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ABSTRACT 

In this study an attempt is made to derive governing equations satisfying equilibrium 
and compatibility, for multi-layer composite simply supported  beam under blast  loading  , 
for linear material and shear connector behavior in which the slip (horizontal displacement) 
and uplift force (vertical displacement) are taken into consideration. The analysis is based on 
an approach presented by Roberts, which takes into consideration horizontal and vertical 
displacements in interfaces. The model consists of a simply supported  beam with three layers 
having a cross-sectional area ,different dimensions and material properties. The analysis led 
to a set of six differential equations containing derivatives of the fourth and third order. The 
blast loading was considered as a function of time. Explosions have different effects 
including blast, penetrations and fragmentation. The blast is the main effect which hits the 
structure in short duration. Multi –layer composite construction is the best  type of 
constructions to resist the blast loading ; according to this , multi-layer composite 
construction is used for air-craft and marine industries. Analysis of composite beam under 
blast load , taking in consideration vertical and horizontal displacements, leads to six 
differential equations , the load is taken as a function of time.  
     
KEYWORDS: multi-layer, composite , beam, blast, simply supported 
 
1.INTRODUCTION  

An explosive is a mixture or chemical compound which, under the influence of heat 
or shock, undergoes a chemical reaction of the following types: 
1.A considerable amount of energy is liberated. 
2.The explosive is converted into gas which is at high temperature and under high pressure. 
3.The reaction needs no support from the outside , if started under certain conditions , it will 
spread through the entire explosive[1] 
Blast 

When detonation of a charge takes place in the air, the case of charge bursts and the 
surrounding air is compressed , so much heat is created in the air that it becomes luminous. 
The outer surface of luminous region is called the flame front. After the case of the charge 
breaks , the gaseous products of the explosion burst forth and continue to expand. The initial 
velocity of expansion  of these gases varies from 6000 to 30000 feet per second. The gases 
cool rapidly and lose most of their velocity after they have gone a distance 40 to 50 times the 
diameter of the charge. The variations of pressure of these gases are carried into the 
surrounding air where they influence the form of the blast wave. 
             The blast wave from an exploding charge is characterized by an immediate rise in 
pressure from atmospheric to the peak pressure of the blast wave followed by a rapid 
decrease to sub-atmospheric pressure and then a slower increase to atmospheric value. Thus 
the blast wave has two phases : the abrupt rise of pressure followed by a decrease to 
atmospheric  is called the positive or pressure phase, and the decrease of pressure to sub-
atmospheric followed by a return to atmospheric is called negative or suction phase, as shown 
in Fig.(1). 
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The area under the positive phase of the pressure-time curve is called the positive 
impulse of the blast, the area under the remaining portion is called the negative one. The 
instantaneous rise in pressure results from there being a region or surface around the 
detonation of a bomb in front of which the air is undisturbed  and behind which the air is 
under great pressure. The surface is called the shock front of the blast wave. In air or 
compressible fluids, high pressure creates a shock front because they heat the medium and 
expand rapidly. 
The physical characteristics of the shock wave may be defined in terms of peak pressure and 
impulse of various distance. 
The peak pressure is maximum during the initial phase. Peak pressure from bombs , cased 
and uncased charges , may be determined from the following formula[1]: 
 

                                                                                                 (1)          
  
Another formula suggested by Birmam and Bert is[2]: 
 

                                                                                                      (2) 

2. COMPOSITE CONSTRUCTION 
Composite construction has been widely used in building construction. A perfect 

connection between the components of composite elements exists only theoretically. 
Experimental investigation has shown that significant slip occurs at the interface between 
these components, even when a large number of connectors are provided. The modification in 
the behavior of a composite beam by the presence of slip was illustrated by analysis 
conducted by many researchers. These analyses led to differential equations (number of 
which depends on the degree of freedom) that are to be solved fresh for each type of loading 
and the variation in dimensions or properties of beams. The first interaction theory that takes 
account of slip effects was initially formulated by Newmark et al.[4], based on elastic 
analysis of composite beams assuming linear material and shear connector behavior. Adekola 
[5] presented a different model based on interaction theory, which takes account of slip, uplift 
and friction effect. Using the same element presented by Newmark et al., Johnson [6] in 1975 
proposed a partial interaction theory for simply supported beams, in which the analysis was 
based on elastic theory. The composite beam was assumed to have linear elastic materials. 
Roberts [3] presented an approach for the analysis of composite beam with partial interaction, 
in which the basic equilibrium and compatibility equations were formulated in terms of four 
independent variables, i.e. the axial displacements of the concrete and steel and the 
deflections of the two layers. Linear elastic materials and shear connector behavior were 
assumed with the concrete remaining uncracked, and both the slip and separation at the 
interface were incorporated. 
.  
3. MATHEMATICAL MODEL  

