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ABSTRACT

In this study an attempt is made to derive governing equations satisfying equilibrium
and compatibility, for multi-layer composite simply supported beam under blast loading |,
for linear material and shear connector behavior in which the slip (horizontal displacement)
and uplift force (vertical displacement) are taken into consideration. The analysis is based on
an approach presented by Roberts, which takes into consideration horizontal and vertical
displacements in interfaces. The model congsts of assmply supported beam with three layers
having a cross-sectional area ,different dimensions and material properties. The analysis led
to a set of six differential equations containing derivatives of the fourth and third order. The
blast loading was considered as a function of time. Explosions have different effects
including blast, penetrations and fragmentation. The blast is the main effect which hits the
dructure in short duration. Multi —layer composite construction is the best type of
constructions to resist the blast loading ; according to this , multi-layer composite
construction is used for air-craft and marine industries. Analysis of composite beam under
blast load , taking in consideration vertical and horizontal displacements, leads to six
differential equations, the load is taken as a function of time.
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1INTRODUCTION

An explosive is a mixture or chemical compound which, under the influence of heat

or shock, undergoes a chemical reaction of the following types:

1.A considerable amount of energy is liberated.

2.The explosive is converted into gas which is at high temperature and under high pressure.
3.The reaction needs no support from the outside , if started under certain conditions, it will
spread through the entire explosive[ 1]

Blast

When detonation of a charge takes place in the air, the case of charge bursts and the
surrounding air is compressed , so much heat is created in the air that it becomes luminous.
The outer surface of luminous region is called the flame front. After the case of the charge
breaks , the gaseous products of the explosion burst forth and continue to expand. The initial
velocity of expansion of these gases varies from 6000 to 30000 feet per second. The gases
cool rapidly and lose most of their velocity after they have gone a distance 40 to 50 times the
diameter of the charge. The variations of pressure of these gases are carried into the
surrounding air where they influence the form of the blast wave.

The blast wave from an exploding charge is characterized by an immediate rise in
pressure from atmospheric to the peak pressure of the blast wave followed by a rapid
decrease to sub-atmospheric pressure and then a slower increase to atmospheric value. Thus
the blast wave has two phases : the abrupt rise of pressure followed by a decrease to
atmospheric is called the positive or pressure phase, and the decrease of pressure to sub-
atmospheric followed by a return to atmospheric is called negative or suction phase, as shown
inFig.(1).
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The area under the positive phase of the pressure-time curve is called the positive
impulse of the blast, the area under the remaining portion is called the negative one. The
instantaneous rise in pressure results from there being a region or surface around the
detonation of a bomb in front of which the air is undisturbed and behind which the air is
under great pressure. The surface is called the shock front of the blast wave. In ar or
compressible fluids, high pressure creates a shock front because they heat the medium and
expand rapidly.

The physical characteristics of the shock wave may be defined in terms of peak pressure and
impulse of various distance.

The peak pressure is maximum during the initial phase. Peak pressure from bombs , cased
and uncased charges, may be determined from the following formula[1]:

_ 4120 105  39.5
Ps =773 T zz Tz 1)

Another formula suggested by Birmam and Bert i5[2]:

.

‘ 2

Ps = pso(l - ;;_}gf_c

2. COMPOSITE CONSTRUCTION

Composite congtruction has been widely used in building construction. A perfect
connection between the components of composite eements exists only theoreticaly.
Experimental investigation has shown that significant dip occurs at the interface between
these components, even when a large number of connectors are provided. The modification in
the behavior of a composte beam by the presence of dip was illustrated by anaysis
conducted by many researchers. These analyses led to differentia equations (number of
which depends on the degree of freedom) that are to be solved fresh for each type of loading
and the variation in dimensions or properties of beams. The first interaction theory that takes
account of dip effects was initially formulated by Newmark et al.[4], based on elastic
analysis of composite beams assuming linear material and shear connector behavior. Adekola
[5] presented a different model based on interaction theory, which takes account of slip, uplift
and friction effect. Using the same element presented by Newmark et al., Johnson [6] in 1975
proposed a partial interaction theory for simply supported beams, in which the analysis was
based on elastic theory. The composite beam was assumed to have linear elastic materials.
Roberts [3] presented an approach for the andysis of composite beam with partial interaction,
in which the basic equilibrium and compatibility equations were formulated in terms of four
independent variables, i.e. the axia displacements of the concrete and sted and the
deflections of the two layers. Linear elastic materials and shear connector behavior were
assumed with the concrete remaining uncracked, and both the dip and separation at the
interface were incorporated.

