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Abstract

In this research, Artificial Neural Networks (ANNs) will be used in an attempt to predict collapse
potential of gypseous soils. Two models are built one for collapse potential obtained by single
oedometer test and the other is for collapse potential obtained by double oedometer test. A database
of laboratory measurements for collapse potential is used. Six parameters are considered to have
the most significant impact on the magnitude of collapse potential and are being used as an input to
the models. These include the Gypsum content, Initial void ratio, Total unit weight, Initial water
content, Dry unit weight, Soaking pressure. The output model will be the corresponding collapse
potential. Multi-layer perceptron trainings using back propagation algorithm are used in this work.
A number of issues in relation to ANN construction such as the effect of ANN geometry and
internal parameters on the performance of ANN models are investigated. Information on the
relative importance of the factors affecting the collapse potential are presented and practical
equations for prediction of collapse potential from single oedometer test and double oedometer test
in gypseous soils are developed. It was found that ANNs have the ability to predict the collapse
potential from single oedometer test and double oedometer test in gypseous soil samples with a
good degree of accuracy. The ANN models developed to study the impact of the internal network
parameters on model performance indicate that ANN performance is sensitive to the number of
hidden layer nodes, momentum terms, learning rate, and transfer functions. The sensitivity analysis
indicated that for the models the results indicate that the initial void ratio and gypsum content have
the most significant affect on the predicted the collapse potential.
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1. Introduction

Gypseous soil is a term used to denote soil with gypsum content. They are found in many regions in
the world, mainly in arid and semiarid regions. Gypseous soils cover about 30% of the surface area
of Iraq with gypsum content differs from one area to another, Nashat "*. Gypseous soils are
usually stiff when dry, but great losses in strength and sudden increase in compressibility occur
upon wetting.

Several investigators studied the collapsibility behaviour of gypseous soils and agreed to
consider a term named "Collapse Potential" proposed by Jennings and Knight [3] as a guide in the
design of the foundations on gypseous soils, ****7#| This term can be measured through testing an
oedometer sample after a simple alteration of the procedure of the test.

Over the last few years, the use of (ANNs) has increased in many areas of engineering. In
particular, ANNs have been applied to many geotechnical engineering problems and have
demonstrated some degree of success, !'*'"'>11,

Scope of this paper to explore the use of Artificial Neural Network (ANN) models for predicting
the "Collapse Potential (CP)" from Single Collapse Test and Double Oedometer Test under
different conditions, provide a mathematical equation for prediction of "Collapse Potential (CP)"
for two tests based on ANN technique and carry a sensitivity analysis to identify which of the
input variables have the most significant impact on "Collapse Potential (CP)" for two models
predictions.

2. Brief Overview of Artificial Neural Networks

An artificial neural network is an attempt to simulate the manner in which the brain interprets
information as determined by the current knowledge. Artificial neural networks behave in much the
same manner as biological neural networks. Many authors have described the structure and
operation of ANNs Zurada "Y. ANNs consist of a number of artificial neurons variously known as
processing elements “PEs”, “nodes” or “units”. For multilayer perceptrons (MLPs), which is the
most commonly used ANNs in geotechnical engineering, processing elements in are usually
arranged in layers: an input layer, an output layer and one or more intermediate layers called hidden
layers. Each processing element in a specific layer is fully or partially connected to many other
processing elements via weighted connections. From many other processing elements, an individual
processing element receives its weighted inputs, which are summed and a bias unit or threshold is
added or subtracted. The bias unit is used to scale the input to a useful range to improve the
convergence properties of the neural network. The result of this combined summation is passed
through a transfer function (e.g. logistic sigmoid or hyperbolic tangent) to produce the output of the
processing element. For node j, this process is summarized in equations.

I, = Z WX, + 6’j Summation (1)
v, =f) Transfer (2)
where
I; = the activation level of node j;
W, = the connection weight between nodes i and j;
x;  =the input fromnodei,i=0,1,...... R
6. = the bias or threshold for node j;

J
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y; = the output of node j; and
f(.) = the transfer (activation) function

3. Development of ANNs Models

Over the years, several investigators studied the collapsibility behaviour of gypseous soils and
achieved many empirical relationships of this process depending on many factors affect on it and
agreed to consider a term "Collapse potential (CP)" proposed by Jennings and Knight !, as guide
in the design of the foundations on gypseous soils.

