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 الخلاصة
من المنشآت ،  والتي لها أبعاد وخواص مواد مختلفة،  متعددة الطبقاتتعتبر المنشآت ذات المقاطع

في الصناعات البحرية والطائرات والكثير " المهمة والتي تزايد الاهتمام بها وباستخداماتها مخصوصا
في هذا البحث تم اشتقاق معادلات تحقق متطلبات التوازن والتوافق للعتبات ذات . من المنشآت المدنية 

هذه المعادلات تأخذ بنظر ، متعددة الطبقات ومختلفة من ناحية الخواص الهندسية والأبعاد مقاطع 
إن التحليل يستند على الأساس الذي اعتمد . الاعتبار الإزاحات الأفقية والإزاحات العمودية لكل طبقة

، ثلاثة تم تحليل عتبات متكونة من مقاطع ذات . من قبل روبرت والخاص بالعتبات ذات الطبقتين 
تم اشتقاق علاقات عامة لمعادلات التوازن . أربعة وخمسة طبقات مختلفة  الأبعاد والخواص الهندسية

أبعادها أو ، والتوافق لأي عتبة بسيطة الإسناد ولأي مقطع بغض النظر عن عدد الطبقات المكون لها 
 .رباطات القص 

 
 
ABSTRACT: 

 In this study an attempt is made to derive  governing equations satisfying 
equilibrium and compatibility,  for multi-layer composite beams with different 
layers, materials properties and dimensions for linear  material and shear 
connector behavior in which the slip (horizontal displacement) and uplift force 
(vertical displacement) are taken into consideration. The  analysis led to a set of 
number  differential equations containing derivatives of the fourth and third 
order, number of these equations depending on number of layers forming the 
beam section. The theory developed for three, four, and five  layers. A general 
formula were derived to find the governing equations (compatibility and 
equilibrium equations) for any layered composite beam. 
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1.  INTRODUCTION: 

Composite construction has been widely used for building construction. A 
perfect connection between the components of composite elements exists only 
theoretically. Experimental investigation has shown that significant slip occurs 
at the interface between these components, even when a large number of 
connectors are proved. The modification in the behavior of a composite beam by 
the presence of slip was illustrated by analysis conducted by many researchers. 
These analyses led to differential equations (number of these equations 
depending on the degree of freedom) that are to be solved fresh for each type of 
loading and the variation in dimensions or properties of beams. The first 
interaction theory that takes account of slip effects was initially formulated by 
Newmark [1], based on elastic analysis of composite beams assuming linear 
material and shear connector behavior. Adekola [2] present different model 
based on interaction theory, which takes account slip, uplift and friction effect. 
Using the same element presented by Newmark, Johnson [3] in 1975 proposed a 
partial interaction theory for simply supported beams, in which the analysis was 
based on elastic theory. The composite beam was assumed to be in linear elastic 
materials. Roberts [4] presented an approach for the analysis of composite beam 
with partial interaction, in which the basic equilibrium and compatibility 
equations were formulated in terms of four independent variables, i.e. the axial 
displacements of the concrete and steel and the deflections of the two layers. 
Linear elastic materials and shear connector behavior were assumed with the 
concrete remaining uncracked, and both the slip and separation at the interface 
were incorporated. 

  
In engineering applications, layered systems of various materials are used to 

fabricate beams, plates and shells. The procedures commonly employed to 
analyze such systems are based on the assumption of rigid interconnection 
between layers. If the layers are fastened together with strong adhesives as in 
most of the laminated plastics as well as in welded assemblies, the assumption 
of rigid interconnection between layers is reasonable. In some widely used 
systems, however, such as in composite steel – concrete beams and especially in 
layered wood construction connected with nails, the later assumption is 
questionable. In the past, in the analysis of such problems, only limited 
consideration has been given to the effects of the interlayer movements, which 
occur as a result of deformation at the connectors. This interlayer movements or 
slip between layers can significantly affect overall behavior of a structure [5-12]. 

