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ABSTRACT. 

Plates with interior openings are often used in both modern and classical aerospace, 
mechanical and civil engineering. The understanding of the effects of two cutouts on the 
stress concentration factor, maximum stress and deflections in perforated clamped rectangular 
plates, were considered. Parameters such as location, size of cutout and the aspect ratio of 
plates are very important in designing of structures. These factors were presently studied and 
solved by finite element method (ANSYS) program. The results based on numerical solution 
were compared with the results obtained from different analytical solution methods. One of 
the main objectives of this study is to demonstrate the accuracy of the analytical solution for 
clamped square plate.  

In general, the results of the square clamped plates with two cutouts come out in good 
agreement. The results presented here indicated that the maximum stress, deflection of 
perforated plates can be significantly changed by using proper cutouts locations and/or size. 
The results show that  the rectangular plate containing two cutouts arranged along the width is 
stronger and stiffer than when arranged along the length at a given spacing, and  the square 
plate is always stronger and stiffer than an equivalent rectangular plate for the same loading 
condition. 
Keywords: cutout, isotropic plate, perforated plate, stress concentrations, ansys 
program. 
 
1.  INTRODUCTION. 

It is well known that a rectangular plate with a rectangular hole has been widely used in 
industrial design such as ships, aircrafts, plants, bridges, machines, etc. Plates of various 
constructions find wide use as primary structural elements in both modern and classical 
structures. In recent years, the increasing need for lightweight efficient structures has led the 
structural engineer to the field of structural shape optimization. Different cutout ratio and 
location in structural elements are needed to reduce the weight of the system and provide 
access to other parts of the structure. In some cases, a cutout is not a part of initial design of 
the structure. In other words, structural elements are being damaged during their service life. 
It is well known that the presence of a cutout or hole in a stressed member creates highly 
localized stresses in the vicinity of the cutout. The ratio of the maximum stress at the cutout 
edge to the nominal stress is called the stress concentration factor (SCF). 

The study of the importance of SCF of perforated isotropic plates is well established. 
The high stress concentration at the edge of a cutout is of practical importance in designing 
engineering structures. The SCFs of these types of cutouts are usually determined either 
experimentally or numerically using finite element methods. The simple analytical stress 
analysis presented in this study provides a numerical result for stress concentration factors for 
perforated isotropic plates with special shaped cutouts. Analytical and numerical studies were 
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conducted to investigate the effects of variation in cutout shape (triangular, square and 
pentagonal), cutout orientation, bluntness and load direction on the values of SCF in flat plate 
under uniaxial tension load [1]. Avalos and Laura [2] performed a series of numerical 
experiments on simply supported rectangular plates with two rectangular holes with free 
edges under vibration. Folias and Wang [3] presented most of the previous work on stress 
concentration in this subject. They presented a series solution for the stress field around 
circular holes in plates with arbitrary thickness. A wide range of hole diameter to plate 
thickness was considered. Theocaris and Petrou [4] used Schwarz–Christoffel transformation 
to evaluate the stress concentration factor for an infinite plate with central triangular cutout. 
Stress and strain distributions along the boundary of rectangular cutout in an infinite elastic 
plate were presented by Theocaris and Petrou [5]. Lasko et al. [6] used relaxation element 
method to determine the stress fields in a plate with three circular cutouts subjected to 
uniaxial tensile load. Singh and Paul [7] presented numerical results based on generalized 
work–energy method for rectangular plates with a circular cutout and circular plates with a 
rectangular cutout. Monahan et al. [8] applied the finite-element method to a clamped 
rectangular plate with a rectangular hole and verified the numerical results by experiments. 
Cutouts of regular geometric shapes are designed for various purposes [9] in diverse 
engineering fields. Sometimes a cutout is not a part of initial design [10]. Wu and Mu [11] 
investigated the SCF for isotropic plates under uniaxial and bi-axial loads. The SCF was also 
determined for isotropic and orthotropic cylindrical shells with circular cutout. A method 
based on the theory developed by Greszczuk [12] provides an analytical solution to the elastic 
stress distribution around the perimeter of a circular hole in a thin, single layer, homogeneous 
orthotropic plate under a combination of in-plane loadings. 
 
