{*}\left(b^{*} a\right) \in I, \quad \forall a, b, c \in X$.

Journal University of Kerbala, Vol. 16 No. 1 Scientific . 2018

Proposition (2.4): [3]

If X be a BH -algebra and I be a sub-implicative ideal of X . Then I is an ideal of X .

Remark (2.5): [7]

Let X and Y be BH -algebras. A mapping $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$ is claims a homomorphism if $\mathrm{h}\left(\mathrm{a}^{*} \mathrm{~b}\right)=$ $\mathrm{h}(\mathrm{a}) * \mathrm{~h}(\mathrm{~b}), \forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$. A homomorphism h is called a monomorphism (resp., epimorphism) if it is injective. For any homomorphism $h: X \rightarrow Y$, the set $\left\{a \in X: h(a)=0^{\prime}\right\}$ is called the kernel of h, denoted by $\operatorname{ker}(h)$, and the set $\{h(a): a \in X\}$ is called the image of h, Symbolized by $\operatorname{Im}(h)$. Notice that h(0)=0', \forall homomorphism h. '

Remark (2.6): [2]

Let (X,*, 0) be a BH-algebra and let N be a normal subalgebra of X . Define a relation \sim_{N} on X by $a \sim_{N} b$ if and only if $a * b \in N$ and $b * a \in N$, where $a, b \in X$. Then \sim_{N} is an equivalence relation on X. Denote this by $[a]_{N}$, i.e., $[a]_{N}=\left\{b \in X \mid a \sim_{N} b\right\}$ and $X / N=\left\{[a]_{N} \mid a \in X\right\}$. And define $[a]_{N} \oplus[b]_{N}$ $=\left[a^{*} b\right]_{\mathrm{N}}$, then $\left((\mathrm{X} / \mathrm{N}), \oplus,[0]_{\mathrm{N}}\right)$ is a BH-algebra.

Theorem (2.7): [3]
Let N be a normal subalgebra of BH -algebra X . If I is an ideal of X , then I / N is an ideal of X / N.

Definition (2.8): [5]

An ideal A of a BH-algebra X is said to be a translation ideal of X if $x * y \in A$ and $y * x \in A$, then $\left(\mathrm{x}^{*} \mathrm{z}\right)^{*}\left(\mathrm{y}^{*} \mathrm{z}\right) \in \mathrm{A}$ and $\left(\mathrm{z}^{*} \mathrm{x}\right) *\left(\mathrm{z}^{*} \mathrm{y}\right) \in \mathrm{A}, \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Remark (2.9): [6]

Let A be a translation ideal of X and let $\left(\mathrm{X},{ }^{*}, 0\right)$ be a BH-algebra. Define a relation \sim_{A} on X by a $\sim_{A} b$ if and only if $a * b \in A$ and $b * a \in A$, where $a, b \in X$. Then $\sim A$ is an equivalence relation on X. $[a]_{A}=\left\{b \in X \mid a \sim_{A} b\right\}$ and $X / A=\left\{[a]_{A} \mid a \in X\right\}$, Define $[a]_{A} \oplus[b]_{A}=[a * b]_{A}$, then $\left((X / A), \oplus,[0]_{A}\right)$ is BHalgebra.

Theorem (2.10): [6]

Let A be a translation ideal of a BH-algebra $(X, *, 0)$. If we define $[a]_{A} \oplus[b]_{A}=[a * b]_{A}$ for all a and $\mathrm{b} \in \mathrm{X}$, then $\left(\mathrm{X} / \mathrm{A}, \oplus,[0]_{\mathrm{A}}\right)$ is a BH -algebra.

Definition (2.11): [4]

Let X be a BH-algebra. For a fixed $b \in X$, we define a map R_{b} : $X \rightarrow X$ such that $\mathbf{R}_{\mathbf{b}}(\mathbf{x})=\mathbf{x} * \mathbf{b}, \forall$ $x \in X$ and call R_{b} a right map on X. Symbolize the set of all right maps on X by $R(X)$. A left map L_{b} is defined by a similar way, we define a map $L_{b}: X \rightarrow X$ such that $\mathbf{L}_{\mathbf{b}}(\mathbf{x})=\mathbf{b}^{*} \mathbf{x}, \forall x \in X$ and call L_{b} a left map on X.

Definition (2.12): [1,4]

A BH-algebra $(X, *, 0)$ is said to be a positive implicative if it satisfies $\forall \mathrm{a}, \mathrm{b}$ and $\mathrm{c} \in \mathrm{X}$, $\left(a^{*} c\right) *(b * c)=(a * b) *$.

Theorem (2.13): [4]
If X is a positive implicative BH -algebra, then $\left(\mathrm{L}(\mathrm{X}), \oplus, \mathrm{L}_{0}\right)$ is a positive implicative BHalgebra.

Remark (2.14):

Let X be a BH -algebra and let I be a subset of X . we will denote to the $\operatorname{set}\left\{\mathrm{L}_{\mathrm{a}} \in \mathrm{L}(\mathrm{X}) ; \mathrm{a} \in \mathrm{I}\right.$ \} by L(I).