Interaction theories which consider the slip, were formulated by many researchers. 
Newmark et al. [4] presented one of the earliest linear analyses of composite beams, 
incorporating the influence of slip. A recent approach has been presented by Roberts[15]  in 
which the basic equilibrium and compatibility equations are derived in terms of 
displacements and solved simultaneously using a finite difference representing the various 
derivatives. Al-Amery [16] presented a new approach, considering non-linear materials and 
shear connector behavior. 
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       In this study, the model, consists of three different layers, different materials and shear 
and normal stiffness. The analysis leads to a set of six basic equilibrium and compatibility 
equations that were formulated in terms of displacements (horizontal and vertical) of each 
layer. These differential equations were expressed in finite difference form, and the resulting 
simultaneous algebraic equations were solved numerically. 
 For composite elements to act as a single structural unit, an efficient connection must 
be provided, which serves to transfer shear and normal forces and prevent significant relative 
movement between the layers, where the connectors are flexible, the slip and separation, may 
occur at the interfaces. 
 
3.1 Assumptions  
 The basic assumptions of conventional beam theory were used in which plane 
sections are assumed to remain plane. Also, the connection was assumed to have negligible 
thickness and posses finite normal and tangential stiffness. 
 
3.2 Equilibrium 
 An element of a composite of three layers, length xδ , shown in Fig.(2), is subjected to 
moments, M, shear forces, V, and axial forces, F, subscripts a, b, and c denotes three layers 
from upper to lower layer, and the local x-z axes pass through the centroids of the materials. 
If the beam is subjected to blast loading according to Eq.(1) plus distributed load ρ  per unit 
length, vertical equilibrium of the whole element gives: 
 

xPxVVV scba δρδδδδ +=++                                                                                                  (3) 
 
Dividing equation (3) by xδ  and taking a limit as xδ  tends to zero gives: 
 

sxcxbxa PVVV +=++ ρ,,,                                                                                                         (4) 
 
In which subscript x denote differentiation, for live load only iρ , for live load and dead load, 
ρ  is equal to: 
 

cbai ρρρρρ +++=                                                                                                              (5) 
 
In which aρ , bρ  and cρ  are the distributed self-weight of the three layers. Loads due to the 
removal of props used during construction should be considered as live loads. 
Taking moments about the origin of coordinates in the upper layer gives: 
 

( ) ( ) ).(.
2

.. 211 ddFdFxVVVxVVVMMM cbcbacbacba ++++++++=++ δδ
δ

δδδδδδδ                                      

                                                                                                                                               (6) 
In which 1d  and 2d  are the distance between the centroids of the upper and middle cross 
section and middle and lower cross section respectively. 
After neglecting the second order terms and dividing by xδ  Eq. (6) becomes: 

).(. 21,1,,,, ddFdFVVVMMM xcxbcbaxcxbxa +++++=++                                                    (7) 
Differentiating Eq. (7) gives: 
 

).(. 21,1,,,,,,, ddFdFVVVMMM xxcxxbxcxbxaxxcxxbxxa +++++=++                                         (8) 
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Substituting Eq.(4) into Eq.(8) gives: 
 

sxxcxxbxxcxxbxxa PddFdFMMM +=+−−++ ρ).(. 21,1,,,,                                                      (9) 
 
Taking moments about the origin of coordinate in the middle layer gives: 
 

( ) ( ) 21 ..
2

.. dFdFxVVVxVVVMMM cacbacbacba δδ
δ

δδδδδδδ −++++++=++                   (10) 

 After neglecting the second order terms and dividing by xδ Eq. (10) becomes: 
 

2,1,,,, .. dFdFVVVMMM xcxacbaxcxbxa +−++=++                                                             (11) 
 
Differentiating Eq.(11) gives: 
 

2,1,,,,,,, .. dFdFVVVMMM xxcxxaxcxbxaxxcxxbxxa +−++=++                                                 (12) 
 
Substituting  Eq.(4) into (12) gives: 
 

sxxcxxaxxcxxbxxa PdFdFMMM +=−+++ ρ2,1,,,, ..                                                              (13) 
 
For equilibrium of the composite element, shown in Fig. (2), in the x-direction givses: 
 
( ) ( ) ( ) ( ) 0=++−+++++ cbaccbbaa FFFFFFFFF δδδ                                                      (14) 
 

0=++ cba FFF δδδ                                                                                                                (15) 
 
Dividing Eq.(15) by xδ  gives: 
 

0,,, =++ xcxbxa FFF                                                                                                               (16) 
 
Eqs. (9), (13), and (16) are the three basic equilibrium equations required for the complete 
solution. 
 