2.  GENERAL BEHAVIOR OF PLATES. 

Consider a load-free plate, shown in Fig.(1a), in which the xy plane coincides with the 
midplane and hence the z deflection is zero. The components of displacement at a point, 
occurring in the x, y, and z directions, are denoted by u, υ, and w, respectively. When, due to 
lateral loading, deformation takes place, the midsurface at any point A(xa,ya) has deflection w 
Fig.(1b). The fundamental assumptions  of the small-deflection theory of bending or so-called 
classical or customary theory for isotropic, homogeneous, elastic, thin plates is based on the 
geometry of deformations. They may be stated as follows:   
1. The deflection of the midsurface is small compared with the thickness of the plate. The 
slope of the deflection surface is therefore very small and the square of the slope is a 
negligible quantity in comparison with unity. 
2. The midplane remains unstrained subsequent to bending. 
3. Plane sections (mn) initially normal to the midsurface remain plane and normal to that 
surface after bending. This means that the vertical shear strains γxz and γyz are negligible. The 
deflection of the plate is thus associated principally with bending strains. It is deduced 
therefore that the normal strain εz resulting from transverse loading may also be omitted. 
4. The stress normal to the midplane, σz , is small compared with order stress components and 
may be neglected. This supposition becomes unreliable in the vicinity of highly concentrated 
transverse loads. 

The above assumptions, known as the Kirchhoff hypotheses, are analogous to those 
associated with the simple bending theory of beams. Small- and large-scale tests have shown 
their validity. In the vast majority of engineering applications, adequate justification may be 
found for the simplifications stated with respect to the state of deformation and stress. 
Because of the resulting decrease in complexity, a three-dimensional plate problem reduces to 
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one involving only two dimensions. Consequently, the governing plate equation can be 
derived in a concise and straightforward manner. 

When the deflections are not small, the bending of plates is accompanied by strain in the 
midplane, and assumptions 1 and 2 are inapplicable. An exception, however, applies when a 
plate bends into a developable surface (e.g., surfaces of cones and cylinders). This type of 
surface can be bent back to a plane without variation in the distances between any two points 
on the surface. If the midsurface of a freely or simply supported and loaded plate has a 
developable form, it remains unstrained even for deflections that are equal to or larger than its 
thickness but are still small as compared with other dimensions of the plate. Only under this 
limitation on the deflections will the squares of slopes be small compared with unity; hence 
the approximate expression used for the curvatures is sufficiently accurate. 

In thick plates, the shear stresses are important, as in short, deep beams. Such plates are 
treated by means of a more general theory owing to the fact that assumptions 3 and 4 are no 
longer appropriate [13].   
 
3.  THE GOVERNING EQUATION FOR DEFLECTION OF PLATES. 

The basic differential equation for the deflection of plates is given by the equation[13]: 
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where the first expressions for Mx, My, Mxy represent the curvatures and the deflection and are 
given by[13]: 
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where D is the flexural rigidity of the plate and is given by [13]: 
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and the negative sign agrees with the convention for moment and curvature. It is noted that if 
a plate element of unit width and parallel to the x axis were free to move sidewise under 
transverse loading, the top and bottom surfaces would be deformed into saddle-shaped or 
anticlastic surfaces of curvature ky. The flexural rigidity would then be Et2/12, as in the case 
of a beam. The remainder of the plate however prevents the anticlastic curvature. Owing to 
this action, a plate manifests greater stiffness than a beam by a factor 1/12(1-υ2), 
approximately 10 percent. 

In the case of a three-dimensional state of stress, stresses and strains are related by the 
generalized Hook's law, valid for an isotropic homogeneous material  
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where τij = τij (i, j = x, y, z). the constant E, υ, and G represent the modulus of elasticity, 
Poisson's ratio, and the shear modulus of elasticity, respectively. The relationship between 
these elastic constants is:  
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Substitution of  0=== xzyzz γγε  into Eqs. (4) yields the following stress-strain 

relations for a thin plate 
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The two-dimensional stress components are found from substituting Eqs. (2) and by 

employing Eq. (3) into the equation of plate curvatures. In this way, the obtained equations 
are: 
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The maximum stresses occur on the bottom and top surfaces (at Z = ± t/2) of the plate. 