Journal University of Kerbala, Vol. 16 No. 1 Scientific . 2018

Remark (2.15): [4]

Suppose that X be a positive implicative BH -algebra, defined \oplus an operation in $\mathrm{L}(\mathrm{X})$ is $\left(\mathrm{L}_{\mathrm{a}} \oplus \mathrm{L}_{\mathrm{b}}\right)(\mathrm{x})=\mathrm{L}_{\mathrm{a}}(\mathrm{x})^{*} \mathrm{~L}_{\mathrm{b}}(\mathrm{x})$ and $\left(\mathrm{L}_{\mathrm{a}} \oplus \mathrm{L}_{\mathrm{b}}\right)(\mathrm{x})=\mathrm{L}_{\mathrm{a}}{ }^{*}(\mathrm{x}), \quad \forall \mathrm{L}_{\mathrm{a}}, \mathrm{L}_{\mathrm{b}} \in \mathrm{L}(\mathrm{X})$ and $\forall \mathrm{x} \in \mathrm{X}$.

Definition (2.16): [2]
A BH-algebra X is called an associative $\mathbf{B H}$-algebra if:
$(\mathrm{x} * \mathrm{y}) * \mathrm{z}=\mathrm{x} *(\mathrm{y} * \mathrm{z}), \quad \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Theorem (2.17): [2]

Let X be an associative BH -algebra. Then the following properties are hold:
i. $\quad 0 * \mathrm{a}=\mathrm{x} \quad ; \quad \forall \mathrm{a} \in \mathrm{X}$
ii. $\quad \mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a} \quad ; \forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$
iii. $\mathrm{a}^{*}(\mathrm{a} * \mathrm{~b})=\mathrm{b} \quad ; \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$
iv. $\left(c^{*} \mathrm{a}\right)^{*}(\mathrm{a} * \mathrm{~b})=\mathrm{a} * \mathrm{~b} \quad ; \quad \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{X}$
v. $a^{*} b=0 \Rightarrow a=b \quad ; \quad \forall a, b \in X$
vi. $(\mathrm{a} *(\mathrm{a} * \mathrm{~b})) * \mathrm{~b}=0 \quad ; \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$
vii. $\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*} \mathrm{c}=\left(\mathrm{a}^{*} \mathrm{c}\right)^{*} \mathrm{~b} \quad ; \quad \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{X}$
viii. $\left(\mathrm{a}^{*} \mathrm{c}\right) *(\mathrm{~b} * \mathrm{~d})=(\mathrm{a} * \mathrm{~b}) *(\mathrm{c} * \mathrm{~d}) \quad ; \quad \forall \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{X}$

3. The Relationship the Sub-implicative Ideal with Other Notions:

We should mentioned that BH-algebra is not necessary associative.

Theorem (3.1):

Let I be an ideal of a BH-algebra X. If $a^{*}\left(a^{*} b\right)=b$, then I is a sub-implicative ideal of X.

Proof:

Suppose that I be an ideal of X. Then
i. $0 \in$ I. [By definition (2.2)(i)]
ii. Let $a, b, c \in X$ such that $\left(\left(a^{*}\left(a^{*} b\right)\right)^{*}\left(b^{*} a\right)\right)^{*} c \in I \quad$ and $\quad c \in I$
$\Rightarrow\left(a^{*}\left(a^{*} b\right)\right)^{*}\left(b^{*} a\right) \in \mathrm{I}$. $\quad[$ Since I is an ideal of X . By definition (2.2)(ii)]
$\Rightarrow \mathrm{b}^{*}\left(\mathrm{~b}^{*} \mathrm{a}\right) \in \mathrm{I} . \quad\left[B y\right.$ the condition $\left.\mathrm{a}^{*}\left(\mathrm{a}^{*} \mathrm{~b}\right)=\mathrm{b}\right]$
Then I is a sub-implicative ideal of X.

Theorem (3.2):

Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \Gamma\right\}$ be a family of sub-implicative ideals of a BH-algebra X. Then $\bigcap_{i \in \Gamma} I_{i}$ is a subimplicative ideal of X .

Proof:

To prove $\bigcap_{i \in \Gamma} I_{\mathrm{i}}$ is a sub-implicative ideal of X.
i. $0 \in \mathrm{I}_{\mathrm{i}}, \forall \mathrm{i} \in \Gamma$. [Since each I_{i} are sub-implicative ideal of $\mathrm{X}, \forall \mathrm{i} \in \Gamma$. By definition (2.3)(i))]
$\Rightarrow 0 \in \bigcap_{i \in \Gamma} I_{\mathrm{i}}$.
ii. Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ such that $\left((\mathrm{x} *(\mathrm{x} * \mathrm{y}))^{*}(\mathrm{y} * \mathrm{x})\right) * \mathrm{z} \in \bigcap_{i \in \Gamma} I_{\mathrm{i}} \quad$ and $\mathrm{z} \in \bigcap_{i \in \Gamma} I_{\mathrm{i}}$
$\Rightarrow\left(\left(\mathrm{x}^{*}(\mathrm{x} * \mathrm{y})\right) *\left(\mathrm{y}^{*} \mathrm{x}\right)\right) * \mathrm{z} \in \mathrm{I}_{\mathrm{i}}$ and $\mathrm{z} \in \mathrm{I}_{\mathrm{i}}, \forall \mathrm{i} \in \Gamma$.
$\Rightarrow y^{*}\left(y^{*} x\right) \in \mathrm{I}_{\mathrm{i}}, \forall \mathrm{i} \in \Gamma$.
[Since each I_{i} is sub-implicative ideal of $\mathrm{X}, \forall \mathrm{i} \in \Gamma$. By definition (2.3)(ii))]
$\Rightarrow \quad \mathrm{y}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \bigcap_{i \in \Gamma} I_{\mathrm{i}}$.
Therefore, the intersection of a family of sub-implicative ideals is a sub-implicative ideal of X. .

Journal University of Kerbala , Vol. 16 No. 1 Scientific . 2018

Theorem (3.3):

Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \Gamma\right\}$ be a chain sub-implicative ideals of a BH-algebra X . Then $\bigcup_{i \in \Gamma} I_{\mathrm{i}}$ is a subimplicative ideal of X .

Proof:

We must show that $\bigcup_{i \in \Gamma} I_{\mathrm{i}}$ is a sub-implicative ideal of X .
i. $0 \in \mathrm{I}_{\mathrm{i}}, \forall \mathrm{i} \in \Gamma$. [Since each I_{i} are sub-implicative ideal of $\mathrm{X}, \forall \mathrm{i} \in \Gamma$.By definition (2.3)(i)]
$\Rightarrow 0 \in \bigcup_{i \in \Gamma} I_{\mathrm{i}}$.
ii. Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ such that $((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x}))^{*} \mathrm{z} \in \bigcup_{i \in \Gamma} I_{\mathrm{i}}$ and $\mathrm{z} \in \bigcup_{i \in \Gamma} I_{\mathrm{i}}$

There exist $\mathrm{I}_{\mathrm{j}}, \mathrm{I}_{\mathrm{k}} \in\left\{\mathrm{I}_{\mathrm{i}}\right\}_{\mathrm{i} \in \mathrm{\Gamma}}$, such that $\left(\left(\mathrm{x}^{*}\left(\mathrm{x}^{*} \mathrm{y}\right)\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{I}_{\mathrm{j}}$ and $\mathrm{z} \in \mathrm{I}_{\mathrm{k}}$
\Rightarrow either $\mathrm{I}_{\mathrm{j}} \subseteq \mathrm{I}_{\mathrm{k}}$ or $\mathrm{I}_{\mathrm{k}} \subseteq \mathrm{I}_{\mathrm{i}}$
[Since $\left\{\mathrm{I}_{\mathrm{i}}\right\}_{\mathrm{i} \in \Gamma}$ is a chain]
$\Rightarrow\left(\left(\mathrm{x}^{*}(\mathrm{x} * \mathrm{y})\right) *(\mathrm{y} * \mathrm{x})\right) * \mathrm{z} \in \mathrm{I}_{\mathrm{j}}$ and $\mathrm{z} \in \mathrm{I}_{\mathrm{j}}$ or $(\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z} \in \mathrm{I}_{\mathrm{k}}$ and $\mathrm{z} \in \mathrm{I}_{\mathrm{k}}$
\Rightarrow either $y^{*}\left(y^{*} x\right) \in \mathrm{I}_{\mathrm{j}} \quad$ or $\quad \mathrm{y}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I}_{\mathrm{k}}$.
[Since I_{j} and I_{k} are sub-implicative ideals of X. By definition (2.3)(ii)]
$\Rightarrow \mathrm{y}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \bigcup_{i \in \Gamma} I_{\mathrm{i}}$.
Therefore, $\bigcup_{i \in \Gamma} I_{\mathrm{i}}$ is a sub-implicative ideal of X .

Proposition(3.4):

Let $\mathrm{g}:\left(\mathrm{X},{ }^{*}, 0\right) \rightarrow\left(\mathrm{Y},{ }^{*}, 0^{\prime}\right)$ be a BH-epimorphism. If I is a sub-implicative ideal of X , then $\mathrm{g}(\mathrm{I})$ is a sub-implicative ideal of Y .