3.3 Compatibility 
 Assuming plane sections within each material remain plane, the total displacement of 
the upper layer in the x-direction at the interface, denoted by atiU , is given by: 
 

xaaiaati wzuU ,.−=                                                                                                                  (17)   
   
In which aiz  is the z-coordinate of the interface relative to the local x-z axes and, au  and 

aw are the displacements of the upper layer in the x and z direction. Similarly for the other 
two layers: 
 

xbbibbti wzuU ,.−=                                                                                                                  (18) 

xcciccti wzuU ,.−=                                                                                                                   (19) 
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The slip, abU , at the interface between the first two layers is denoted as the relative 
displacement in the x-direction of initially adjacent particles, as shown in Fig.(2). Hence: 
 

btiatiab UUU −=                                                                                                                     (20) 
 
And between the lower two layers: 
 

ctibtibc UUU −=                                                                                                                      (21) 
 
Combining Equations (17), (18), (19), (20) and (21) gives: 
 

).().( ,, xbbibxaaiaab wzuwzuU −−−=                                                                                     (22) 
 

).().( ,, xccicxbbibbc wzuwzuU −−−=                                                                                      (23) 
 
If the shear stiffness of the joint per unit length between the upper two layers, denoted by 1sk , 
the shear force per unit length at the interface 1q is given by: 
 

abs Ukq .11 =                                                                                                                             (24) 
 
The shear force per unit length at the interface of the lower layers, 2q , is given by: 
 

bcs Ukq .22 =                                                                                                                            (25) 
 
Considering the equilibrium of the upper layer in the x-direction gives: 
 

absxa UkqF .11, ==                                                                                                                  (26) 
 
Considering the equilibrium of the middle layer in the x-direction gives: 
 

12, qqF xb −=                                                                                                                          (27) 
 

absbcsxb UkUkF .. 12, −=                                                                                                           (28) 
 

bcsxbxa UkqFF .22,, ==+                                                                                                        (29) 
 
Substituting for abU from Eq. (22) into (26) gives:  
 

0)].().[( ,,1, =−−−− xbbibxaaiasxa wzuwzukF                                                                        (30) 
 
Substituting for bcU from Eq. (23) into (29) gives: 
 

0)].().[( ,,2,, =−−−−+ xccicxbbibsxbxa wzuwzukFF                                                               (31) 
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The separation at the interface between the first upper layers, baw  is the relative displacement 
in the z-direction of initially adjacent, as shown in Fig.(2) is given by:  
 

abba wwW −=                                                                                                                       (32) 
 
The separation at the interface between the two lower layers, cbw  is given by: 
 

bccb wwW −=                                                                                                                        (33) 
 
If 1P  denotes the normal force per unit length at the interface equilibrium at the two upper 
layers element in the z-direction it is given by: 
 

saixa PPV +++= 1, ρρ                                                                                                         (34) 
 
If 2P  denotes the normal force per unit length at the interface equilibrium at the lower two 
layers element in the z-direction is given by: 
 

bxb PPV ρ+−= 12,                                                                                                                  (35) 
 

siabxbxa PPVV ++++=+ ρρρ2,,                                                                                      (36) 
 
Consider the moment equilibrium of the upper layer element about the origin of coordinates 
which  gives: 
 

aixaa zqMV .1, +=                                                                                                                    
(37) 
 
Consider the moment equilibrium of the second layer element about the origin of coordinates 
which  gives: 
 

bibixbb zqzqMV .. 12, −+=                                                                                                       (38) 
 
Differentiating Eqs. (37) and (38) gives: 
 

aixxxaxa zqMV .,1,, +=                                                                                                               
(39) 
 

bixxbxxbbixbixxxbxb zFMzqzqMV ... ,,,1,2,, +=−+=                                                                   (40) 
 
Differentiating Eqs. (26) and (29) with respect to x gives: 
 

xxa qF ,1, =                                                                                                                                (41)  

xxxbxxa qFF ,2,, =+                                                                                                                   (42) 
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Substituting Eqs. (34) and (36) into (39) and (40) gives: 
 

)(.,1,1 asiaixxxa PzqMP ρρ ++−+=                                                                                      (43) 
 

aixbixbixxxbxxaxbxa zqzqzqMMVV ... ,1,1,2,,,, +−++=+                                                           (44) 
 

sbaiaixbixbixxxbxxa PzqzqzqMMP −++−+−++= )(... ,1,1,2,,2 ρρρ                                    (45) 
 