3. MATHEMATICAL MODEL

Interaction theories which consider the dip, were formulated by many researchers.
Newmark et al. [4] presented one of the earliest linear analyses of composite beams,
incorporating the influence of dip. A recent approach has been presented by Robertg[15] in
which the basic equilibrium and compatibility equations are derived in terms of
displacements and solved smultaneously using a finite difference representing the various
derivatives. Al-Amery [16] presented a new approach, considering non-linear materials and

shear connector behavior.
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In this study, the model, consists of three different layers, different materials and shear
and normal stiffness. The analysis leads to a set of six basic equilibrium and compatibility
equations that were formulated in terms of displacements (horizontal and vertical) of each
layer. These differential equations were expressed in finite difference form, and the resulting
smultaneous algebraic equations were solved numerically.

For composite elements to act as a single structural unit, an efficient connection must
be provided, which serves to transfer shear and normal forces and prevent significant relative
movement between the layers, where the connectors are flexible, the slip and separation, may
occur at the interfaces.

3.1 Assumptions

The basic assumptions of conventional beam theory were used in which plane
sections are assumed to remain plane. Also, the connection was assumed to have negligible
thickness and posses finite normal and tangential stiffness.

3.2 Equilibrium

An element of acomposite of three layers, length dx, shown in Fig.(2), is subjected to
moments, M, shear forces, V, and axial forces, F, subscripts a, b, and ¢ denotes three layers
from upper to lower layer, and the local x-z axes pass through the centroids of the materials.
If the beam is subjected to blast loading according to Eq.(1) plus distributed load r per unit

length, vertical equilibrium of the whole element gives:
dv, +dv, +dV, =rdx + Pdx ©)]
Dividing equation (3) by dx and taking alimit as dx tendsto zero gives:

Va,x +Vb,x +Vc,x =r + Ps (4)

In which subscript x denote differentiation, for live load only r,, for live load and dead load,
r isequd to:

r.:ri+ra+rb+rc (5)

Inwhich r ,,r, and r_ are the distributed self-weight of the three layers. Loads due to the

removal of props used during construction should be considered as live loads.
Taking moments about the origin of coordinates in the upper layer gives:

dM, +dM, +dM = (v, +V, +V_ )dx + (dV, +dV, +dVC).d?X+de.d1 +dF,.(d, +d,)

(6)
In which d; and d, are the distance between the centroids of the upper and middle cross

section and middle and lower cross section respectively.
After neglecting the second order terms and dividing by dx Eq. (6) becomes:
M + M b,x + M C,X :Va +Vb +Vc + I:b,x'dl + Fc,x'(dl + dZ) (7)

a,x

Differentiating Eq. (7) gives:

M a,xx + M b,xx + M C,XX :Va,x +Vb,x +Vc,x + I:b,xx'dl + Fc,xx'(dl + dz) (8)

S -
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Substituting Eq.(4) into Eq.(8) gives:

M

a,xx

+ My + M, - F

C, XX b,xx *

d, - Fex-(dy +dy) =1 +P, 9)

b, xx
Taking moments about the origin of coordinate in the middle layer gives:

dM, +dM, +dM_ = (v, +V, +V_ )dx + (aV, +adV, +dvc).dzx +dF, d, - dF,.d, (10)

After neglecting the second order terms and dividing by dx Eq. (10) becomes:

M

a,x +M b,x +M c,x :Va +Vb +Vc - Fa,x'dl + Fc,x'dz (11)
Differentiating Eq.(11) gives:

M

a,xx +M b, xx + Mc,xx :Va,x +Vb,x +Vc,x - Fa,xx'dl + I:c,xx'dz (12)
Substituting Eq.(4) into (12) gives:

M

a,xx

+M +M ot F 0 - Fody =1 +P, 13

b,xx axc:
For equilibrium of the composite element, shown inFig. (2), in the x-direction givses:

(dF, +F,)+(dF, +F,)+(dF, +F.)- (F,+F, +F.)=0 (14)
dF, +dF, +dF, =0 (15)
Dividing Eq.(15) by dx gives:

FoxtFotF. =0 (16)

Egs. (9), (13), and (16) are the three basic equilibrium equations required for the complete
solution.