The above expresses Eq. (1), the plate equilibrium, in terms of the curvatures. An alternate 
form is determined by inserting the definition of curvatures form[13]: 
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This equation, first derived by Lagrange in 1811, can also be written in a concise form: 
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in which ( )22224 ∇=∇∇=∇ .When there is no lateral load acting on the plate, 
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Expression (8) is the governing differential equation for deflection of thin plates. To 

determine w, it is required to integrate this equation with the constants of integration 
dependent upon the appropriate boundary conditions. In case of a clamped rectangular plate, 
the largest deflection also occurs at the center and the largest moments are found at the middle 
of the fixed edges. The strip method, introduced by H.Grashof, presents a simple approximate 
approach for computing deflection in a clamped rectangular plate of sides a and b, carrying a 
uniform load P Fig.(2), with the following boundary conditions[13]: 
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In this so-called strip method, the plate is assumed to be divided into two systems of 

strips at right angles to one another, each strip is regarded as functioning as a beam. Consider 
a rectangular plate under a uniform load p0, and assume that the plate is divided into strips of 
spans a and b, carrying the uniform loads pa and pb, respectively. The loaded system of beams 
will be impossible to arrange in such a way as to compose the plate unless the following 
conditions are met: 

 

ba ww =              ba ppp +=0          ( )0== yx                                                       (11) 

 
Since from Table B.6 [13] it is found that 44 bpap ba =  for ba ww = .the largest 

deflection of the plate is obtained in case of clamped square plate (a = b): 
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For the same case and using the method of superposition, the largest deflection obtained 

occurring at the center [13]: 
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The ritz method can by applied by representing the work done by the lateral surface 

loading p(x,y) as: 
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where A is the area of plate surface. For the case of a clamped rectangular  plate of sides a and 
b, and  by solving Eq. (14) and assuming a deflection expression of the form  
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The boundary conditions for Eq. (10) are satisfied. For a square plate (a = b) the 

maximum deflection occurs at the center of the plate [13]: 
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This is approximately 1.5 percent greater than the value given by Eq. (13). If the 

deflection w is expressed by retaining seven parameters a11,a12,a21,a22,a13, a31, and a33, the 
result for maximum deflection is found to be the same value given by Eq. (13) [13].    

 
4.  NUMERICAL WORK. 

The material of the plate was chosen to have the mechanical properties defined by 
elastic modulus (70 MPa), density (2600 Kg.m-3) and Poisson's ratio (0.33). The element used 
is SOLID 95 which is defined by 20 nodes having three degrees of freedom per node, namely 
translations in the nodal x,y and z directions.    

To validate the results obtained by the FEM software (ANSYS), a special case for 
square plate (a = b) clamped at all sides and under a distributed load was chosen Fig.(2) The 
value of maximum deflection was computed by the methods listed in Table (1). As noted in 
this table, the value obtained by the FEM is within an error of 2.4% from the values obtained 
by the other methods. 

In the numerical program performed, the plate was chosen to be of uniform thickness, 
clamped at all sides, loaded by a distributed load in the area of the plate and having two 
symmetrical cutouts with respect to the center of the plate. The parameters studied are: 

1. The spacing (s) between the two cutouts, both horizontally and diagonally, Figs.(3 
and 4) respectively. 

2. The aspect ratio of the plate, i.e. a and b. these parameters were examined to show 
their influence on the maximum stress, maximum deflection and the stress 
concentration factor (SCF). 
In addition, the effect of size of cutout ( a1 and b1) on the maximum stress was also 
examined.   

 
5.  RESULTS AND DISCUSSION. 

Figs.(5,6 and 7) show the effect of horizontal spacing on the maximum stress, 
maximum deflection and SCF respectively, for different aspect ratios of the plate, namely a/b 
= 1, 2/3 and 3/2. It is apparent from Fig.(5) that the square plate exhibits less normal stresses 
then other plates, hence the square plate has the higher strength among the rectangular plates 
regardless of the spacing between cutouts. in the other hand, a rectangular plate would have 
higher strength when the spacing between cutouts is increased; the strength is more increased 
when the spacing is increased in the direction of the plate width. 

Fig.(6) shows again that the square plate is more stiffness than the rectangular plates. 
Moreover, two cutouts, arranged along  the length of a given rectangular plate, seems to 
decrease the stiffness of the plate more than when arranged along the width of the rectangular 
plate. In general, the stiffness increases although a little as the spacing is increased for all 
types of plates. 
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The same trend of Fig.(5) is found in Fig.(7), regarding the strength of the plates 
having two cutouts, as the maximum stress increase is attributed to an equal increase in the 
stress concentration factor. 