Substituting Eq. (41) into (42) gives: 
 

)(.,,1 asiaixxaxxa PzFMP ρρ ++−+=                                                                                    (46) 
 
Substituting Eq. (42) into (45) gives: 

)(.. ,,,,,2 basixxbxxbaixxaxxbxxa PzFzFMMP ρρρ +++−+++=                                             (47) 
If the normal stiffness of the joint per unit length between the upper layers, is denoted by 1nk , 
then:  

).(. 111 abnban wwkWkP −==                                                                                                    (48) 
 
If the normal stiffness of the joint per unit length between the lower layers, is denoted by 2nk , 
then:  
 

).(. 222 bcncbn wwkWkP −==                                                                                   (49) 
 
Substituting Eq. (48) into Eq. (46) gives: 

saiabnaixxaxxa PwwkzFM ++=−−+ ρρ)(. 1,,                                                                       (50) 
 
Substituting Eq. (49) into Eq. (47) and combining with Eq. (49) gives: 
 

babnbcnbixxbxxb wwkwwkzFM ρ=−+−−+ )()(.. 12,,                                                           (51) 

 
Eqs.(30), (31) and (51) are the three basic compatibility equations required for a complete 
solution. 
 
BASIC DIFFERENTIAL EQUATIONS 

From the analytical model, the six independent differential equations (equilibrium and 
compatibility), may be expressed in  terms  of    displacement  variables, cbbwa uwuwu ,,,,  
and cw  as follows :Assuming plane sections within each material remain plane, the axial 
strain ε  can be expressed in terms of displacements wu , relative to the local x and z –axes, 
which are assumed to pass through the centroid of the three materials. Hence: 
 

xxaaxaxata wzUU ,,, .−==ε                                                                                                     (52) 

xxbbxbxbtb wzUU ,,, .−==ε                                                                                                      (53) 

xxccxcxctc wzUU ,,, .−==ε                                                                                                      (54) 
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In which subscripts a, b and c denotes the layers, subscripts x denotes differentiation and z 
the distance form the origin of coordinates to the limits of the layers. 
Stresses, now can be related to strain via the materials properties ba EE ,  and cE . For linear 
elastic materials ba EE ,  and cE  are constants, but for nonlinear elastic and elasto-plastic 
materials, ba EE , and cE are functions of strain. 
The free strain due to shrinkage, temperature ,etc, are denoted by fε , while the strain induced 
during the construction sequence, are denoted by rε . Hence, if u and w  are assumed 
exclude the displacements corresponding, to fε and rε , the stresses in the layers are given by: 

).( ,, faraxxaaxaaa wzuE εεσ −+−=                                                                                        (55) 
).( ,, fbbxxbbxbbb wzuE εεσ −+−=                                                                                         (56) 
).( ,, fcrcxxccxccc wzuE εεσ −+−=                                                                                         (57) 

 
The axial forces, ba FF , and cF , and moments ba MM , , and cM  are obtained by integrating 
the stresses, multiplying by the appropriate lever arms, ba zz , and cz , in the case of moments 
over the cross section area of each layer which denoted by ba AA ,  and cA . Hence: 
 

∫= aaa dAF .σ                                                                                                                         (58) 

∫= bbb dAF .σ                                                                                                                         (59) 

∫= ccc dAF .σ                                                                                                                         (60) 

∫−= aaaa dAzM ..σ                                                                                                                (61) 

∫−= bbbb dAzM ..σ                                                                                                                 (62) 

∫−= cccc dAzM ..σ                                                                                                                 (63) 
 
Substituting Eqs. (55), (56), (57) into Eqs. (58) to (63) gives: 
 

∫ −+−= afaraxxaaxaaa dAwzuEF )..( ,, εε                                                                               (64) 

∫ −+−= bfbrbxxbbxbbb dAwzuEF )..( ,, εε                                                                                (65) 

∫ −+−= cfcrcxxccxccc dAwzuEF )..( ,, εε                                                                                (66) 

∫ −+−−= aafaraxxaaxaaa dAzwzuEM .)...( ,, εε                                                                      (67) 

∫ −+−−= bbfbrbxxbbxbbb dAzwzuEM .)...( ,, εε                                                                       (68) 

∫ −+−−= ccfcrcxxccxccc dAzwzuEM .)...( ,, εε                                                                       (69) 
 
IF  ba EE , , and cE  are constants, integration of Eqs. (64) to (69) gives: 
 