3.3 Compatibility

Assuming plane sections within each material remain plane, the total displacement of
the upper layer in the x-direction at the interface, denoted by U, , is given by:

U ai —Ua " Zy 'Wa,x (17)

In which z, is the z-coordinate of the interface relative to the local x-z axes and, u, and
w, are the displacements of the upper layer in the x and z direction. Similarly for the other

two layers:
Ui = Uy - Zy Wi (18)
Ucti =U.- Z4 'Wc,x (19)

_\.\_
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The dip, U,, at the interface between the first two layers is denoted as the relative
displacement in the x-direction of initially adjacent particles, as shown in Fig.(2). Hence:

U, =U, - U (20)
And between the lower two layers:

U, =U, -Ug, (21)
Combining Equations (17), (18), (19), (20) and (21) gives:

Usp = (Uq - 24 W, ) - (U - 25 W, ) (22)

Upe = U, - 25 Wy, ) - (U, - 250, ) (23)

If the shear stiffness of the joint per unit length between the upper two layers, denoted by kg,
the shear force per unit length at the interface q, is given by:

g, =kgU,, (24)
The shear force per unit length at the interface of the lower layers, q,, is given by:

0, =Ko Uy, (25
Considering the equilibrium of the upper layer in the x-direction gives:

Fax =0 =ka Uy (26)

Consdering the equilibrium of the middle layer in the x-direction gives:

Fox =02 - G 27
Fox =KoUp - KqU g (28)
Fa,x + I:b,x = q2 = ksZ U bc (29)

Substituting for U, from Eq. (22) into (26) gives
Fax - Kal(Uy - 24w, ) - (Uy - Z;.W,,)] =0 (30)
Substituting for U, from Eq. (23) into (29) gives.

Fax ¥ Fox - Kol(U, - 25 W, ,) - (U - Z5.W,,)]=0 (31)

_\.*_

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

Anbar Journal for Engineering Sciences© AJES,Vol.1,No.2 / 2008

The separation at the interface between the first upper layers, w,, is the relative displacement
in the z-direction of initially adjacent, as shown in Fig.(2) is given by:

Wba =W - W, (32)
The separation at the interface between the two lower layers, w,, isgiven by:

ch =W - W, (33)

If B, denotes the normal force per unit length at the interface equilibrium at the two upper
layers element in the z-direction it is given by:

Va,x:ri+ra+Pl+Ps (34)

If P, denotes the normal force per unit length at the interface equilibrium at the lower two
layers element in the z-direction is given by:

Vox =P - Ptry, (39)
Vx+Vb,x:P2+rb+ra+ri+Ps (36)

a,

Consder the moment equilibrium of the upper layer element about the origin of coordinates
which gives:

Va = Ma,x + ql'zai

(37)

Consder the moment equilibrium of the second layer element about the origin of coordinates
which gives:

Vi =My, +0,.2; - Q.2 (38)

Differentiating Egs. (37) and (38) gives:

V = M a,xx + ql,x'zai

a,x

(39)

Vox =My T Qox-Zi = Oux-Zo = My + FoZy (40)

b,xx

Differentiating Egs. (26) and (29) with respect to x gives

Fax = G (41)
Fa,xx + I:b,xx = qZ,x (42)
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Substituting Egs. (34) and (36) into (39) and (40) gives:

F)l:Ma,xx+ql,x'Zai - (ri +Ps+ra) (43)
Va,x +Vb,x =M a,xx +M b,xx + qz,x'zbi - ql,x'zbi + qu'Zai (44)
P =My My ¥ QoZyi = OiyZoy F0heZy - (M +7,+1,)- B (49)

Substituting Eq. (41) into (42) gives:

R=M,, +F

a,xx

-(ritRoHry) (46)

a,xx 'Zai

Substituting Eq. (42) into (45) gives:

Po =M, My P Za R Zy = (M F P+ 1) (47)
If the normal stiffness of the joint per unit length between the upper layers, is denoted by k.,
then:

B =KW = K- (W, - W) (48)

If the normal stiffness of the joint per unit length between the lower layers, is denoted by K, ,
then:

PZ = an'VVcb = an'(Wc - Wb) (49)

Substituting Eq. (48) into Eq. (46) gives.
M >o<+F _knl(Wb_Wa):ri+ra+PS (50)

a, a,xx 'Zaj

Substituting Eq. (49) into Eq. (47) and combining with Eq. (49) gives.