 Laminated composite beams are very important types of construction in 
which the cross-section forms of different layers with different dimensions and 
material properties. The derivation deals with beams consist of three, four and 
five layers in different materials, different dimensions, different shear stiffness 
and normal stiffness for connectors. The analysis leads to a set of basic 
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equilibrium and compatibility equations that were formulated in terms of 
displacements (horizontal and vertical) of each layer. These differential 
equations were expressed in finite difference form, and the resulting 
simultaneous algebraic equations were solved numerically. 

 
2.Analytical solution for composite layered beam with partial interaction 

(three layers).   
 The basic concepts of composite beams of  three layers, and linear 
behavior connected by the connectors, have been discussed in Ref.[13] 

 
four (al interaction Analytical solution for composite layered beam with parti. 3

).  layers 
 In this section, the model, consists of four different layers, different 
materials and shear and normal stiffness. The analysis leads to a set of eight 
basic equilibrium and compatibility equations formulated in terms of 
displacements (horizontal and vertical) of each layer. These differential 
equations were expressed in finite difference form, and the resulting 
simultaneous algebraic equations were solved numerically.  
 
3.1 Equilibrium 
 An element of a composite of four layers, length xδ , shown in Figure (2). 
Subjected to moments, M, shear forces, V, and axial forces F. Subscripts a, b, c 
and d denote four layers from upper to lower layer, and the local x- axes pass 
through the centroids of the materials. If the beam is subjected to distributed 
load ρ  per unit length, vertical equilibrium of the whole element gives: 

xVVVV dcba ρδδδδδ =+++                                                                 ..(1) 
Dividing equation (1) by xδ  and taking a limit as xδ  tends to zero which gives: 

ρ=+++ xdxcxbxa VVVV ,,,,                                                                           ..(2) 
This subscript x denotes differentiation. For live load only ( ρ ) equal to ( iρ ), for 
live load and dead load, ρ  is equal to: 

dcbai ρρρρρρ ++++=                                                                          ..(3)  
In which, aρ , bρ , cρ  and dρ  are the distributed self weight for the four layers. 
Loads due to the removal of props used during construction should be 
considered as live loads. 
Taking moments about the origin of coordinates in the upper layer which gives: 

( )

( ) ).().(.
2

.

.

321211 dddFddFdFxVVVV

xVVVVMMMM

dcbdcba

dcbadcba

+++++++++

++++=+++

δδδ
δ

δδδ

δδδδδ
                 ..(4)                                                                                                                        
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Where 1d , 2d  and 3d  are the distance between the centroids of any successive 
two cross sections. 
After neglecting the second order terms and dividing by xδ  equation (4) 
becomes: 

)(
).(.

321,

21,1,,,,,

dddF
ddFdFVVVMMMM

xd

xcxbdcbaxdxcxbxa

+++

++++++=+++
                ..(5) 

Differentiating equation (5) gives: 

)().(
.

321,21,

1,,,,,,,,,

dddFddF
dFVVVVMMMM

xxdxxc

xxbxdxcxbxaxxdxxcxxbxxa

++++

+++++=+++
                     ..(6) 

Substituting equation (2) into equation (6) gives: 

ρ=++−

+−−+++

)(
).(.

321,

21,1,,,,,

dddF
ddFdFMMMM

xxd

xxcxxbxxdxxcxxbxxa                                    ..(7) 

Taking moments about the origin of coordinates in the second layer gives: 
( )

( ) ).(..
2

.

.

3221 ddFdFdFxVVVV

xVVVVMMMM

dcadcba

dcbadcba

+++−+++

++++=+++

δδδ
δ

δδδ

δδδδδ
                                ..(8)                                                                                                       

After neglecting the second order terms and dividing by xδ equation (8) 
becomes: 

)(
..

32,

2,1,,,,,

ddF
dFdFVVVVMMMM

xd

xcxadcbaxdxcxbxa

++

+−+++=+++
                       ..(9) 

Differentiating equation (9) gives: 

)(.. 32,2,1,,

,,,,,,,

ddFdFdFV
VVVMMMM

xxdxxcxxaxd

xcxbxaxxdxxcxxbxxa

+++−

+++=+++
                                          ..(10) 

Substituting equation (2) into (10) gives: 

ρ=+−

−++++

)(
).(.