The data used to calibrate and validate the neural network models are obtained from the
literature, and include laboratory measurements of collapse potential as well as corresponding
information regarding the soil properties, apparatus used and testing conditions. The data cover a
range of soil types. The database comprises a total of (345) case record, and can be found in the
literature. The steps for developing ANN models as outlined include the determination of model
inputs and outputs, pre-processing and division of the available data, scaling of data, and the
determination of appropriate network architecture and optimization of the connection weights. A
PC-based commercial software system called Neuframe Version 4.0 (Neusciences ) is used, in
which optimal network architecture is determined by trial-and-error.

3.1 Models Inputs and Outputs

It is generally accepted that six parameters have the most significant impact on the collapse
potential in gypseous soils, and are thus used as the ANN model inputs. These include the
following:

Gypsum content (GC) %.

Initial void ratio (e,)

Initial total unit weight (y,)

Initial water content (w,)

Initial dry unit weight (y,)

Soaking pressure (P,,) kPa

The output of the model is Collapse potential of Single Oedometer Test and double Oedometer

Test.

3.2 Pre-processing and Data Division

Data processing is very important in using neural nets successfully. It determines what information
is presented to create the model during the training phase. It can be in the form of data scaling,
normalization and transformation. Transforming the input data into some known forms (e.g. log.,
exponential, etc.) may be helpful to improve ANN performance.

The next step in the development of ANN models is dividing the available data into their subsets
training, testing, and validation. The training set is used to adjust the connection weights of the
neural network. The testing set is used to check the performance of the network at various stages of
learning, and training is stopped once the error in the testing set increases. The validation set is used
to evaluate the performance of the model once training has been successfully accomplished,
Shahin!™,

In total, 80% of the data are used for training and 20% are used for validation. The training data
are further divided into 70% for the training set and 30% for the testing set. These subsets are also
divided in such a way that they are statistically consistent and thus represent the same statistical
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population. In order to achieve this, several random combinations of the training, testing and
validation sets are tried until three statistically consistent data sets are nearly obtained. To examine
how representative the training, testing and validation sets are with respect to each other t-test and
F-test are carried out. The t-test examines the null hypothesis of no difference in the means of two
data sets and the F-test examines the null hypothesis of no difference in the variances of the two
sets. For a given level of significance, test statistics can be calculated to test the null hypotheses for
the t-test and F-test respectively. Traditionally, a level of significance equal to 0.05 is selected.

Table 1. The range of data used in two models of inputs variables.

) Single oedometer test double oedometer test
Input variables . .
max min max min
Gypsum content 81 5 81 5
Initial void ratio 0.75 0.29 0.75 0.29
Total unit weight 20.8 13.8 20.8 13.8
Initial water content 25 0 20.46 0.00
Dry unit weight 18.3 12.2 18.3 12.98
Soaking pressure 800 50 800 25
Collapse potential 8.6 0.16 12 0.00

3.3 Scaling of Data

The input and output variables are pre-processed by scaling them to eliminate their dimension and
to ensure that all variables receive equal attention during training. Scaling has to be commensurate
with the limits of the transfer functions used in the hidden and output layers. The simple linear
mapping of the variables' extremes to the neural network s practical extremes is adopted for scaling,
as it is the most commonly used method, Shahin™. As part of this method, for each variable x with

minimum and maximum values of x,,, and x,,, respectively, the scaled value x, is calculated as
follows
X=X,
X, =————mn_ (3)
xmax - xmin

3.4 Model Architecture, Optimization and Stopping
Criteria

One of the most important and difficult tasks in the development of ANN models is determining the
model architecture (i.e. the number and connectivity of the hidden layer nodes). A network with one
hidden layer can approximate any continuo function, provided that sufficient connection weights
are used, Shahin.Consequently, one hidden layer is used in this research.

The general strategy adopted for finding the optimal network architecture and internal
parameters that control the training process is as follows: a number of trials is carried out using the
default parameters of the software used with one hidden layer and 1, 2, 3,..., 13 hidden layer nodes.
It should be noted that 13 is the upper limit for the number of hidden layer nodes needed to map any
continuous function for a network with 6 inputs, Caudill™® and consequently, is used in this work.

The network that performs best with respect to the testing set is retrained with different
combinations of momentum terms, learning rates and transfer functions in an attempt to improve
model performance, since the back-propagation algorithm uses a first-order gradient descent
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technique o adjust the connection weights, it may get trapped in a local minimum if the initial
starting point in weight space is unfavourable.

Consequently, the model that has the optimum momentum term, learning rate and transfer
function is retrained a number of times with different initial weights until no further improvement
occurs.

3.5 Single Oedometer Test

The optimal model has three hidden layer nodes with learning rate equal 0.2, momentum term equal
0.8, transfer function in layers is tanh, transfer function in output layer is sigmoid and the error
difference in RMSE being 0.85% and 1.02% for training and testing respectively, Figure 1.