).(.. , faraaxaaaa EuAEF εε −+=                                                                                             (70) 
).(.. , fbrbbxbbbb EuAEF εε −+=                                                                                             (71) 
).(.. , fcrccxcccc EuAEF εε −+=                                                                                              (72) 
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xxaaaa wIEM ,..=                                                                                                                    (73) 

xxbbbb wIEM ,..=                                                                                                                     (74) 

xxcccc wIEM ,..=                                                                                                                     (75) 
 
in which, ba II , , and cI  are the second moments of area for the layers and ε  is the 
integration of the strain function over the cross section area of the corresponding materials. 
The following are the six governing equations derived for the three layers composite beam: 
 

sxxcxxbxxcxxbxxa PddFdFMMM +=+−−++ ρ).(. 21,1,,,,                                                      (76) 

sxxcxxaxxcxxbxxa PdFdFMMM +=−+++ ρ2,1,,,, ..                                                                (77) 
0,,, =++ xcxbxa FFF                                                                                                               (78) 

0)].().[( ,,1, =−−−− xbbibxaaiasxa wzuwzukF                                                                        (79) 
0)].().[( ,,2,, =−−−−+ xccicxbbibsxbxa wzuwzukFF                                                               (80) 

babnbcnbixxbxxb wwkwwkzFM ρ=−+−−+ )()(.. 12,,                                                           (81) 

 
After substituting Eqs. from (70) to (75) into Eqs. from (76) to (81) gives: 
 

sxxfcrcc

xxxcccxxfbrbbxxxbbbxxxxcccxxxxbbbxxxxaaa

PddE
uAEdddEudAEwIEwIEwIE

+=−+−

+−−−−++

ρεε

εε

,21

,211,,1,,,

))(.(
..).(.)(.........

                                                                                                                                               (82) 
                                 

sxxfcrccxxxccc

xxaaaxxxaaaxxxxcccxxxxbbbxxxxaaa

PdEuAEd
dEudAEwIEwIEwIE

+=−−−

−++++

ρεε

εε

,.2,2

1,,1,,,

)(....
.)(.........

                               

                                                                                                                                               (83) 
 

0).(..)(..).(.. ,,,,,, =−++−++−+ xfcrccxxcccxfbrbbxxbbbxfaraaxxaaa EuAEEuAEEuAE εεεεεε

                                                                                                                                               (84) 
 

0)].().[().(.. ,,2,, =−−−−−+ xccicxbbibsxfaraaxxaaa wzuwzukEuAE εε                                 (85)             
                                                                                      

0)].().[()(..).(.. ,,2,,,, =−−−−−++−+ xccicxbbibsxfbrbbxxbbbxfaraaxxaaa wzuwzukEuAEEuAE εεεε

                                                                                                                                               (86) 
 

babnbcnbixxbbbxxxxbbb wwkwwkzuAEwIE ρ=−+−−+ )().(..... 12,,                                         (87) 
 
5.NUMERICAL SOLUTIONS 
 Eqs. (82) o (87) contain derivatives of third order in u and fourth order in w, which 
can be expressed in finite (central) difference form using five node points as shown in 
Fig.(3), for example, the derivatives of w at node n can be expressed as: 
 

x
ww

w nn
xn ∆

−
= −+

.2
11

,                                                                                                                  (88) 
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2
11

,
.2
x

www
w nnn

xxn ∆
+−

= −+                                                                                                      (89) 

3
2112

, .2
.2.2

x
wwww

w nnnn
xxxn ∆

−+−
= −−++                                                                                     (90) 

4
2112

,
.4.6.4

x
wwwww

w nnnnn
xxxxn ∆

+−+−
= −−++                                                                        (91) 

 
in which x∆  is the spacing of nodes. 
 After expressing Eqs. (82) to (87) in finite difference form, the complete solution 
system of algebraic equations, six degree of freedom per node, can be solved for the 
unknown displacements at the nodes, and its two external nodes are required at each end  of 
the beam. In general, since the model is done for uniform distribution load and to specify the 
boundary conditions, the point load P can be idealized as a uniform distribution load 

x
P

∆=ρ , applied over a single node spacing. 