My *+F

b,xx "

Z; - an(Wc - Wb) + knl(Wb - Wa) =TIy (51)

b,xx

Egs.(30), (31) and (51) are the three basic compatibility equations required for a complete
solution.

BASIC DIFFERENTIAL EQUATIONS
From the anaytical model, the six independent differential equations (equilibrium and
compatibility), may be expressed in terms of  displacement variables, u_,w,,,u,,W,,U,

and w, as follows :Assuming plane sections within each materia remain plane, the axia
drain e can be expressed in terms of displacements u ,w relative to the local x and z —axes,
which are assumed to pass through the centroid of the three materials. Hence:

e, = Uat,x :Ua,x - Za'Wa,xx (52)
€ TUpx =Up - 2, W, (53)
€ = Uct,x = Uc,x - Zc'Wc,xx (54)

_\.i_
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In which subscripts a, b and ¢ denotes the layers, subscripts x denotes differentiation and z
the distance form the origin of coordinates to the limits of the layers.
Stresses, now can be related to strain via the materials properties E,, E, and E,. For linear

elastic materials E_,E, and E, are constants, but for nonlinear elagtic and elasto-plastic
materials, E,, E,and E_are functions of strain.

The free strain due to shrinkage, temperature ,etc, are denoted by e, , while the strain induced
during the construction sequence, are denoted by e, . Hence, if u and w are assumed
exclude the displacements corresponding, to e, ande,, the stresses in the layers are given by:

S, = Ea(ua,x - Za'Wa,>o< +era - efa) (55)
Sp = Ep(Upy - Z, Wy +€, - €y) (56)
S. = Ec (uc,x - Zc'Wc,xx +erc - efc) (57)

The axial forces, F,,F,and F_ , and moments M,,M,, and M_ are obtained by integrating
the stresses, multiplying by the appropriate lever arms, z,,z,and z_, in the case of moments
over the cross section area of each layer which denoted by A, A and A, . Hence:

F.=(s.dA, (58)
Fy = (S p-dA, (59)
F. =(s.dA (60)
M, =- (S ..Z,.dA, (61)
My =- (S-2,-0A, (62)
M, =-(S.Z-dA (63)

Substituting Egs. (55), (56), (57) into Egs. (58) to (63) gives:

Fa = CEa'(ua,x - Za'Wa,>o< te, - efa)dAa (64)
Fo = CEo-(Uny - ZoWo i T €1 - €4,)dA, (65)
FC = CEC'(uc,x - Z 'Wc,>o< te.- efc)dp\: (66)
M a =- CEa'(ua,X - Za'Wa,xx +era - efa)'za'dAa (67)
My == (Ep-(Upy - 2o W T €1 - €45)-2, . 0A, (68)
M c =- CEC'(UC,X - ZC'WC,xx +erc - efc)'zc'dAE (69)

IF E,,E,,and E_ are constants, integration of Egs. (64) to (69) gives.

Fa = Ea'Aa'ua,x + Ea'(éra - éfa) (70)

F =By AU, +E,.(6 - €) (71)

I:c = EC'A\:'UC,X + Ec'(érc - éfc) (72)
- V.0 -
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M, =E,.l,.W,, (73)
M, = Ep.l W, (74)
M, =E.l W, (75)
in which, 1,,l,, and |, are the second moments of area for the layers and € is the

integration of the strain function over the cross section area of the corresponding materials.
The following are the six governing equations derived for the three layers composite beam:

Mot My *M o - Foodi - Fo(dy+d,) =1 +P, (76)
Mo *tM  +M_ +F d-F ., d,=r +P (77)
Fax *Fox tF, =0 (78)
Fox - Kal(U, - 2. w,,) - (U, - Z;3w,,)] =0 (79)
Fax T Fox - Kal(Uy - 25 W,,) - (U - 25w, )] =0 (80)
Mo + Fosoc-Zoi = Ko (W = W) + K (W, - W) =1, (81)

After substituting Egs. from (70) to (75) into Egs. from (76) to (81) gives:

Ea'l a'Wa,xxxx + EbI b'Wb,xxxx + EcI c'Wc,xxxx - Eb'A)'dl'ub,xxx - Eb (érb - éfb),xx'dl - (dl + dz)'Ec'AE'uc,xxx
- Ec'(dl + dz)(érc - éfc),xx =r+ Ps

(82)
EolaWaouw T Epcly Wy pou ¥ Bl We e + Ea'Aa'dl'ua,w + E, (€, - e_a)yxx.d1
- dZ'Ec'Ac'uc,m( - Ec'dZ.(e_rc - e_fc),>o< =r + Ps

(83)

Ea'Aa'ua,xx + Ea'(éra - e_fa),x + Eb'Ab'ub,xx + Eb (e_rb - e_fb),x + EC'A\:'uc,xx + Ec'(e_rc - e_fc),x =0
(84)

Ea'Aa'ua,xx + Ea'(éra - éfa),x - ksz[(ub - 4 'Wb,x) - (uc - Zy 'Wc,x)] =0 (85)

E. Al tE(€a- €u)  TELA UL T E (6 - €4) - K[y - 23 W) - (U - 23w, )] =0
(86)

B Lo Wo oo + B Ay Uy -Zi = Kig (W, = W) +Kg (W, - W) =1y (87)

5.NUMERICAL SOLUTIONS

Egs. (82) o (87) contain derivatives of third order in u and fourth order in w, which
can be expressed in finite (central) difference form using five node points as shown in
Fig.(3), for example, the derivatives of w at node n can be expressed as:

W, = Whea = Woog (89)
’ 2.Dx

-y -
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Wi - 2'Wn W,

W, o = 0 (89)
W, -2W_  +2W - W

quxxx - n+2 n+21 st n-1 n-2 (90)
wW.,-4w_  +6wW -4w . +w

quxxxx - n+2 n+l ?:]X: n-1 n-2 (91)

inwhich Dx isthe spacing of nodes.

After expressing Egs. (82) to (87) in finite difference form, the complete solution
system of agebraic equations, six degree of freedom per node, can be solved for the
unknown displacements at the nodes, and its two external nodes are required at each end of
the beam. In general, since the model is done for uniform distribution load and to specify the
boundary conditions, the point load P can be idealized as a uniform distribution load

r= F%Dx’ applied over a single node spacing.

BOUNDARY CONDITIONS

Solution of the resulting set of algebraic equations requires the specification of
boundary conditions. In general, since the equations contains a derivative of fourth order they
require two external nodes to specify the boundary conditions at each end. However, if each
external node is assigned six degrees of freedom per node, then twelve boundary conditions
required for each end of the beam must be specified:

w, =0 a x=0 whenx=L (92)
W, =0 a x=0 when x=L (93)
W, =0 a x=0 when x=L (94)
W, =0 a x=0 when x=L (95)
u, =0 a x=0 (96)
u., =0 a x=0 97)
u,, =0 a x=0 when = (98)
Uy, =0 a x=0 when x= (99)
V,+V, +V, =R a x=0 (100)
V,+V, +V, =R a x=L (101)
Uz o = 0 a x=0 when x=L (102
Up oo = 0 a x=0 when x=L (103)
Ueoox =0 a x=0 when x=L (104)
Uy, =0 a x=0 when x=L (105)

in which,R and R are the reactions at the supports, Egs.(100) and (101) express the

conditions that the sum of the shear forces in the layers are equal to the support reaction
Rad R. And V,,V, ad V, can be expressed in terms of displacements derivatives as

follows: consider moment equilibrium of the upper layer about the origin of coordinate,
Fig.(2), gives:

_\.V_
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Vo =M, +0,2, (106)
Substituting for g, from equation (26) into equation (106) gives:

V.=M_, +F, .z, (107)
Similarly, for the middle layer:

Vy =My, +F, .2, (108)
And for the lower layer:

V. =M, +F. .z (109)

c,X "“ci

Substituting the forces and moments in terms of derivatives from Eqgs.(70) to (75) into Egs.
(107) to (109), gives.