32,

2,1,,,,,

ddF
dFdFMMMM

xxd

xxcxxaxxdxxcxxbxxa                                         ..(11) 

Taking moments about the origin of coordinates in the third layer gives: 
( )

( ) 3221 ..).(
2

.

.

dFdFddFxVVVV

xVVVVMMMM

dbadcba

dcbadcba

δδδ
δ

δδδ

δδδδδ

+−+−+++

++++=+++
                               ..(12) 

 After neglecting the second order terms and dividing by xδ equation (12) 
becomes: 

3,

2,21,,,,, .).(
dF

dFddFVVVVMMMM

xd

xbxadcbaxdxcxbxa

+

−+−+++=+++
           ..(13) 

Differentiating equation (13) gives: 

3,2,21,

,,,,,,,,

.).( dFdFddF
VVVVMMMM

xxdxxbxxa

xdxcxbxaxxdxxcxxbxxa

+−+−

+++=+++
                                     ..(14) 

Substituting equation (2) into (14) gives: 
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ρ=−

++++++

3,

2,21,,,,, .).(
dF

dFddFMMMM

xxd

xxbxxaxxdxxcxxbxxa                                  ..(15) 

For equilibrium of the composite element, shown in Figure (2), in the x-
direction gives: 
( ) ( ) ( ) ( )
( ) 0=+++

−+++++++

dcba

ddccbbaa

FFFF
FFFFFFFF δδδδ                                           ..(16) 

0=+++ dcba FFFF δδδδ                                                                          ..(17) 
Dividing equation (17) by xδ gives: 

0,,,, =+++ xdxcxbxa FFFF                                                                         ..(18) 
Equation (7), (11), (15) and (18) are the four basic equilibrium equations 
required for the complete solution. 
 
3.2 Compatibility 
 Assuming plane sections within each material remains plane, the total 
displacement of the upper layer in the x-direction at the interface, denoted by 

atiU , is given by: 
xaaiaati wzuU ,.−=                                                                                     ..(19) 

In which aiz  is the z-coordinate of the interface relative to the local x-z axes and, 
au  and aw are the displacements of the upper layer in the x and z directions. 

Similarly for the other three layers: 
xbbibbti wzuU ,.−=                                                                                     ..(20) 

xcciccti wzuU ,.−=                                                                                     ..(21) 
xddiddti wzuU ,.−=                                                                                    ..(22) 

The slip, abU , at the interface between the first two layers is denoted as the 
relative displacement in the x-direction of initially adjacent particles, as shown 
in Figure (2). Hence: 

btiatiab UUU −=                                                                                       ..(23) 
And between the other layers: 

ctibtibc UUU −=                                                                                        ..(24) 
dticticd UUU −=                                                                                        ..(25) 

Combining Equations from (19) to (22) into equations from (23) to  (25) gives: 
).().( ,, xbbibxaaiaab wzuwzuU −−−=                                                            ..(26) 
).().( ,, xccicxbbibbc wzuwzuU −−−=                                                             ..(27) 
).().( ,, xddidxcciccd wzuwzuU −−−=                                                            ..(28) 

If the shear stiffness of the joint per unit length between the upper two layers is 
denoted by 1sk , the shear force per unit length at the interface 1q is given by: 

abs Ukq .11 =                                                                                              ..(29) 
And between the other layers: 
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bcs Ukq .22 =                                                                                             ..(30) 
cds Ukq .33 =                                                                                             ..(31) 

And considering the equilibrium of the upper layer in the x-direction gives: 
absxa UkqF .11, ==                                                                                     ..(32) 

And considering the equilibrium of the second layer in the x-direction gives: 
12, qqF xb −=                                                                                           ..(33) 

absbcsxb UkUkF .. 12, −=                                                                               ..(34) 
bcsxbxa UkqFF .22,, ==+                                                                            ..(35) 

cdsxcxbxa UkqFFF .33,,, ==++                                                                   ..(36) 
Substituting for abU from equation (26) into (32) gives: 

0)].().[( ,,1, =−−−− xbbibxaaiasxa wzuwzukF                                                 ..(37) 
Substituting for bcU from equation (26) and (27) into (35) gives: 

0)].().[( ,,2,, =−−−−+ xccicxbbibsxbxa wzuwzukFF                                         ..(38) 
Substituting for bcU from equation (28) into (36) gives: 