 
BOUNDARY CONDITIONS 
 Solution of the resulting set of algebraic equations requires the specification of 
boundary conditions. In general, since the equations contains a derivative of fourth order they 
require two external nodes to specify the boundary conditions at each end. However, if each 
external node is assigned six degrees of freedom per node, then twelve boundary conditions 
required for each end of the beam must be specified: 
 

0=cw                       at    0=x       when Lx =                                                                     (92) 
0, =xxaw                    at    0=x       when  Lx =                                                                   (93) 
0, =xxbw                    at    0=x       when  Lx =                                                                   (94) 
0, =xxcw                    at    0=x       when  Lx =                                                                    (95) 

0=cu                       at    0=x                                                                                               (96) 
0, =xcu                     at     0=x                                                                                              (97) 
0, =xau                     at     0=x       when    Lx =                                                                 (98) 
0, =xbu                     at     0=x       when    Lx =                                                                 (99) 

rcba RVVV =++        at     0=x                                                                                          (100) 

lcba RVVV =++         at     Lx =                                                                                        (101) 
0, =xxxxau                   at     0=x      when    Lx =                                                               (102) 
0, =xxxxbu                   at     0=x      when    Lx =                                                               (103) 
0, =xxxxcu                   at     0=x      when    Lx =                                                               (104) 
0, =xabU                    at     0=x      when    Lx =                                                               (105) 

 
in which, rR and lR  are the reactions at the supports, Eqs.(100) and (101) express the 
conditions that the sum of the shear forces in the layers are equal to the support reaction 

rR and lR .  And ba VV ,  and cV  can be expressed in terms of displacements derivatives as 
follows: consider moment equilibrium of the upper layer about the origin of coordinate, 
Fig.(2), gives: 
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aixaa zqMV .1, +=                                                                                                                 (106) 
 
Substituting for 1q  from equation (26) into equation (106) gives: 
 

aixaxaa zFMV .,, +=                                                                                                              (107) 
 
Similarly, for the middle layer: 
 

bixbxbb zFMV .,, +=                                                                                                               (108) 
 
And for the  lower layer:  

  
cixcxcc zFMV .,, +=                                                                                                               (109) 

 
Substituting the forces and moments in terms of derivatives from Eqs.(70) to (75) into Eqs.  
(107) to (109), gives: 
 

xfaraaiaaiaaxxxaaaa zEzAEwIEV ,, ).(..... εε −++=                                                                (110) 

xfbrbbibbibbxxxbbbb zEzAEwIEV ,, ).(..... εε −++=                                                                 (111) 

xfcrccicciccxxxcccc zEzAEwIEV ,, ).(..... εε −++=                                                                  (112) 
 
And for the latest boundary conditions, substituting Eq. (22) into (105) gives: 
 

).().( ,,,,, xxbbixbxxaaixaxab wzuwzuU −−−=                                                                           (113) 
 
But Eq. (113) into a finite difference forms, gives: 
 

0).2.2(.
.2
1

).2(1).2.2(.
.2

).2(1

2112

11211211

3

232

=−+−
∆

+

+−
∆

−−+−
∆

−+−
∆

−−−+

−+−−−+−+

nnnn

nnnnnnnnnn

bbbb

bbbaaaaaaa

wwww
x

uuu
x

wwww
x

zuuu
x                                                      

                                                                                                                                             (114) 
 
 The details about the six governing equations and the twenty  four boundary 
conditions, after substituting the finite difference form,  
      It is noted that the free strain due to shrinkage and temperature, etc and strain induced 
during construction sequence are neglected. 
The main equations after substituting the finite difference form become: 
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4. APPLICATIONS 
 The developed analysis presented above takes into consideration interlayer slip and 
has been applied to previous examples tested by other researchers. 
 A computer program has been written to solve the set of differential equations using 
finite difference method . A case study is considered to study the effect of blast loads on 
composite multi-layer simply supported beam. 
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5. ANALYSIS AND DISCUSSION 
 As noted previously, the method of analysis developed was investigated under a 
certain case study. An analytical study is  carried out for a multi-layer composite simply 
supported beam, the dimensions of the beam are shown in Fig.(4). The loads and structural 
details are shown in Table(1) based on  formula according to TM-855-1to calculate the peak 
over pressure and duration. The material properties of steel, concrete and shear connections 
are presented in Table(2). 

Fig.(5) shows the time- deflection relationship for the three layer simply supported 
beam during short time of exposure to blast load, the figure shows a difference in values of 
deflection for the layers. The blast load is applied directly to the upper layer and the 
deflection is large compared with other layers; in fact the deflection of the interior layer is 
small and can be used to protect the inside persons and equipment from other explosions 
effects such as penetration and crater.   

Fig.(6) shows the time- deflection relationship for three layer simply supported beam 
during short time of exposure to blast load, the figure shows a difference in values of 
deflection for the layers. 
 
6. CONCLUSIONS 

The main conclusions that can summarized is as follow:  
1 - Explosions have different effects including blast, penetrations and fragmentation. The 

blast is the main effect which hits the structure in short duration. Multi –layer composite 
construction is the best  type of constructions to resist the blast loading ; according to this , 
multi-layer composite construction is used for air-craft and marine industries.    

