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Abstract 
In this research, Artificial Neural Networks (ANNs) will be used in an attempt to predict collapse 
potential of gypseous soils. Two models are built one for collapse potential obtained by single 
oedometer test and the other is for collapse potential obtained by double oedometer test. A database 
of laboratory measurements for collapse potential is used. Six parameters are considered to have 
the most significant impact on the magnitude of collapse potential and are being used as an input to 
the models. These include the Gypsum content, Initial void ratio, Total unit weight, Initial water 
content, Dry unit weight, Soaking pressure. The output model will be the corresponding collapse 
potential. Multi-layer perceptron trainings using back propagation algorithm are used in this work. 
A number of issues in relation to ANN construction such as the effect of ANN geometry and 
internal parameters on the performance of ANN models are investigated. Information on the 
relative importance of the factors affecting the collapse potential are presented and practical 
equations for prediction of collapse potential from single oedometer test and double oedometer test 
in gypseous soils are developed. It was found that ANNs have the ability to predict the collapse 
potential from single oedometer test and double oedometer test in gypseous soil samples with a 
good degree of accuracy. The ANN models developed to study the impact of the internal network 
parameters on model performance indicate that ANN performance is sensitive to the number of 
hidden layer nodes, momentum terms, learning rate, and transfer functions. The sensitivity analysis 
indicated that for the models the results indicate that the initial void ratio and gypsum content have 
the most significant affect on the predicted the collapse potential. 
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  العراقية الجبسـية بعض الأتربةالانهيارية الكامنة ل اسـتخدام الشـبكات العصبية الاصطناعية لتقييم 
جنيد عزيز  خالد راسم محمود  
   
    

  الخلاصة
للحصول على الانهياريـة  اننموذجبني  .الانهيارية الكامنة للترب الجبسـيةالشـبكات العصبية الاصطناعية في محاولة لإيجاد نماذج لحساب  أسـتخدمت، ه الدراسةفي هذ

مـل ذات التـأثير مـن العوا عوامـل ســتةأعتـبرت . تم الحصول عليها مـن قياسـات مختبريـة سـتخدام قاعدة بياناتالكامنه باسـتخدام فحص الاوديميتر المنفرد والمزدوج با
، نســبة الفراغـات الاوليـة و محتوى الجبسفي الترب الجبسـية وقد اعتبرت كمعطيات للنموذج وتشمل  المنفرد والمزدوج على الانهيارية الكامنه بفحص الاوديميترالأكبر 

لقد وجد بان الشـبكات  .نتيجة النموذج هي ان الانهيارية الكامنة، في حين ضغط الانغمار و  الكثافة الجافة الاوليةو   المحتوى المائي الاولي والكثافة الكلية الاولية و 
كما أن الـنماذج الـتي . من الدقة جيدةلترب الجبسـية بدرجة ا الانهيارية الكامنة لفحص الاودميتر المنفرد والمزدوج لنماذج منالعصبية الاصطناعية لها القابلية على إيجاد 
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لمعـادلات  و معدل التعلم و للحد الكمي و  اس لعدد العقد في الطبقة المخفيةاخلية للشـبكات على أداءها أظهرت أن أداء الشـبكات حسلدراسة تأثير العوامل الد بنيت
   . الانهيارية الكامنةله الدور الأكبر في تحديد  الانهيارية الكامنة بأن المحتوى الجبسي ونسـبة الفراغاتظهر تحليل الحساسـية لنموذج أ .النقل

 

1. Introduction 
Gypseous soil is a term used to denote soil with gypsum content. They are found in many regions in 
the world, mainly in arid and semiarid regions. Gypseous soils cover about 30% of the surface area 
of Iraq with gypsum content differs from one area to another, Nashat [1,2].  Gypseous soils are 
usually stiff when dry, but great losses in strength and sudden increase in compressibility occur 
upon wetting. 

Several investigators studied the collapsibility behaviour of gypseous soils and agreed to 
consider a term named "Collapse Potential" proposed by Jennings and Knight [3] as a guide in the 
design of the foundations on gypseous soils, [3,4,5,6,7,8,9]. This term can be measured through testing an 
oedometer sample after a simple alteration of the procedure of the test.  

Over the last few years, the use of (ANNs) has increased in many areas of engineering. In 
particular, ANNs have been applied to many geotechnical engineering problems and have 
demonstrated some degree of success, [10,11,12,13].  

Scope of this paper to explore the use of Artificial Neural Network (ANN) models for predicting 
the "Collapse Potential (CP)" from Single Collapse Test and Double Oedometer Test under 
different conditions, provide a mathematical equation for prediction of "Collapse Potential (CP)" 
for two tests based on ANN technique and   carry a sensitivity analysis to identify which of the 
input variables have the most significant impact on "Collapse Potential (CP)" for two models 
predictions. 
 