0)].().[( ,,3,,, =−−−−++ xddidxccicsxcxbxa wzuwzukFFF                              ..(39) 
The separation at the interface between the first upper layers, baw  is the relative 
displacement in the z-direction of initially adjacent, as shown in Figure (2-c) is 
given by:  

abba wwW −=                                                                                          ..(40) 
The separation at the interface between other layers cbw and dcw  is given by: 

bccb wwW −=                                                                                           ..(41) 
cddc wwW −=                                                                                           ..(42) 

If 1P  denotes the normal force per unit length at the interface, equilibrium for the 
first layer in the z-direction is given by: 

1, PV aixa ++= ρρ                                                                                   ..(43) 
If 2P  denotes the normal force per unit length at the interface, equilibrium for 
the second layer in the z-direction is given by: 

bxb PPV ρ+−= 12,                                                                                    ..(44) 
iabxbxa PVV ρρρ +++=+ 2,,                                                                   . .(45) 

If 3P  denotes the normal force per unit length at the interface, equilibrium For 
the third layer in the z-direction is given by: 

cxc PPV ρ+−= 23,                                                                                    ..(46) 
Consider the moment equilibrium of the upper layer about the origin of 
coordinates which gives; 

aixaa zqMV .1, +=                                                                                   .  .(47) 
Consider the moment equilibrium of the second layer about the origin of 
coordinates which gives: 
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bibixbb zqzqMV .. 12, −+=                                                                          ..(48) 
Consider the moment equilibrium of the third layer about the origin of 
coordinates which gives: 

cicixcc zqzqMV .. 23, −+=                                                                          ..(49) 
Differentiating equation (47), (48) and (49) gives: 

aixxxaxa zqMV .,1,, +=                                                                                ..(50) 

bixbixxxbxb zqzqMV .. ,1,2,, −+=                                                                    ..(51) 
cixcixxxcxc zqzqMV .. ,2,3,, −+=                                                                    ..(52) 

Differentiating equation (32), (35) and (36) with respect to (x) gives: 

xxxa qF ,1, =                                                                                             ..(53)  
xxxbxxa qFF ,2,, =+                                                                                    ..(54) 

xxxcxxbxxa qFFF ,3,,, =++                                                                            ..(55) 
Substituting equations (50) to (52) into (53) to (55) gives: 

aixxaxxaxa zFMV .,,, +=                                                                              ..(56) 
 

bixxbxxbxb zFMV .,,, +=                                                                               ..(57) 
cixxcxxcxc zFMV .,,, +=                                                                               ..(58) 

Substituting equations (44) and (46) into equation from (56) to (58) gives: 
bbixxbxxb PPzFM ρ+−=+ 12,, .                                                                    ..(59) 
ccixxcxxc PPzFM ρ+−=+ 23,, .                                                                    ..(60) 

If the normal stiffness of the joint per unit length between the upper layers, is 
denoted by ( 1nk ) then:  

).(. 111 abnban wwkWkP −==                                                                       ..(61) 
If the normal stiffness of the joint per unit length between the middle layers, is 
denoted by ( 2nk ) then:  

).(. 222 bcncbn wwkWkP −==                                                                      ..(62) 
If the normal stiffness of the joint per unit length between the lower layers, is 
denoted by ( 3nk ) then:  

).(. 333 cdndcn wwkWkP −==                                                                      ..(63) 
Substituting equations (61), (62), and (63) into equations (59) and (60) gives: 

bbcnabnbixxbxxb wwkwwkzFM ρ=−−−++ ).()(. 21,,                                         ..(64) 

ccdnbcncixxcxxc wwkwwkzFM ρ=−−−++ )()(.. 32,,                                        ..(65) 
Subtracting equation (63) from (64) which gives: 

cbcdncixxcxxc

bcnabnbixxbxxb

wwkzFM
wwkwwkzFM

ρρ −=−+−−

−−−++

)(.
).(.2)(.