2 - A special case of multi-layered composite construction,  is steel  - concrete -steel 
sandwich beams  (SCSS) or double skin composite construction (DSC). This is a relatively 
new and innovative form of construction, consisting mainly of a layer of plain concrete 
sandwiched between two layers of relatively thin steel plates connected to the concrete by 
welded stud connectors.  

3 - Analysis of composite beam under blast load , taking in consideration vertical and 
horizontal displacements, leads to six differential equations , the load is taken as a function of 
time.  

4 - A case study was considered to calculate the slip and deflection for the three layer 
composite simply supported beam. 
 

    REFERENCES 
[1] TM5-855, "Fundamentals of protective design (Non-nuclear)",July, 1965. 
[2] Birmam, V. and Bert. C.W,"The behavior of laminated plates subjected to conventional 

blast". Int. J. impact Eng., Vol.3, No.3, 1987,pp145-155.  
[3] Roberts, T. M.,” Finite Difference Analysis of Composite Beams with      Partial Interaction 

“, Computers and Structures, Vol. 21, No. 3, 1985,       pp.469-473 
[4] Newmark, N.M., Siess, C.P. and Viest, I. M.,” Tests and Analysis of   Composite Beams 

with Incomplete Interaction “, Proc.society  for experimental stress analysis, Vol.9, No.1, 
1951  

[5] Adekola, A.O., “ Partial interaction between elasticity connected  elements of a composite 
beams”. International journal of solid and  structures, Vol.4, No.11, 1968, pp.1125-1135 

[6] Johnson, R.P., “ Composite Structures of Steel and Concrete ”, Vol.1, Beams, Column, 
Frames,  Applications in Building, Crosby - Lockwood     Staples, London, 1975, pp. 210. 

[7] Yam, Lioyd, C. P., “ Design of Composite Steel Concrete Structures “,  Surry university 
press, London, 1981, pp. 3,186. 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


Anbar Journal for Engineering Sciences © AJES,Vol.1,No.2 / 2008 
 

- ١١١ - 

[8] Johnson, R.P., “ Composite structures of steel and concrete, Vol.2,   Beams, Column, 
Frames, Applications in building “, Crosby -Lockwood     Staples, London, 1975, pp. 210. 

[9] Johnson, R.P And May, I. M. “ Partial interaction design of composite  beams “. The 
structural engineer, Vol. 53, No.8, August 1975, pp.305- 311.  

[10] Jasim, N. A., “ The Effect of Partial Interaction on Behavior of   Composite Beams“, Ph.D. 
Thesis University of Basrah, Oct. 1994. 

[11] Jasim, N. A. and Mohammed, A. A., “ Deflections of Composite Beams    with Partial 
Shear Connection “, The Structural Engineering, vol. 75, No.4, 1997, pp. 58-61.   

[12] Jasim, N. A., “ Computation of Deflections for Continuous Composite   Beams with 
Partial Interaction  “, Proc.   Inst. Civ. Engrs., Part2, Vol.59,  August 1997,  pp.  347-354. 

[13] Goodman, J. R.,” Layered Beam Systems with Interlayer Slip “, Journal  of Structural 
Division, Vol.94, No.st11, November 1968. 

[14] Goodman, J. R. and Popov, E.P.  ,” Layered Wood Systems with  Interlayer Slip “, Wood 
science Vol.1, No.3, 1969, pp. 148-158. 

[15] Roberts, T.M., "Finite Difference Analysis of Composite Beams with Partial Interaction", 
Computers and Structures , Vol.21 , No.3, 1985, pp.469-473 

[16] Al-Amery , R.I. and Roberts, T.M., " Nonlinear Finite Differences Analysis of Composite 
Beams with Partial Interaction ", Computers and Structures , Vol.35 , No.1, 1990, pp.81-87. 

 
NOTATION 
 a, b, and c= Subscript denotes different layers. 

aA , bA and cA = Cross-sectional area of different layers. 
A= Effective width of concrete slab. 

1d and 2d =Distance between the centroids of successive layers. 

1E  = Modulus of elasticity of concrete. 

2E  = Modulus of elasticity of steel.  

aE , bE and cE =Modulus of elasticity of  different layers .  

aF , bF  and cF =The axial forces in different layers. 

ah , bh  and ch = Thickness of  different layers. 

aI , bI and cI  =Second moment of area for the layer a. 

1I  and  2I = Moment of inertia of concrete slab and steel about its own centroid. 

1sk and 2sk =Shear stiffness of the joint per unit length between successive layers. 