Figs. (8,9 and 10) reveal the effect of diagonal spacing on the maximum stress, 
maximum deflection and SCF respectively, for different aspect ratios of the plate, namely a/b 
= 1, 2/3 and 3/2. It should be noted that the rectangular plates of aspect ratios of 2/3 and 3/2 
are identical when the two cutouts are arranged diagonally so that their behavior coincide in 
these figures. Again, the square plate shows higher strength and stiffness than the rectangular 
plates upon increasing the spacing between cutouts diagonally, although this effect diminishes 
as the two cutouts approach the edges of plate. 

Figs. (11,12 and 13) reveal the influence of the size of cutouts arranged horizontally 
on the maximum stress induced in the plates of different aspect ratios for different spacing 
between cutouts. 

As shown in Fig.(11), the strength of square plate worsens upon increasing the size of 
cutouts to a critical value after which the effect is reversed. This trend of behavior is more 
apparent when the cutouts are so close. Therefore, the strength of a square plate decreases if 
the size of cutouts is less than 0.3 and/or the spacing between cutouts is less than 20 mm. 

Fig.(12), indicated that a rectangular plate loses strength if the cutouts are arranged 
along width direction no matter how the cutouts are spaced. However, the 10mm – spaced 
cutouts of size 0.2 represents the maximum strength of the plate. 

Fig.(13), like Fig.(11), records maximum loss in plate strength if the plate contains 
two cutouts of size 0.1 arranged along the plate major axis. Also, the plate seems to restore its 
strength for cutout size values of 0.3. 

Figs. (14,15 and 16) show how the maximum stress would be affected by the size of 
cutouts and the diagonal spacing between them for different types of plates. 

In Fig.(14), the 14.4 mm and 28.2 mm diagonal spacings have almost no effect on the 
maximum stress induced in square plates at all sizes of cutouts. Nevertheless, when the 
cutouts are spaced at 56.5 mm, the size of cutouts has shown a notable influence on the 
maximum stress; while the 0.1 size of cutout maximize the stress, higher sizes of cutout seem 
to minimize it even below those corresponding to 14.4 mm and 28.2 mm spacing. 

For a rectangular plate of 2/3 aspect ratio, see Fig.(15), the effect of size of cutout is 
consistent at all values of spacings. In other words, the maximum stress is decreased as a 
result to the increase of size of cutout. A noteworthy point is the high effectiveness of the 72.1 
mm spacing compared with other spacings. 

In Fig.(16), the larger size of cutout results in increasing relatively the maximum 
stress regardless of the extent of diagonal spacing between cutouts. However, the 72.1 mm 
spacing is showing the lowest effect on the maximum stress.       

      
6.  CONCLUSIONS. 

The strength and stiffness of plates are examined in terms of maximum stress (or SCF) 
and maximum deflection, respectively. This study comes to some conclusions which can be 
summarized as: - 
1. The numerical solution carried out by (ANSYS) is comparable to those computed by 
analytical methods. 
2. The strength and stiffness of all plates are increased as a result of increasing the spacing 
between cutouts both horizontally and diagonally.. 
3. A rectangular plate containing two cutouts arranged along the width is stronger and stiffer 
than when arranged along the length at a given spacing.    
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4. A  square plate is always stronger and stiffer than an equivalent rectangular plate for the 
same loading condition.  
5. Plate with horizontally spaced cutouts are stronger and stiffer than those with equivalent 
diagonally spaced cutouts. 
6. Diagonally – arranged cutouts larger than 0.1 size ratio are performed especially for 2/3 
aspect ratio plate. 
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8. NOMENCLATURE. 
a length of the plate in x direction (m). 
a1,a2 length of the cutouts in x direction (m). 
b width of the plate in y direction (m). 
b1,b2 width of the cutouts in y direction (m). 
D flexural rigidity [ D = Et3 / 12(1-υ2)] (N.m). 
E modulus of elasticity (N.m-2). 
G modulus of elasticity in shear (N.m-2).  
M bending moment per unit distance (N.m/m).   
P concentrated force (N). 
t thickness (m). 
w deflection of the plate (m).  
x,y,z distance, rectangular coordinates (m).  
γ Shear strain.  
ε  normal strain.  
υ poisons ratio. 
σ normal stress (N.m-2).  
τ shear stress (N.m-2). 

 
 

Table 1: Verification to Numerical  Solution for Clamped Square  Plate a=b. 