3,,

21,,                                               ..(66) 

Equations, (37), (38), (39) and (66) are the four basic compatibility equations 
required for a complete solution. 
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3.3 Basic differential equations 
From the analytical model, the eight independent differential equations 

(equilibrium and compatibility), may be expressed in terms of displacement 
variables, ( dccbbaa uwuwuwu ,,,,,, ) and ( dw ) as follows: 
Assuming plane sections within each material remains plane, the axial strain (ε ) 
can be expressed in terms of displacements ( wu , ) relative to the local (x) and 
(z –axes), which are assumed to pass through the centroid of the four materials. 
Hence: 
 

xxaaxaxata wzUU ,,, .−==ε                                                                    ..(67) 

xxbbxbxbtb wzUU ,,, .−==ε                                                                     ..(68) 
xxccxcxctc wzUU ,,, .−==ε                                                                     ..(69) 

xxddxdxdtd wzUU ,,, .−==ε                                                                          ..(70) 
Where subscripts (a, b, c) and (d) denote the layers. Subscript (x) denotes 
differentiation and (z) the distance form the origin of coordinates to the limits of 
the layers. 
Stresses now can be related to strain via the material properties ( cba EEE ,, ) and 
( dE ). For linear elastic materials ( cba EEE ,, ) and ( dE ) are constants, but for non-
linear elastic and elasto-plastic materials, ( cba EEE ,, ) and ( dE ) are functions of 
strain. 
The free strain due to shrinkage, temperature etc, is denoted by ( fε ), while the 
strain induced during the construction sequence is denoted by ( rε ). Hence, if 
(u ) and ( w ) are assumed to exclude the displacements corresponding, to ( fε ) 
and ( rε ), the stresses in the layers are given by: 

 
).( ,, faraxxaaxaaa wzuE εεσ −+−=                                                         ..(71) 

).( ,, fbbxxbbxbbb wzuE εεσ −+−=                                                          ..(72) 
).( ,, fcrcxxccxccc wzuE εεσ −+−=                                                          ..(73) 

).( ,, fdrdxxddxddd wzuE εεσ −+−=                                                            ..(74) 
The axial forces ( cba FFF ,, ) and ( dF ) and moments ( cba MMM ,, ) and ( dM ) are 
obtained by integrating the stresses, multiplying by the appropriate lever arms, 
( cba zzz ,, ) and ( dz ), in the case of moments over the cross section area of each 
layer denoted by ( cba AAA ,, ) and ( dA ) Hence: 

∫= aaa dAF .σ                                                                                          ..(75) 

∫= bbb dAF .σ                                                                                           ..(76) 

∫= ccc dAF .σ                                                                                            ..(77) 

∫= ddd dAF .σ                                                                                            ..(78) 
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∫−= aaaa dAzM ..σ                                                                                     ..(79) 

∫−= bbbb dAzM ..σ                                                                                      ..(80) 

∫−= cccc dAzM ..σ                                                                                       ..(81) 

∫−= dddd dAzM ..σ                                                                                     ..(82) 
Substituting equations (71), (72), (73), (74) into equations from (75) to (82) 
which gives: 

∫ −+−= afaraxxaaxaaa dAwzuEF )..( ,, εε                                                         ..(83) 

∫ −+−= bfbrbxxbbxbbb dAwzuEF )..( ,, εε                                                  ..(84) 

∫ −+−= cfcrcxxccxccc dAwzuEF )..( ,, εε                                                   ..(85) 

∫ −+−= dfdrdxxddxddd dAwzuEF )..( ,, εε                                                ..(86) 

∫ −+−−= aafaraxxaaxaaa dAzwzuEM .)...( ,, εε                                          ..(87) 

∫ −+−−= bbfbrbxxbbxbbb dAzwzuEM .)...( ,, εε                                          ..(88) 

∫ −+−−= ccfcrcxxccxccc dAzwzuEM .)...( ,, εε                                           ..(89) 

∫ −+−−= ddfdrdxxddxddd dAzwzuEM .)...( ,, εε                                        ..(90) 
IF  cba EEE ,, , and dE  are constants, integration of equations from (83) to (90) 
which gives: 

).(.. , faraaxaaaa EuAEF εε −+=                                                            ..(91) 
).(.. , fbrbbxbbbb EuAEF εε −+=                                                            ..(92) 
).(.. , fcrccxcccc EuAEF εε −+=                                                             ..(93) 

).(.. , fdrddxdddd EuAEF εε −+=                                                               ..(94) 

xxaaaa wIEM ,..=                                                                               ..(95) 
xxbbbb wIEM ,..=                                                                               ..(96) 

xxcccc wIEM ,..=                                                                               ..(97) 
xxdddd wIEM ,..=                                                                                    ..(98) 

In which, cba III ,, , and dI  are the second moments of area for the layers and ε  is 
the integration of the strain function over the cross sectional area of the 
corresponding materials. 
 