1nk and 2nk =Normal stiffness of the joint per unit length between successive layers. 
L  = span length. 
M= External applied moment. 

aM , bM  and cM  =Moment for layer a. 
P= Point load. 

1P and 2P  =Normal force per unit length at the upper and lower interface.  

iρ =Live load. 
ρ =Live load and dead load. 

aρ  , bρ and cρ = Distributed self-weight of layer a. 

rR , lR =Reaction at the right and the left supports. 

abU  and  bcU = Slip between upper and lower layers. 

au , bu and cu =Displacements of the different layers in the x -direction.  
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W=weight of charge in Ib. 
aw , bw  and cw =Displacements of the layer a, b and c  in the z -direction. 

baw , cbw =Separation at the interface between the upper and lower  layers. 
x.= Subscript denote differentiation. 
X=distance from charge in ft 
Z= scale factor  =  

aiz , aiz and aiz =Z-coordinate of interface relative to local x-z axes in layers a, b and c. 

fε  =Free strain due to shrinkage, temperature etc. 

rε  = Strain induced during the construction sequence.    
        ε =Integration of strain function over cross section area of the material. 

aε , bε and cε =Strain in layers a , b and c. 

aσ , bσ and cσ =Stress in layers a, b and c. 
x∆ =Spacing between nodes. 

 
 
 
 

Table(1) : Details of charge weight, peak over pressure and duration 
 

Case 
No. 

 

TNT  charge weight 
 

kg                      Ib 

Distance from the 
charge 

m                  ft 

Peak over pressure 
 

MPa              psi 

Duration 
 

sec 
1 2.5 5.434 1.5 4.95 1.285 187.56 0.00106 
2 5.0 11.2 2.5 8.25 0.576 84.0875 0.000905 

 
 

 
Table(2)  : Properties of material 

 
 Compressive strength 

MPa 
Modulus of elasticity GPa Tensile strength 

MPa 
Concrete beam 25 20 2.05 

steel Yield stress MPa Modulus of elasticity GPa Elongation% 
Plate 290 205 24 

Headed studs 285 203 22 
Reinforcing bar 290 202 20 
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(a) Composite layered beam 
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(b) Composite layers element in Slip 
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(c) Composite layers in separation 

Figure (2)  Composite three layers element 
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Figure (3) : Central finite difference scheme  
  
 
 
  
  

  

 

 
 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

n-2                      n-1               n                      n+1                  n+2 

                                                                                       50    

200                                                                                         100    8                                             

                                                                                       50   200 

           Bottom  plate                               171.5 
                                                                                                                                                                                  

                                                                                             

                                                                                                            

                                                           Top  plate                                                               
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Figure (4): Dimensions of beam  
(Top and bottom view) 
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Figure (5): Time-deflection relationship  for beam layers under blast load 
 

 
  

 
 
 
 
 
 
 
 
 
 
 

       Figure (6): Time-slip relationship for beam layers under blast load 
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 تحليل العتبات متعددة الطبقات بسيطة الإسناد تحت أحمال العصف

  
 احمد طارق نعمان. م.م                   خليل إبراهيم عزيز. د.م

   كلية الهندسة–جامعة الانبار 
  

 الخلاصة 

كما إن الأعضاء ، لفوائدها المتعددة"  ذات المقاطع المركبة من المنشات المهمة نظراالمنشآت تعتبر 
في " نشائية ذات المقاطع متعددة الطبقات مهمة في العديد من الاستخدامات الهندسية وخصوصاالإ

لقوتها " بر أحمال العصف احد المؤثرات الناتجة عن الانفجارات نظرات تع.صناعة الطائرات والسفن
في "بيرة جداتبدأ موجة العصف على شكل زيادة ك.  التي تؤثر بها على المنشأ قليلةوالفترة الزمنية ال

إلى ما يعادل الضغط الجوي ويدخل مرحلة الضغط السالب " ثم يهبط تدريجيا) الموجة جبهة (الضغط 
 ذات ثلاث طبقات متغيرة  الإسنادفي هذا البحث تم اعتماد عتبة بسيطة).  تحت الضغط الجوي (

عتبار الإزاحات معرضة إلى أحمال العصف مع الأخذ بنظر الاوالأبعاد والخواص الهندسية للمواد 
نتيجة التحليل تتكون ست  معادلات بالاعتماد على متطلبات التوازن .   لكل طبقةشاقوليةالأفقية وال

 حيث وجد ان العناصر .والتوافق تم حلها بطريقة الفروق المحددة حيث تكون الأحمال دالة للزمن 
    . جاراتالإنشائية ذات الطبقات المتعددة هي الأكثر مقاومة لأحمال الانف
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