Va = Ea'l a'Wa,>oo< + Ea'Aa'Zaj +Ea'zaj '(éra - éfa),x (110)
Vo = Eol g Wo oo + Ep-A 2, +E,.Z,.(8 - €4) (111)
Vc = EcI c'Wc,xxx + EC'A\:'Zci +Ec'zci '(érc - éfc),x (112)

And for the latest boundary conditions, substituting Eq. (22) into (105) gives:
Uabpx = (Uax = Za Wae) = (Upx = Z Wy ) (113

But Eqg. (113) into afinite difference forms, gives:

1 z 1
DXZ (uan+l - 2'uan +uan-1) - 2 DXS (.Wan+2 - 2'Wan-1 + 2'Wan-1 B Wan-z) - DXZ (ub 1 2'ubn + ub )
+—2 [1)(3 (W, - 2w, +2w, -w, )=0

(114)

The details about the six governing equations and the twenty four boundary
conditions, after substituting the finite difference form,
It is noted that the free strain due to shrinkage and temperature, etc and strain induced
during construction sequence are neglected.
The main equations after substituting the finite difference form become:

_\.A_
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E.I, E, I,
74(Wan+2w B 4'Wan+1 + 6'Wan B 4'Wan-1 + Wan-z) + 4 (an+2 - 4'Wb+n1 + 6'an
E..l d
4w, +w, )+ (w, - 4w, +6w -4w. +w, )- Eo-A TP (y
b1 by 2 DX4 Ch+2 Cns1 Cn Cn-1 Cn-2 2 DXS Uy,

CEA@+dy)

- 2-ubn+1 + 2'ubn_1 - ubn_z) - Eb'dl'(érb - éfb),xx 2 D ( Coez -ucn+1

* 2.ucn-1 . ucn-z) - EC'(dl + dz)'(érc - e7fc =r + Ps

E..l. E,.ly
DX4 (Wan+2w - 4.Wan+1 + 6.Wan - 4.Wan-1 + Wan-z) + DX4 (an+2 - 4.Wb+n1 + 6.an
E..l E,.A . d,
-Aw, twy ) F S (w, - 4w, +Bw, - 4w, +w, )+
by-1 b, D 4 Chn+2 Cn+1 Cn Cn-1 Ch.2 2 D 3
L E.Ad,
-2 EY +2 u, - uan_z) + Ea'dl'(era - efa),xx - (ucn,r2 - 2'ucn+1

2.Dx®
" 2.Ucn_1 ) ucn-z) B EC'dZ'(e_rc - e_fc) =r + Ps

E,.A.
DXZ

L E,.A
(.uam1 - 2U, +.uan_1) +E,.(6.- €.) +W(me - 2U, +ubn_1)

E..A

+ Eb'(érb - éfb),x + .DXZ

(uCn+1 - 2'ucn + ucn_l) - Ec'(érc - éfc) =0

Ea' A A ksl Za|

5 (.uam1 - 2.uan +.uan_1)+ E..B.-€wn) - ksl.u + > Dx (w, oo Wan_1)+

K,.z

+kgUy - =2 (w, =0

sl bn 2 DX ( bn+1 bn- 1 )
E..A. _ E,.A

D (.uam1 - 2U, +.uan_1) +E,.(6.-€u) ot D (me - 2U, +ubn_1)
o o kS | kS ZCI

+ Eb'(erb - efb),x - ksZ'u +227D)?( [ bn_l) + ksZ'ucn - 22D ( Crer ch_1
E .l E,-A-Z,

b."" b
4 .[an+2 - 4.Wb+n1 + 6.an - 4.an-1 + an-z] - 2 DX3

- an'(ch - an)+kn2'(an - W, ) =T,

ay

4. APPLICATIONS

n+2

[ubmz B 2'ubn+1 + 2'ubn-1 B

(115)

An+2

(116)

(117)

(118)

(119)

(120)

The developed analysis presented above takes into consideration interlayer dip and

has been applied to previous examples tested by other researchers.

A computer program has been written to solve the set of differentia equations using
finite difference method . A case study is considered to study the effect of blast loads on

composite multi-layer smply supported beam.
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5. ANALY SIS AND DISCUSSION

As noted previously, the method of analysis developed was investigated under a
certain case study. An analytical study is carried out for a multi-layer composite simply
supported beam, the dimensions of the beam are shown in Fig.(4). The loads and structura
details are shown in Table(1) based on formula according to TM-855-1to calculate the peak
over pressure and duration. The material properties of steel, concrete and shear connections
are presented in Table(2).