Proof:

Let I be a sub-implicative ideal of X. Then
i. $g(0)=0^{\prime} . \quad$ [Since g is an epimorphism. By Remark (2.5)]
$\Rightarrow 0^{\prime} \in \mathrm{g}(\mathrm{I})$
ii. Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{Y}$ such that $\left(\left(\mathrm{x}^{*}(\mathrm{x} * \mathrm{y} \mathrm{y})\right)^{*}\left(\mathrm{y}{ }^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{g}(\mathrm{I})$ and $\mathrm{z} \in \mathrm{g}(\mathrm{I})$
$\Rightarrow \exists \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{I}$ such that $\mathrm{g}(\mathrm{a})=\mathrm{x}, \mathrm{g}(\mathrm{b})=\mathrm{y}$ and $\mathrm{g}(\mathrm{c})=\mathrm{z}$

$=\mathrm{g}\left(\left(\left(\mathrm{a}^{*}\left(\mathrm{a}^{*} \mathrm{~b}\right)\right)^{*}\left(\mathrm{~b}^{*} \mathrm{a}\right)\right)^{*} \mathrm{c}\right) \in \mathrm{g}(\mathrm{I})$,
[Since g is an epimorphism. By Remark (2.5)]]
$\Rightarrow\left(\left(a^{*}\left(a^{*} b\right)\right)^{*}\left(b^{*} a\right)\right)^{*} c \in I$ and $c \in I$, [Since $\left.g(I)=\{g(x) ; x \in I\}\right]$
$\Rightarrow \mathrm{b}^{*}\left(\mathrm{~b}^{*} \mathrm{a}\right) \in \mathrm{I}$, [Since I is a sub-implicative ideal of X .]
$\Rightarrow g\left(b^{*}\left(b^{*} a\right)\right) \in g(I)$. $\quad[$ Since $g(I)=\{g(x) ; x \in I\}]$
$\Rightarrow \mathrm{g}\left(\mathrm{b}^{*}\left(\mathrm{~b}^{*} \mathrm{a}\right)\right)=\mathrm{g}(\mathrm{b})^{*}\left(\mathrm{~g}(\mathrm{~b})^{*} \mathrm{~g}(\mathrm{a})\right)=\mathrm{y}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{g}(\mathrm{I})$.
Thus, $g(I)$ is a sub-implicative ideal of Y.

Proposition(3.5):

Let $\mathrm{g}:\left(\mathrm{X},{ }^{*}, 0\right) \rightarrow\left(\mathrm{Y},{ }^{* \prime}, 0^{\prime}\right)$ be a BH-homomorphism. If I is a sub-implicative ideal of Y , then g ${ }^{1}(\mathrm{I})$ is a sub-implicative ideal of X .

Proof:

Let I be a sub-implicative ideal of Y. Then
i. $\mathrm{g}(0)=0^{\prime} \quad$ [Since g is a homomorphism. By Remark (2.5)]
$\Rightarrow 0 \in \mathrm{~g}^{-1}(\mathrm{I})$.
ii. Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ such that $\left.\left(\mathrm{x}^{*}\left(\mathrm{x}^{*} \mathrm{y}\right)\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{g}^{-1}(\mathrm{I})$ and $\mathrm{z} \in \mathrm{g}^{-1}(\mathrm{I})$
$\Rightarrow \mathrm{g}\left(\left(\left(\mathrm{x}^{*}\left(\mathrm{x}^{*} \mathrm{y}\right)\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right) \in \mathrm{I}$ and $\mathrm{g}(\mathrm{z}) \in \mathrm{I}$

Journal University of Kerbala, Vol. 16 No. 1 Scientific . 2018

$\Rightarrow \mathrm{g}\left(\left(\left(\mathrm{x}^{*}(\mathrm{x} * \mathrm{y})\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right)=\left(\left(\mathrm{g}(\mathrm{x})^{*}\left(\mathrm{~g}(\mathrm{x})^{*} \mathrm{~g}(\mathrm{y})\right)\right)^{*}\left(\mathrm{~g}(\mathrm{y}){ }^{*} \mathrm{~g}(\mathrm{x})\right)\right)^{*} \mathrm{~g}(\mathrm{z}) \in \mathrm{I}$ and $\mathrm{g}(\mathrm{z}) \in \mathrm{I}$, $\quad[$ Since g is a homomorphism. By Remark (2.5)]
$\Rightarrow \mathrm{g}(\mathrm{y})^{* \prime}\left(\mathrm{~g}(\mathrm{y}){ }^{*} \mathrm{~g}(\mathrm{x})\right) \in \mathrm{I},[$ Since I is a sub-implicative ideal of Y. By Definition (2.3)(ii)]
$\Rightarrow \mathrm{g}(\mathrm{y})^{*}\left(\mathrm{~g}(\mathrm{y})^{*} \mathrm{~g}(\mathrm{x})\right)=\mathrm{g}\left(\mathrm{y}^{*}(\mathrm{y} * \mathrm{x})\right) \in \mathrm{I}$
$\Rightarrow y^{*}\left(y^{*} \mathrm{x}\right) \in \mathrm{g}^{-1}(\mathrm{I})$. [Since g is a homomorphism, by Remark (2.5)]
Then $\mathrm{g}^{-1}(\mathrm{I})$ is a sub-implicative ideal of X .

Theorem (3.6):

Let N be a normal subalgebra of BH -algebra X . If I is a sub-implicative ideal of X , then I / N is a sub-implicative of X / N.