2. Brief Overview of Artificial Neural Networks 
An artificial neural network is an attempt to simulate the manner in which the brain interprets 
information as determined by the current knowledge. Artificial neural networks behave in much the 
same manner as biological neural networks. Many authors have described the structure and 
operation of ANNs Zurada [14]. ANNs consist of a number of artificial neurons variously known as 
processing elements “PEs”, “nodes” or “units”. For multilayer perceptrons (MLPs), which is the 
most commonly used ANNs in geotechnical engineering, processing elements in are usually 
arranged in layers: an input layer, an output layer and one or more intermediate layers called hidden 
layers. Each processing element in a specific layer is fully or partially connected to many other 
processing elements via weighted connections. From many other processing elements, an individual 
processing element receives its weighted inputs, which are summed and a bias unit or threshold is 
added or subtracted. The bias unit is used to scale the input to a useful range to improve the 
convergence properties of the neural network. The result of this combined summation is passed 
through a transfer function (e.g. logistic sigmoid or hyperbolic tangent) to produce the output of the 
processing element. For node j, this process is summarized in equations. 

 ∑ += jiijJ xwI θ  Summation 
(1) 

 yj = f (Ij) Transfer (2) 
where 
Ij = the activation level of node j; 
Wij = the connection weight between nodes i and j;  
xi = the input from node i , i = 0,1,……, n; 
θj = the bias or threshold for node j;  
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yj = the output of node j; and 
f(.) = the transfer (activation) function 

 

3. Development of ANNs Models 
Over the years, several investigators studied the collapsibility behaviour of gypseous soils and 
achieved many empirical relationships of this process depending on many factors affect on it and 
agreed to consider a term "Collapse potential  (CP)" proposed by Jennings and Knight [3], as guide 
in the design of the foundations on gypseous soils.  

The data used to calibrate and validate the neural network models are obtained from the 
literature, and include laboratory measurements of collapse potential as well as corresponding 
information regarding the soil properties, apparatus used and testing conditions. The data cover a 
range of soil types. The database comprises a total of (345) case record, and can be found in the 
literature. The steps for developing ANN models as outlined include the determination of model 
inputs and outputs, pre-processing and division of the available data, scaling of data, and the 
determination of appropriate network architecture and optimization of the connection weights. A 
PC-based commercial software system called Neuframe Version 4.0 (Neusciences [15]) is used, in 
which optimal network architecture is determined by trial-and-error. 
 

3.1 Models Inputs and Outputs 
It is generally accepted that six parameters have the most significant impact on the collapse 
potential in gypseous soils, and are thus used as the ANN model inputs. These include the 
following: 

Gypsum content (GC) %. 
Initial void ratio (eo) 
Initial total unit weight (γt) 
Initial water content (wo) 
Initial dry unit weight (γd)  
Soaking pressure (Pso) kPa 

The output of the model is Collapse potential of Single Oedometer Test and double Oedometer 
Test. 
 

3.2 Pre-processing and Data Division 
Data processing is very important in using neural nets successfully. It determines what information 
is presented to create the model during the training phase. It can be in the form of data scaling, 
normalization and transformation. Transforming the input data into some known forms (e.g. log., 
exponential, etc.) may be helpful to improve ANN performance. 

The next step in the development of ANN models is dividing the available data into their subsets 
training, testing, and validation. The training set is used to adjust the connection weights of the 
neural network. The testing set is used to check the performance of the network at various stages of 
learning, and training is stopped once the error in the testing set increases. The validation set is used 
to evaluate the performance of the model once training has been successfully accomplished, 
Shahin[13]. 

In total, 80% of the data are used for training and 20% are used for validation. The training data 
are further divided into 70% for the training set and 30% for the testing set. These subsets are also 
divided in such a way that they are statistically consistent and thus represent the same statistical 
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population. In order to achieve this, several random combinations of the training, testing and 
validation sets are tried until three statistically consistent data sets are nearly obtained. To examine 
how representative the training, testing and validation sets are with respect to each other t-test and 
F-test are carried out. The t-test examines the null hypothesis of no difference in the means of two 
data sets and the F-test examines the null hypothesis of no difference in the variances of the two 
sets. For a given level of significance, test statistics can be calculated to test the null hypotheses for 
the t-test and F-test respectively. Traditionally, a level of significance equal to 0.05 is selected. 
 
Table 1. The range of data used in two models of inputs variables. 