The following are the eight governing equations derived for four layers 
composite beam: 

ρ=++−

+−−+++

)(
).(.

321,

21,1,,,,,

dddF
ddFdFMMMM

xxd

xxcxxbxxdxxcxxbxxa                             ..(99) 

ρ=+−

−++++

)(
).(.

32,

2,1,,,,,

ddF
dFdFMMMM

xxd

xxcxxaxxdxxcxxbxxa                                      .(100) 
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ρ=−

++++++

3,

2,21,,,,, .).(
dF

dFddFMMMM

xxd

xxbxxaxxdxxcxxbxxa                               ..(101) 

0,,,, =+++ xdxcxbxa FFFF                                                                      ..(102) 
0)].().[( ,,1, =−−−− xbbibxaaiasxa wzuwzukF                                           ..(103) 

0)].().[( ,,2,, =−−−−+ xccicxbbibsxbxa wzuwzukFF                                   ..(104) 
0)].().[( ,,3,,, =−−−−++ xddidxccicsxcxbxa wzuwzukFFF                           ..(105 ) 

cbcdncixxcxxc

bcnabnbixxbxxb

wwkzFM
wwkwwkzFM

ρρ −=−+−−

−−−++

)(.
).(.2)(.

3,,

21,,                                       ..(106) 

After substituting equations from (91) to (98) into equations from (99) to (106) 
which gives: 

ρεε

εεεε

=−++−++−

−+−+−−−

−+++

xxfdrdddxxxddd

xxfcrccxxxcccxxfbrbb

xxxbbbxxxxdddxxxxcccxxxxbbbxxxxaaa

EddduAEddd

ddEuAEdddE
udAEwIEwIEwIEwIE

,32,321

,21,211,

,1,,,,

).().(..).(

))(.(..).(.)(
...........

              ..(107) 

  

ρεε

εεεε

=−+−+−

−−−−+

++++

xxfdrddxxxddd

xxfcrccxxxcccxxaaa

xxxaaaxxxxdddxxxxcccxxxxbbbxxxxaaa

ddEuAEdd

dEuAEddE
udAEwIEwIEwIEwIE

,32,32

,.2,21,

,1,,,,

))(.(..).(

)(.....)(
...........

          ..(108)   

                                                                                                                                                                    

ρεεεε

εε

=−−−−+

++−+++

+++

xxfdrddxxxdddxxbcbb

xxxbbbxxaaaxxxaaa

xxxxdddxxxxcccxxxxbbbxxxxaaa

dEuAEddE
uAEdddEuddAE

wIEwIEwIEwIE

,3,3,.2

,221,,21

,,,,

)(....)(.
...).()()..(.

........
                  .(109) 

 

0).(..).(..

)(..).(..

,,,,

,,,,

=−++−++

−++−+

xdddxxdddxfcrccxxccc

xfbrbbxxbbbxfaraaxxaaa

EuAEEuAE

EuAEEuAE

εεεε

εεεε
                   ..(110) 

0)].().[().(.. ,,1,, =−−−−−+ xbbibxaaiasxfaraaxxaaa wzuwzukEuAE εε              ..(111) 
                      

0)].().[(

)(..).(..

,,2

,,,,

=−−−−

−++−+

xccicxbbibs

xfbrbbxxbbbxfaraaxxaaa

wzuwzuk

EuAEEuAE εεεε
                            ..(112) 

 

0)].().[()(..

)(..).(..