Proof:

Suppose that I be a sub-implicative ideal of X.
$\Rightarrow I$ is an ideal of $X . \quad[B y$ proposition (2.4)]
$\Rightarrow I / N$ is an ideal of X / N. [By theorem (2.7)]
i. $[0]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$. [Since $0 \in \mathrm{I}$. By definition (2.2)(i)]
ii. Let $[\mathrm{x}]_{\mathrm{N}},[\mathrm{y}]_{\mathrm{N}},[\mathrm{z}]_{\mathrm{N}} \in \mathrm{X} / \mathrm{N}$ such that $\left(\left([\mathrm{x}]_{\mathrm{N}} *\left([\mathrm{x}]_{\mathrm{N}} *[\mathrm{y}]_{\mathrm{N}}\right)\right) *\left([\mathrm{y}]_{\mathrm{N}} *[\mathrm{x}]_{\mathrm{N}}\right)\right)^{*}[\mathrm{z}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$ and $[\mathrm{z}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$,
$\Rightarrow\left(\left([x]_{N} *[x * y]_{N}\right) *[y * x]_{N}\right) *[z]_{N} \in I / N$ and $[z]_{N} \in I / N$, $\left[\right.$ Since $\left.[x]_{N} *[y]_{N}=[x * y]_{N}\right]$
$\Rightarrow\left([\mathrm{x} *(\mathrm{x} * \mathrm{y})]_{\mathrm{N}} *[\mathrm{y} * \mathrm{x}]_{\mathrm{N}}\right)^{*}[\mathrm{z}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$ and $[\mathrm{z}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$,
$\left.\Rightarrow\left[\left(\mathrm{x}^{*}\left(\mathrm{x}^{*} \mathrm{y}\right)\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N} \quad$ and $\quad[\mathrm{z}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$,
$\Rightarrow\left(\left(x^{*}\left(x^{*} y\right)\right) *\left(y^{*} x\right)\right)^{*} \mathrm{z} \in \mathrm{I}$ and $\mathrm{z} \in \mathrm{I}$, [Since $\mathrm{I} / \mathrm{N}=\left\{[\mathrm{x}]_{\mathrm{N}} \mid \mathrm{x} \in \mathrm{I}\right\}$.By Remark (2.6)]
$\Rightarrow y^{*}\left(y^{*} \mathrm{x}\right) \in \mathrm{I}, \quad$ [Since I is a sub-implicative ideal. By definition (2.3)(ii)]
$\Rightarrow\left[y^{*}\left(y^{*} x\right)\right]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$.
Therefore, I / N is a sub-implicative ideal of X / N.

Proposition (3.7):

Let A be a translation ideal of a BH -algebra X . If I is a sub-implicative ideal of X , then I / A is a sub-implicative of X/A.

Proof:

Assume that I be a sub-implicative ideal of X . Then
i. $[0] \in \mathrm{I} / \mathrm{A}$. [By definition(2.3)(i)]
ii. Let $[\mathrm{x}]_{\mathrm{A}},[\mathrm{y}]_{\mathrm{A}},[\mathrm{z}]_{\mathrm{A}} \in \mathrm{X} / \mathrm{A}$ such that
$\left(\left([x]_{A} \oplus\left([x]_{A} \oplus[y]_{A}\right)\right) \oplus\left([y]_{A} \oplus[x]_{A}\right)\right) \oplus[z]_{A} \in \mathrm{I} / \mathrm{A} \quad$ and $\quad[\mathrm{z}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$
$\Rightarrow\left(\left([x]_{A} \oplus[x * y]_{A}\right) \oplus[y * x]_{A}\right) \oplus[z]_{A} \in I / A$ and $[z]_{A} \in I / A$, $\left[\right.$ Since $\left.[x]_{A} \oplus[y]_{A}=[x * y]_{A}\right]$
$\Rightarrow\left(\left[x^{*}\left(x^{*} y\right)\right]_{\mathrm{A}} \oplus\left[y^{*} \mathrm{x}\right]_{\mathrm{A}}\right) \oplus[\mathrm{z}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A} \quad$ and $\quad[\mathrm{z}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$,
$\left[\right.$ Since $[\mathrm{x}]_{\mathrm{A}} \oplus[\mathrm{y}]_{\mathrm{A}}=[\mathrm{x} * \mathrm{y}]_{\mathrm{A}}$. By Remark (2.9)]
$\left.\Rightarrow\left[\left(\mathrm{x}^{*}(\mathrm{x} * \mathrm{y})\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A} \quad$ and $\quad[\mathrm{z}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$,
$\Rightarrow\left(\left(x^{*}\left(x^{*} y\right)\right) *\left(y^{*} x\right)\right) * z \in \mathrm{I}$ and $\mathrm{z} \in \mathrm{I}$, [Since $\mathrm{I} / \mathrm{A}=\left\{[\mathrm{x}]_{\mathrm{A}} \mid \mathrm{x} \in \mathrm{I}\right\}$.By Remark (2.9)]
$\Rightarrow y^{*}\left(y^{*} \mathrm{x}\right) \in \mathrm{I}, \quad[$ Since I is a sub-implicative ideal. By Definition (2.3)(ii)]
$\Rightarrow\left[y^{*}\left(y^{*} x\right)\right]_{A} \in I / A$.
Then, I/A is a sub-implicative ideal of X / N.