Fig.(5) shows the time- deflection relationship for the three layer simply supported
beam during short time of exposure to blast load, the figure shows a difference in values of
deflection for the layers. The blast load is applied directly to the upper layer and the
deflection is large compared with other layers; in fact the deflection of the interior layer is
small and can be used to protect the inside persons and equipment from other explosions
effects such as penetration and crater.

Fig.(6) shows the time- deflection relationship for three layer ssimply supported beam
during short time of exposure to blast load, the figure shows a difference in values of
deflection for the layers.

6. CONCLUSIONS
The main conclusions that can summarized is as follow:

1 - Explosions have different effects including blast, penetrations and fragmentation. The
blast is the main effect which hits the structure in short duration. Multi —layer composite
construction is the best type of constructions to resist the blast loading ; according to this,
multi-layer composite construction is used for air-craft and marine industries.

2 - A gpecia case of multi-layered composite construction, is steel - concrete -steel
sandwich beams (SCSS) or double skin composite construction (DSC). This is a relatively
new and innovative form of construction, consisting mainly of a layer of plain concrete
sandwiched between two layers of relatively thin steel plates connected to the concrete by
welded stud connectors.

3 - Analysis of composite beam under blast load , taking in consideration vertical and
horizontal displacements, leadsto six differential equations, the load is taken as a function of
time.

4 - A case study was considered to calculate the slip and deflection for the three layer
composite simply supported beam.
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NOTATION
a, b, and c= Subscript denotes different layers.
A, Ajand A = Cross-sectional area of different layers.

A = Effective width of concrete sab.
d,and d,=Distance between the centroids of successive layers.

E, = Modulusof elasticity of concrete.

E, = Modulusof elasticity of sted.

E,,E,and E.=Modulus of dasticity of different layers.

F,,F, and F =The axia forcesin different layers.

h,, h, and h,= Thickness of different layers.

I, lI,and I, =Second moment of area for the layer a

[, and 1, = Moment of inertia of concrete slab and steel about its own centroid.

kyand k,, =Shear stiffness of the joint per unit length between successive layers.
k,and k.,=Normal stiffness of the joint per unit length between successive layers.
L = spanlength.

M= External applied moment.

M,, M, and M, =Moment for layer a

P= Point load.

P,and B, =Normal force per unit length at the upper and lower interface.
r,=Liveload.

r =Live load and dead load.

r,, rypand r = Distributed self-weight of layer a

R, R =Reaction &t the right and the left supports.

U, and U, = Slip between upper and lower layers.

u,, u,and u,=Displacements of the different layersin the x -direction.
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W=weight of chargein Ib.
w,, w, and w, =Displacements of the layer a, b and ¢ in the z -direction.

W, W, =Separation &t the interface between the upper and lower layers.

X.= Subscript denote differentiation.
X=distance from charge in ft

Z=scaefactor = +

z,, z, and z,; =Z-coordinate of interface relative to local x-z axesinlayersa, b and c.
e, =Free strain due to shrinkage, temperature etc.
e, = Strain induced during the congtruction sequence.

€ =Integration of strain function over cross section area of the material.
e,, e,and e,=Strainin layersa, b and c.

S,, S,and s =Stressin layersa, b and c.
Dx =Spacing between nodes.

Table(1) : Detailsof charge weight, peak over pressure and duration

Case | TNT chargeweight Distance fromthe | Peak over pressure | Duration
No. charge
kg Ib m ft MPa ps Sec
1 25 5.434 15 4.95 1.285 187.56 | 0.00106
2 5.0 11.2 25 8.25 0.576 | 84.0875 | 0.000905
Table(2) : Propertiesof material
Compressive strength | Modulusof elasticity GPa | Tensile strength
MPa MPa
Concrete beam 25 20 2.05
Steel Yield stress MPa Modulus of easticity GPa Elongation%
Plate 290 205 24
Headed studs 285 203 22
Reinforcing bar 290 202 20
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Figure (2) Composite three layers element
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Figure (3) : Centrad finite difference scheme

® 0 0 00 0 0 6 %0

200 100

_.,_,._,',_..,_.’,_.,_.'_._. o 20
Bottom plate 713

0000 000" A

90006000

Top plate

(all dimensions in mm)

Figure (4): Dimensions of beam
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Figure (5): Time-deflection relationship for beam layers under blast load
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Figure (6): Time-dip relationship for beam layers under blast load
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