Superposition and 

Ritz methods (Eq. 13)  
Ritz method 

(Eq. 16) 

Strip method 

(Eq.12) 
FEM 

Solution 

Method 

356.44  
 

362.09 367.75  347.964 
Maximum 

Deflection 
(mm)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (1a): A plate of constant thickness. 

 
 
 
 
 
 
 
 
 
 
      
 

 
 
 
 
 
 

Figure (1b): part of the plate before and 
after deflection. 
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Figure (2): Clamped plate.       

 
    
 

 
           
 
 
 
 
 
 
 
 
 

Figure (3): Case of holes displaced along the middle horizontal axis of the plate.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure (4): Case of holes displaced along the plate diagonal. 
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Figure (5): Variation of stress with distance between two cutouts along  the horizontal 
middle line. 

Figure (6): Variation of deflection with distance between two cutouts along  the 
horizontal middle line. 

Figure (7): Variation of stress concentration factor (SCF) with distance between two 
cutouts along  the horizontal middle line. 
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Figure (8): Variation of stress with distance between two cutouts along  the diagonal. 

Figure (9): Variation of deflection with distance between two cutouts along  the 
diagonal. 

Figure (10): Variation of stress concentration factor (SCF) with distance between two 
cutouts along the diagonal. 
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Figure (11): Variation of maximum stress with the size of cutouts along the horizontal 
middle line for square plate. 

Figure (12): Variation of maximum stress with the size of cutouts along the horizontal 
middle line for rectangular plate of aspect ratio 2/3. 

 

Figure (13): Variation of maximum stress with the size of cutouts along the horizontal 
middle line for rectangular plate of aspect ratio 3/2. 
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Figure (14): Variation of maximum stress with the size of cutouts along the diagonal 
for square plate. 

 

Figure (15): Variation of maximum stress with the size of cutouts along the diagonal 
for rectangular plate of aspect ratio 2/3. 

 

Figure (16): Variation of maximum stress with the size of cutouts along the diagonal 
for rectangular plate of aspect ratio 3/2. 
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  :ةـالخ_ص

فXXي التطبيقXXات الھندسXXية المدنيXXة حXديثا وقXXديما الصXفائح ذات الثقXXوب الداخليXXة غالبXXا مXXا تسXXتخدم       

وا�جھاد ا�عظم والھطول في الصفائح  ا�جھادولفھم تأثير وجود الثقبين على معامل تركيز . والميكانيكية

 إلXىالنسXبة بXين الطXول  أووحجXم الثقXب المتغيرات مثل موقXع  إن .ھذا البحثالمستطيلة والمقيدة تم إجراء 

 جميXع ھXذه العوامXل تمXت. ا�جXزاءفXي تصXميم  �ھميتھXاالعرض للصفيحة من الضروري دراستھا وذالك 

التXXXي تXXXم التوصXXXل إليھXXXا النتXXXَائجِ إن . )ANSYS(برنXXXامج  صXXXرِ المحXXXدودةِ ابطريقXXXةِ العندُراسXXXتھا وحلھXXXا 

قXXد تXXم مقارنتھXXاَ بالنتXXَائجِِ التXXي تXXم الحَصXXولَ عليھXXا مXXِنْ طXXرقِ الحXXَلِّ التحليليXXةِ  يمسXXتندة علXXى الحXXَلِّ العXXددوال

 المربعXّة ھXذه الدراسXةِ أنَْ تعXَْرضَ دقXةَ الحXَلِّ التحليلXيِ للصXفائحِ فXي إحدى ا�ھXدافِ الرئيسXيةِ من . المختلفةِ 

  .المقيدة

النتَائجِ قXدّمتْ كذلك . ذات ثقبين  متطابقة بدرجة جيدةِ  المربعة المقيدة نتَائجَِ الصفائح إنت بّ ثعُموماً، 

أوَ / مواقXعِ وتغير بشكل ملحوظ بتغير التيمكن أن  يوالتالمثقبة  ھنا ا�جھادَ ا�قصى، الھطول في الصفائح

أصلبُ مِنْ عندما النتَائجُِ تبين إن الصفائح المستطيلةُ والتيَ تحتوي على ثقبين على العرضِ أقوى و. حجمال

شXXروط نفXXس عنXXد  المسXXتطيلةح فائصXXالأقXXوى وأصXXلبُ دائمXXاً مXXِنْ  ةالمربعXXّ فائح، والصXXالطXXولِ رتبXXّتْ علXXى ت

  .تحميلال
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