Proposition (3.8):

Let X be a positive implicative BH -algebra. If I is a sub-implicative ideal of X , then $\mathrm{L}(\mathrm{I})$ is a subimplicative ideal of $\left(\mathrm{L}(\mathrm{X}), \oplus, \mathrm{L}_{0}\right)$.

Proof:

Let I be a sub-implicative ideal of X .
i. $0 \in \mathrm{I} \quad$ [By definition (2.3)(i)]
$\Rightarrow \mathrm{L}_{0} \in \mathrm{~L}(\mathrm{I})$
ii. Let $L_{a}, L_{b}, L_{c} \in L(I)$ such that $\left(\left(\mathrm{L}_{\mathrm{a}} \oplus\left(\mathrm{L}_{\mathrm{a}} \oplus \mathrm{L}_{\mathrm{b}}\right)\right) \oplus\left(\mathrm{L}_{\mathrm{b}} \oplus \mathrm{L}_{\mathrm{a}}\right)\right) \oplus \mathrm{L}_{\mathrm{c}} \in \mathrm{L}(\mathrm{I})$ and $\mathrm{L}_{\mathrm{c}} \in \mathrm{L}(\mathrm{I})$.
$\Rightarrow((\mathrm{a} *(\mathrm{a} * \mathrm{~b})) *(\mathrm{~b} * \mathrm{a})) * \mathrm{c} \in \mathrm{I}$ and $\mathrm{c} \in \mathrm{I}$,

Journal University of Kerbala , Vol. 16 No. 1 Scientific . 2018

$\left[\right.$ Since $\left.\left(\left(\mathrm{L}_{\mathrm{a}} \oplus\left(\mathrm{L}_{\mathrm{a}} \oplus \mathrm{L}_{\mathrm{b}}\right)\right) \oplus\left(\mathrm{L}_{\mathrm{b}} \oplus \mathrm{L}_{\mathrm{a}}\right)\right) \oplus \mathrm{L}_{\mathrm{c}}=\mathrm{L}_{((\mathrm{a} *(\mathrm{a} * \mathrm{~b})) *(\mathrm{~b} * \mathrm{a})) * \mathrm{c}} \in \mathrm{L}(\mathrm{I})\right]$
$\Rightarrow \mathrm{b}^{*}\left(\mathrm{~b}^{*} \mathrm{a}\right) \in \mathrm{I}, \quad[B y$ definition (2.3)(ii)]
$\Rightarrow \mathrm{L}_{b^{*}\left(b^{*}{ }^{*}\right)} \in \mathrm{L}(\mathrm{I})$.
Therefore, $\mathrm{L}(\mathrm{I})$ is a sub-implicative ideal of $\left(\mathrm{L}(\mathrm{X}), \oplus, \mathrm{L}_{0}\right)$.

Theorem (3.9):

Let X be a positive implicative BH -algebra and let

$$
\mathrm{H}_{\mathrm{t}}=\{\mathrm{a} \in \mathrm{X} \mid \mathrm{a} * \mathrm{t}=0, \mathrm{t} \in \mathrm{X}\}
$$

be a subset of X. If $\left(a^{*} t\right)^{*}\left(b^{*} t\right)=b^{*} t$ with $a^{*} t \neq b^{*} t, \forall a, b, t \in X$, then $H_{t} \cup\{0\}$ is a subimplicative ideal of X .

Proof:

We must show that $\mathrm{H}_{t} \cup\{0\}$ is a sub-implicative ideal of X .
i. we have $0 \in H_{t} \cup\{0\}$.
ii. Let $a * b \in H_{t}$ and $b \in H_{t}$.
$\Rightarrow\left(\mathrm{a}^{*} \mathrm{~b}\right) * \mathrm{t}=0$ and $\mathrm{b}^{*} \mathrm{t}=0$
$\Rightarrow\left(\mathrm{a}^{*} \mathrm{t}\right)^{*}\left(\mathrm{~b}^{*} \mathrm{t}\right)=0 \quad\left[\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*} \mathrm{t}=\left(\mathrm{a}^{*} \mathrm{t}\right)^{*}\left(\mathrm{~b}^{*} \mathrm{t}\right)\right.$, since X is positive implicative BH -algebra. By definition
(2.12)]
$\Rightarrow\left(\mathrm{a}^{*} \mathrm{t}\right) * 0=0 \quad\left[\right.$ Since $\left.\mathrm{b}^{*} \mathrm{t}=0\right]$
$\Rightarrow \mathrm{a}^{*} \mathrm{t}=0 \quad$ [Since X is BH- algebra ; $\mathrm{x} * 0=\mathrm{x}$]
$\Rightarrow \mathrm{a} \in \mathrm{H}_{\mathrm{t}}$.
$\Rightarrow \mathrm{H}_{\mathrm{t}} \cup\{0\}$ is an ideal of X .
iii. Let $a, b, c \in X$ such that $\left(\left(a^{*}\left(a^{*} b\right)\right)^{*}\left(b^{*} a\right)\right)^{*} c \in H_{t}$ and $c \in H_{t}$.
$\Rightarrow\left(\left(a^{*}\left(a^{*} b\right)\right) *\left(b^{*} a\right)\right) \in H_{t} \quad\left[\right.$ Since $H_{t} \cup\{0\}$ is an ideal]
$\Rightarrow\left(\left(a^{*}\left(a^{*} \mathrm{~b}\right)\right)^{*}\left(\mathrm{~b}^{*} \mathrm{a}\right)\right)^{*} \mathrm{t}=0$
$\Rightarrow\left(\left(\mathrm{a}^{*} \mathrm{t}\right)^{*}\left(\left(\mathrm{a}^{*} \mathrm{t}\right)^{*}\left(\mathrm{~b}^{*} \mathrm{t}\right)\right)\right)^{*}\left(\left(\mathrm{~b}^{*} \mathrm{t}\right)^{*}\left(\mathrm{a}^{*} \mathrm{t}\right)\right)=0$
$\left[\left(a^{*} \mathrm{~b}\right) * \mathrm{t}=(\mathrm{a} * \mathrm{t}) *(\mathrm{~b} * \mathrm{t})\right.$, since X be positive implicative BH -algebra.]
Case 1: if $\mathrm{a}^{*} \mathrm{t}=\mathrm{b}^{*} \mathrm{t}$, then
$\Rightarrow\left(\left(\mathrm{a}^{*} \mathrm{t}\right)^{*}\left(\left(\mathrm{a}^{*} \mathrm{t}\right)^{*}\left(\mathrm{a}^{*} \mathrm{t}\right)\right)\right)^{*}\left(\left(\mathrm{a}^{*} \mathrm{t}\right)^{*}\left(\mathrm{a}^{*} \mathrm{t}\right)\right)=0$
$\Rightarrow\left(\left(\mathrm{a}^{*} \mathrm{t}\right) *\left(\left(\mathrm{a}^{*} \mathrm{t}\right)^{*}\left(\mathrm{a}^{*} \mathrm{t}\right)\right)^{*} 0=0\right.$
[Since X is BH -algebra, $\mathrm{x} * \mathrm{x}=0$]
$\Rightarrow\left(\left(\mathrm{a}^{*} \mathrm{t}\right) *\left(\left(\mathrm{a}^{*} \mathrm{t}\right)^{*}\left(\mathrm{a}^{*} \mathrm{t}\right)\right)=0\right.$. [Since X is BH-algebra, $\mathrm{a}^{*} 0=\mathrm{a}$]
$\Rightarrow\left(\mathrm{b}^{*} \mathrm{t}\right) *\left(\left(\mathrm{~b}^{*} \mathrm{t}\right) *\left(\mathrm{a}^{*} \mathrm{t}\right)\right)=0$
[Since $\mathrm{a}^{*} \mathrm{t}=\mathrm{b} * \mathrm{t}$]
$\Rightarrow\left(\mathrm{b}^{*}(\mathrm{~b} * \mathrm{a})\right)^{*} \mathrm{t}=0$
$\left.\Rightarrow b^{*}\left(b^{*} a\right)\right) \in H_{t}$.
Therefore, $\mathrm{H}_{\mathrm{t}} \cup\{0\}$ is a sub-implicative ideal of X .
Case 2: if $\mathrm{a}^{*} \mathrm{t} \neq \mathrm{b} *$, then
Suppose that $\mathrm{a}, \mathrm{b}, \mathrm{t} \in \mathrm{X}$ such that $\left(\left(\mathrm{a}^{*} \mathrm{t}\right)^{*}\left(\left(\mathrm{a}^{*} \mathrm{t}\right) *\left(\mathrm{~b}^{*} \mathrm{t}\right)\right)\right)^{*}\left(\left(\mathrm{~b}^{*} \mathrm{t}\right)^{*}\left(\mathrm{a}^{*} \mathrm{t}\right)\right)=0$.
$\Rightarrow\left(\left(a^{*}\right) *\left(b^{*} t\right)\right) *\left(\left(b^{*} t\right) *\left(a^{*} t\right)\right)=0$.
[By the condition $\left(\mathrm{a}^{*} \mathrm{t}\right)^{*}\left(\mathrm{~b}^{*} \mathrm{t}\right)=\mathrm{b}^{*} \mathrm{t}$ with $\left.\mathrm{a}^{*} \mathrm{t} \neq \mathrm{b}^{*} \mathrm{t}, \forall \mathrm{a}, \mathrm{b}, \mathrm{t} \in \mathrm{X}\right]$
$\Rightarrow\left(\mathrm{b}^{*} \mathrm{t}\right)^{*}\left(\left(\mathrm{~b}^{*} \mathrm{t}\right) *\left(\mathrm{a}^{*} \mathrm{t}\right)\right)=0$.
$\Rightarrow\left(b^{*}\left(b^{*} a\right)\right)^{*} t=0$.
$\Rightarrow\left(b^{*}\left(b^{*} a\right)\right) \in H_{t}$.
Therefore, $\mathrm{H}_{\mathrm{t}} \cup\{0\}$ is a sub-implicative ideal of X .