3.5 Double Oedometer Test

The optimal model has seven hidden layer nodes with learning rate equal 0.6, momentum term
equal 0.15, transfer function in layers is tanh, transfer function in output layer is sigmoid and the
error difference in RMSE being 0.946% and 1.289% for training and testing respectively, Figure 2.
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Figure 1. Effect of hidden layers nodes layers Figure 2. Effect of hidden layers nodes layers
nodes of testing set in single oedometer test. nodes of testing set in double oedometer test.

4. ANN Models Equation

The small number of connection weights obtained for the optimal ANN models enables the
network to be translated into relatively simple formula.

4.1 Single Oedometer Test Model

Using the connection weights and the threshold levels, the predicted collapse potential of single
oedometer test can be expressed as follows

8.44
r= 1+e (-1.255 +3.156 tanhx, +2.656 tanhx, - 3.802 tanhx,) +0.16 (4)
where
x,=5.172 + 107 [31.92 GC-T172 ¢, - 1829, + 3532 w,— 147.5y, - 2.53 P,)] 5)
x,=3.23+ 10 [-344 GC + 30780 ¢, + 3.64 7, + 90.8 , — 2546 7, - 0.093 P, ] ©6)
x;=6.487+107° [11.4 GC -345 ¢, - 357.8 y,+ 76.48 w,— 67.4y,-1.01 P, (7)

4.2 Double Oedometer Test Model

Using the connection weights and the threshold levels, the predicted collapse potential of single
oedometer test can be expressed as follows
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CP= 1 +e(1.14+0.44tanhx1+]492tanhx2+24]tanhx31+i.13tanhx4—1.67tanhx5+0498tanhx6 1.75tanhx; ) ®)
where
x,=-0.190 +107 [0.76 GC - 258.6 ¢, - 11.9 yt - 6.21 w, + 89.6 y,- 0.444 P, ] 9
x,= 0.495 +10° [-23.4 GC + 2876 ¢, + 43.1 yt + 97.8 w,+ 1663 y,- 2.11 P, ] (10)
x,=4.278 + 107 [15.2 GC-1621.3 ¢,-150.7 y,-6.21 w, - 91.67 y,-1.32 P, ] (11)
x,=2312+10° [ 537 GC-44757¢, + 199 y,+75.1 w, - 1439 y,- (12)
0.28 P,]
x=1.262 + 10° [ 1.67 GC + 5398e, - 91.5y,- 289w, - 219.47y, + (13)
8.65P,)
xg=1.659 + 10°° [7.08 GC - 2889.3e¢, + 21.4y,+ 369w, - 3097,- (14)
098 P,]
x,=-4.85+10° [ 28 GC +4163e, + 123.7 y,- 207w, + 207.5 y,- (15)
2.052P,)
where

CP = Predicted collapse potential
GC = Gypsum content

e, = Initial void ratio

y, = Total unit weight (kN/m”)
®, = Initial water content%

y, = Dry unit weight (kN/m?)

P,, = Soaking pressure (kN/m?)

5. Sensitivity Analysis of the ANN Model Inputs

In an attempt to identify which of the input variables has the most significant impact on collapse
potential of single and double oedometer test predictions, a sensitivity analysis is carried out on the
ANN models. A simple and innovative technique proposed by Garson """ is used to interpret the
relative importance of the input variables by examining the connection weights of the trained

network.

5.1 Single Oedometer Test

The results indicate that the gypsum content and initial void ratio had the most significant effect on
the predicted collapse potential of single oedometer test with a relative importance of 27.1 and
26.7% respectively, followed by dry unit weight, initial water content, soaking pressure and total
unit weight with a relative importance of 13.9, 12.9, 10.1 and 9.11% respectively. The results are
also presented in Figure 3.

5.2 Double Oedometer Test

The results indicate that the initial void ratio has the most significant effect on the predicted
collapse potential followed by initial water content with a relative importance 24.6 and 19.1%. The
results also indicate that soaking pressure, gypsum content and dry unit weight have moderate
impact on the collapse potential with a relative importance equals to 17.4, 15.5 and 14.4 %,
respectively, while the total unit weight has the smallest impact on the collapse potential with
relative importance of 9.1%. The results are also presented in Figure 4.
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6. Robustness of the Models

The model is deemed to be generalized and is considered to be robust. The coefficient of
correlation, r, the root mean squared error, RMSE, and the mean absolute error, MAE, are the main
criteria that are often used to evaluate the prediction performance of ANN models, Shahin'""'?.