,,3,

,,,,

=−−−−−++

−++−+

xddidxccicsfcrccxxccc

xfbrbbxxbbbxfaraaxxaaa

wzuwzukEuAE

EuAEEuAE

εε

εεεε
            ..(113) 

 

cbcdnbcnabn

fcrcciccixxxcccxxxxccc

xxfbrbbibbixxxbbbxxxxbbb

wwkwwkwwk
zEzuAEwIE
zEzuAEwIE

ρρ

εε

εε

−=−+−−−

+−−−

−−++

)().(2)(
)(......
)(......

321

,,

,,,

                            ..(114) 
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3.4 Numerical solutions 
 Equations (107) to (114) contain derivative of third order in u and fourth 
order in w, which can be expressed in finite (central) difference form using five 
node points. 
 After expressing equations (107) to (114) in finite difference form, the 
complete solution system of algebraic equations, eight degrees of freedom per 
node, can be solved for the unknown displacements at the nodes, and it required 
two external nodes are required at each end of the beam.  
 
3.5 Boundary conditions. 
 Solution of the resulting set of algebraic equations requires the 
specification of boundary conditions. In general, the equations contain a 
derivative of fourth order and required two external nodes to specify the 
boundary conditions at each end. However, if each external node is assigned 
eight degree of freedom per node, so sixteen boundary conditions are required 
for each end of the beam must be specified. 

0=dw                              at    0=x       when Lx =                           ..(115) 
0, =xxaw                            at    0=x       when  Lx =                           .(116) 
0, =xxbw                           at    0=x       when  Lx =                           ..(117) 
0, =xxcw                            at    0=x       when  Lx =                          ..(118) 
0, =xxdw                           at    0=x       when  Lx =                          ..(119) 

0=du                              at    0=x                                                    ..(120) 
0, =xdu                            at     Lx =                                                  ..(121) 
0, =xau                            at     0=x       when    Lx =                        ..(122) 
0, =xbu                            at     0=x       when    Lx =                        ..(123) 
0, =xcu                            at     0=x       when    Lx =                        ..(124) 

rdcba RVVVV =+++        at     0=x                                                    ..(125) 
ldcba RVVVV =+++        at     Lx =                                                   ..(126) 

0, =xxxxau                         at     0=x      when    Lx =                          ..(127) 
0, =xxxxbu                         at     0=x      when    Lx =                          ..(128) 
0, =xxxxcu                         at     0=x      when    Lx =                          ..(129) 
0, =xxxxdu                         at     0=x      when    Lx =                         ..(130) 

0, =xabU                          at     0=x      when    Lx =                         ..(131) 
0, =xbcU                          at     0=x      when    Lx =                          ..(132) 

Where ( rR ) and ( lR ) are the reactions at the supports, equation (125) and (126) 
express the conditions that the sum of the shear forces in the layers are equal to 
the support reaction ( rR ) and ( lR ).  The forces ( cba VVV ,, ) and ( dV ) can be 
expressed in terms of displacement derivatives as follows, consider moment 
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equilibrium of the upper layer about the origin of coordinate, Figure (2), which 
gives: 

aixaxaa zFMV .,, +=                                                                              ..(133) 
Similarly, for second layer: 

bixbxbb zFMV .,, +=                                                                              ..(134) 
And for other layers: 

cixcxcc zFMV .,, +=                                                                               ..(135) 

dixdxdd zFMV .,, +=                                                                              ..(136) 
Substituting the forces and moments in terms of derivatives from equation (91) 
to (98) into equations from  (133) to (136), which gives: 

xfaraaiaaiaaxxxaaaa zEzAEwIEV ,, ).(..... εε −++=                                      ..(137) 

xfbrbbibbibbxxxbbbb zEzAEwIEV ,, ).(..... εε −++=                                                     ..(138) 

xfcrccicciccxxxcccc zEzAEwIEV ,, ).(..... εε −++=                                                      ..(139) 
xfdrddiddiddxxxdddd zEzAEwIEV ,, ).(..... εε −++=                                                   ..(140) 

And for the latest boundary conditions, substituting equation (27) into (132) 
which gives: 

).().( ,,,,, xxccixcxxbbixbxbc wzuwzuU −−−=                                                              ..(141) 
But equation (4.259) into a finite difference forms, which gives: 

0).2.2(.
.2
1).2(1

).2.2(.
.2

).2(1
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x                          (142) 