Journal University of Kerbala, Vol. 16 No. 1 Scientific . 2018

Theorem (3.10):

If $\mathrm{g}:\left(\mathrm{X},{ }^{*}, 0\right) \rightarrow\left(\mathrm{Y},{ }^{* \prime}, 0^{\prime}\right)$ be a homomorphism from an associative BH -algebra X into $\mathrm{BH}-$ algebra Y , then $\operatorname{ker}(\mathrm{g})$ is a sub-implicative ideal of X .

Proof:

We must show that $\operatorname{ker}(\mathrm{g})$ is a sub-implicative ideal of X .
i. $g(0)=0^{\prime}$. [Since g be a homomorphism]
$\Rightarrow 0 \in \operatorname{ker}(\mathrm{~g})$.
ii. Let $\left.\left(\mathrm{x}^{*}(\mathrm{x} * \mathrm{y})\right)^{*}(\mathrm{y} * \mathrm{x})\right)^{*} \mathrm{z} \in \operatorname{ker}(\mathrm{g}) \quad$ and $\quad \mathrm{z} \in \operatorname{ker}(\mathrm{g})$
$\left.\Rightarrow \mathrm{g}\left(\left(\mathrm{x}^{*}(\mathrm{x} * \mathrm{y})\right)^{*}(\mathrm{y} * \mathrm{x})\right)^{*} \mathrm{z}\right)=0^{\prime} \quad$ and $\quad \mathrm{g}(\mathrm{z})=0 \quad$ [By Remark (2.5)]
$\left.\Rightarrow \mathrm{g}\left((\mathrm{x} *(\mathrm{x} * \mathrm{y}))^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right)^{*} \mathrm{~g}(\mathrm{z})=0^{\prime}$. [Since g is a homomorphism.]
$\Rightarrow \mathrm{g}\left(\left(\mathrm{x}^{*}(\mathrm{x} * \mathrm{y})\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} 0=0^{\prime} \quad[$ Since $\mathrm{g}(\mathrm{z})=0$ ']
$\Rightarrow \mathrm{g}\left(\left(\mathrm{x}^{*}(\mathrm{x} * \mathrm{y})\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)=0^{\prime} \quad\left[\right.$ Since Y is a BH-algebra; $\left.\mathrm{g}(\mathrm{x})^{*} 0^{\prime}=\mathrm{g}(\mathrm{x})\right]$
$\Rightarrow \mathrm{g}\left(\left(\mathrm{x}^{*} \mathrm{x}\right)^{*} \mathrm{y}\right) *\left(\mathrm{y}^{*} \mathrm{x}\right)=0^{\prime} \quad[$ Since X is an associative. By definition (2.17)]
$\Rightarrow \mathrm{g}\left(\left(0^{*} \mathrm{y}\right) *\left(\mathrm{y}^{*} \mathrm{x}\right)\right)=0$ ' [Since X is a BH-algebra ; $\mathrm{x} * \mathrm{x}=0$]
$\Rightarrow \mathrm{g}\left(\mathrm{y}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)=0^{\prime}$ [Since X is an associative; $0^{*} \mathrm{y}=\mathrm{y}$. By theorem (2.17)(i)]]
$\Rightarrow y^{*}\left(y^{*} x\right) \in \operatorname{ker}(\mathrm{g})$.
"Therefore, $\operatorname{ker}(\mathrm{g})$ is a sub-implicative ideal of X ".
or In other way , by Proposition 3.5, since kerg $=\mathrm{g}^{-1}(0)$ so $\left\{0^{\prime}\right\}$ is sub-implicative ideal of Y .

References

[1] A. B. Saeid , A. Namdar and R.A. Borzooei, "Ideal Theory of BCH - algebras", World Applied Sciences Journal, 7 (11): pp. 1446-1455, 2009.
[2] H. H. Abbass and H. A. Dahham,"Some Types of Fuzzy Ideals with Respect to an Element of a BG-algebra", M.S.c thesis, Kufa University, 2012".
[3] H. H. Abbass and S. A. Neamah, "On The Fuzzy Implicative Ideal With Respect to an element of a BH-algebra", M.S.c thesis, Kufa University, 2014.
[4] S. S. Ahn and H. S. Kim, "R-maps and L-maps in BH-algebras", Journal of the Chung cheong Mathematical Society, Vol.13, No. 2, pp.53-59, 2000.
[5] S. S. Ahn and J. H. Lee, "Rough Strong Ideals in BH-algebras", HonamMath. Journal, 32, pp. 203-215, 2010.
[6] Y. B Jun, E. H. Roh and H. S. Kim, "On BH-algebras ", Scientiae Mathematicae 1(1), pp. 347 -354, 1998.
[7] Y. B. Jun, H. S. Kim and M. Kondo," On BH-relations in BH-algebras", Scientiae Mathematicae Japonicae Online, Vol.9, pp. 91-94, 2003.