Input variables 
Single oedometer test double oedometer test 

max min max min 
Gypsum content 81 5 81 5 
Initial void ratio 0.75 0.29 0.75 0.29 
Total unit weight 20.8 13.8 20.8 13.8 

Initial water content 25 0 20.46 0.00 
Dry unit weight 18.3 12.2 18.3 12.98 

Soaking pressure 800 50 800 25 
Collapse potential 8.6 0.16 12 0.00 

 

3.3 Scaling of Data 
The input and output variables are pre-processed by scaling them to eliminate their dimension and 
to ensure that all variables receive equal attention during training. Scaling has to be commensurate 
with the limits of the transfer functions used in the hidden and output layers. The simple linear 
mapping of the variables, extremes to the neural network’s practical extremes is adopted for scaling, 
as it is the most commonly used method, Shahin[13]. As part of this method, for each variable x with 
minimum and maximum values of xmin and xmax, respectively, the scaled value xn is calculated as 
follows 

 
minmax

min

xx

xx
xn −

−
=  (3) 

 

3.4 Model Architecture, Optimization and Stopping 
Criteria 

One of the most important and difficult tasks in the development of ANN models is determining the 
model architecture (i.e. the number and connectivity of the hidden layer nodes). A network with one 
hidden layer can approximate any continuo function, provided that sufficient connection weights 
are used, Shahin[13].Consequently, one hidden layer is used in this research. 

The general strategy adopted for finding the optimal network architecture and internal 
parameters that control the training process is as follows: a number of trials is carried out using the 
default parameters of the software used with one hidden layer and 1, 2, 3,…, 13 hidden layer nodes. 
It should be noted that 13 is the upper limit for the number of hidden layer nodes needed to map any 
continuous function for a network with 6 inputs, Caudill[16] and consequently, is used in this work. 

The network that performs best with respect to the testing set is retrained with different 
combinations of momentum terms, learning rates and transfer functions in an attempt to improve 
model performance, since the back-propagation algorithm uses a first-order gradient descent 
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 )( 7654321 1.75tanhx0.98tanhx+1.67tanhx2.13tanhx2.1tanhx+1.92tanhx+0.44tanhx+1.14e+
=CP -1

11
+  (8) 

where 
 x1= -0.190 +10-3 [0.76 GC - 258.6 eo - 11.9 γt - 6.21 ωo + 89.6 γd - 0.444 Pso] (9) 
 x2= 0.495 +10-3 [-23.4 GC + 2876 eo + 43.1 γt + 97.8 ωo+ 166.3 γd - 2.11 Pso] (10) 
 x3= 4.278 + 10-3  [15.2 GC -1621.3 eo -150.7 γt -6.21 ωo - 91.67 γd -1.32 Pso] (11) 
 x4= 2.312 + 10-3  [  5.37 GC - 4475.7 eo  +  19.9  γt + 75.1 ωo   -  143.9  γd -    

0.28  Pso] 
(12) 

 x5= 1.262 + 10-3  [  1.67 GC   +  5398 eo      -  91.5 γt -  28.9 ωo   -  219.4 γd +  
8.65 Pso] 

(13) 

 x6= 1.659 + 10-  3 [7.08 GC    -  2889.3 eo   +  21.4 γt +  36.9 ωo  -  30.9 γd - 
0.98 Pso] 

(14) 

 x7= -4.85 + 10-3   [  28 GC  + 416.3 eo     +  123.7  γt -  20.7 ωo  +  207.5  γd -  
2.052 Pso] 

(15) 

where 
           CP = Predicted collapse potential  
           GC = Gypsum content 
             eo = Initial void ratio 
             γt = Total unit weight (kN/m3) 
            ωo = Initial water content% 
            γd = Dry unit weight (kN/m3) 
            Pso = Soaking pressure (kN/m2) 
 

5. Sensitivity Analysis of the ANN Model Inputs 
In an attempt to identify which of the input variables has the most significant impact on collapse 
potential of single and double oedometer test predictions, a sensitivity analysis is carried out on the 
ANN models. A simple and innovative technique proposed by Garson [17] is used to interpret the 
relative importance of the input variables by examining the connection weights of the trained 
network. 
 

5.1 Single Oedometer Test 
The results indicate that the gypsum content and initial void ratio had the most significant effect on 
the predicted collapse potential of single oedometer test with a relative importance of 27.1 and 
26.7% respectively, followed by dry unit weight, initial water content, soaking pressure and total 
unit weight with a relative importance of 13.9, 12.9, 10.1 and 9.11% respectively. The results are 
also presented in Figure 3. 
 

5.2 Double Oedometer Test 
The results indicate that the initial void ratio has the most significant effect on the predicted 
collapse potential followed by initial water content with a relative importance 24.6 and 19.1%. The 
results also indicate that soaking pressure, gypsum content and dry unit weight  have moderate 
impact on the collapse potential with a relative importance equals to 17.4, 15.5 and 14.4 %, 
respectively, while the total unit weight has the smallest impact on the collapse potential with 
relative importance of 9.1%. The results are also presented in Figure 4.  
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number of hidden layer nodes, momentum terms, learning rate and transfer functions. The ANN 
model could be translated into simple and practical formula from which collapse potential of single 
oedometer test or double oedometer test may be calculated. 
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