ANNs have the ability to predict the collapse potential of single oedometer test and double
oedometer test in gypseous soils, with a good degree of accuracy within the range of data used for
developing ANN models. Table below show the robust of the two models.

Table 2. Robustness of the two models.

. Single oedometer test Double oedometer test
Criterion .. . - .
Training set Testing set Training set Testing set
r 0.88 0.85 0.94 0.87
RMSE 0.85% 1.02% 0.946% 1.286%
MAE 0.66% 0.77% 0.73% 1.02%

7. Validity of the ANN Model Equation

To assess the validity of the derived equation for the collapse potential from single oedometer test
(CPS) and the collapse potential from double oedometer test (CPD) models, the equations are used
to predict these values on the basis of all, training, and validation data sets used, the values of R
show that the model is with good agreement with measured values of the collapse potential.

Table 3. Validity of the ANN Model Equation.

Single oedometer test Double oedometer test
Set ) 5
R R
Training set 0.701 0.700
Testing set 0.788 0.864
Validation set 0.890 0.711

8. Conclusions

ANNs have the ability to predict the collapse potential from the results single oedometer test and
double oedometer test in gypseous soils, with a good degree of accuracy within the range of data
used for developing ANN models. The models indicate that ANN performance is sensitive to the
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number of hidden layer nodes, momentum terms, learning rate and transfer functions. The ANN
model could be translated into simple and practical formula from which collapse potential of single
oedometer test or double oedometer test may be calculated.

References

1.

10.
11.
12.
13.
14.
15.

16.
17.

I. H., Nashat, Engineering Characteristics of Some Gypseous Soils in Iraq, 1990, Ph.D. Thesis, Department of Civil Eng.
University of Baghdad.

1. H., Nashat, Al w8l Ja3n) 1993, Conference of Gypseous Soil, NCCL.

J. E. Jennings and K., Knight, The Addition Settlement of Foundations Sandy Subsoil on Wetting, 1957 Proceeding of 4th
International Conference on Soil Mechanics and Foundation Engineering Vol. 1.

M. K., Abood, Treatment of Gypseous Soil with Sodium Silicate, 1995, M.Sc. Thesis, Building and Construction
Department, University of Technology.

M. D., Al-Agaby, Effect of Kerosene on Properties of A Gypseous Soil, 2001 M.Sc. Thesis Department of Civil
Engineering, College of Engineering-University of Baghdad.

S. N. Al-Ani, M. M. and Seleam, Effect of Initial Water Content and Soaking Pressure on the Geotechnical Properties of
Gypseous Soils, Journal of Al-Muhandis, (1993) No. 116.

M. K. A., Al-Gabri, Collapsibility of Gypseous Soils Using Three Different Methods, 2003 M.Sc. Thesis, Department of
Building and Construction Engineering, University of Technology.

M. Y., Al-Shahwani, A Non-Destructive Technique to Evaluate the Geotechnical Properties of Gypsiferous Soils, 1994,
M.Sc. Thesis Department of Building and Construction , University of Technology.

R. K. Mohammed, Effect of Wetting and Drying on Engineering Characteristics of Gypseous Soil, 1993, M.Sc. Thesis,
Department of Building and Construction, University of Technology.

M. A, Shahin, M. B., Jaska and H. R., Maier, Application of Artificial Neural Networks in Foundation Engineering,
Australian Geomechanics, 2003.

M. A, Shahin, M.B., Jaska and H.R., Maier, Recent Advances and Future Challenges for Artificial Neural Systems in
Geotechnical Engineering Applications, Department of Civil and Environmental Eng., University of Adelaide, 2008.

M. A, Shahin, M. B., Jaska and H. R., Maier, State of the Art of Artificial Neural Networks in Geotechnical Engineering
Department. of Civil Engineering, Curtin University of Technology, Perth, WA 6845, Australia, 2008.

Shahin, M.A., (2003), Use of Artificial Neural Networks for Predicting Settlement of Shallow Foundations on Cohesionless
Soils, Ph.D. Thesis, Department of Civil and Environmental Eng., University of Adelaide.

J. M. Zurada, Introduction to artificial neural systems, West Publishing Company, St. Paul, 1992.

Neusciences. (2000). Neuframe Version 4.0, Neusciences Corp., Southampton, Hampshire.

M. Caudill, Neural networks primer, Part I1I., 1988, Al Expert, 3(6), 53-59.

G. D., Garson, Interpreting Neural-Network Connection Weights. 1991 Al Expert 6(7), 47-51.

28