The main equations after substituting the finite difference form become: 
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4.General formula 

According to the governing equations obtained from the analytical model 
of three, four, and five layers, a general formula can be obtained by the 
following sequence:    

..(145) 
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5  Procedure of application 
 The following procedure is used for applications of the general formula 
introduced in section (4.5). Number of equations depends on the number of 
layers and equal to (n*2) where n is number of layers. For example, the 
governing equations for four layer composite beams equal to (8) equations and 
can be derived directly as follows; 
Number of layers (n)=4 
Number of equations=8 
Variables k, I, j are counters 
For k=1 to n-1 
Equation (1) 
k=1  
n=4 

ρ=++−

+−−+++

)(
).(.

321,4

21,31,2,4,3,2,1

dddF
ddFdFMMMM

xx

xxxxxxxxxxxx                              ..(155) 

Equation (2) 
k=2 
n=4 

ρ=+−

−++++

)(
).(.

32,4

2,31,1,4,3,2,1

ddF
dFdFMMMM

xx

xxxxxxxxxxxx                                     ..(156) 

Equation (3) 
k=3 
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n=4 

ρ=−

++++++

3,4

2,221,1,4,3,2,1 .).(
dF

dFddFMMMM

xx

xxxxxxxxxxxx                              ..(157) 

End loop 
Equation (4) 

0,4,3,2,1 =+++ xxxx FFFF                                                                     ..(158) 
For k=1 to n-1 
Equation (5) 
k=1 
n=4 

0)].().[( ,222,1111,1 =−−−− xixisx wzuwzukF                                             ..(159) 
Equation (6) 
k=2 
n=4 

0)].().[( ,333,2222,2,1 =−−−−+ xixisxx wzuwzukFF                                    ..(160) 
Equation (7) 
k=3 
n=4 

0)].().[( ,444,3333,3,2,1 =−−−−++ xixisxxx wzuwzukFFF                           ..(161) 
End loop 
Equation (8) 

323433,3,3

2321212,2,2

)(.
).(.2)(.

ρρ −=−+−−

−−−++

wwkzFM
wwkwwkzFM

nixxxx

nnixxxx                                       ..(162) 

 
Subscripts (1, 2, 3) and (4) represents layers (a, b, c) and (d) respectively. 
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Figure (1-a) Composite layered beam 
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Figure (1-b) Composite layers element in Slip 
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Figure (1-c) Composite layers in separation 

Figure (1) Composite three layers element 
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Figure (2-b) Composite four layers element in slip 
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Figure (2) Composite four layers element. 
 



IJCE-9th ISSUE             December-2007 
 

 20

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                     ρ                         
                  Va                                            Va+δVa 
 
Fa                                               x                                Fa+δFa  
          Ma                       Zai                          Ma+δMa 
                    Vb                                           Vb+δVb 
 
Fb                                              x                                 Fb+δFb 
         Mb                      Zbi                            Mb+δMb 
                    Vc                                           Vc+δVc 
 
Fc                                               x                              
                                                                                     Fc+δFc 
           Mc                     Zci                           Mc+δMc 
                    Vd                                           Vd+δVd 
 
Fd                                               x                                Fd+δFd 
      Md                          Zdi                         Md+δMd 
 
                  Ve                                             Ve+δVe 
 
Fe                                              x                                 Fe+δFe 
        Me                        Zei                           Me+δMe               

Figure (3-a) Composite five layers element 



IJCE-9th ISSUE             December-2007 
 

 21

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                   
                                 q3 
 
 
 
 
                                        
  q4   
 
 

 
              Fe+δFe  Fe 

 
 

 
 
                     Fd+δFd 

 

                 Ucd 
 
Fd 
                 Ude 

                        .q1 
   Uab 
 
 
 
 
 
 
 
   Ubc 
                   .q2 

 

 
              Fa+δFa 
 
 
 
 
      Fb+δFb 
 
 
 
 
            Fc+δFc 

 
        Fa 
 
 
 
 
 
  Fb 
 
 
 
 
           Fc 
 

 
 

 

 

Figure (3-b) Composite five layers element in Slip 
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Figure (3) Composite five layers element beam. 
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Conclusion 
Composite multi-layered beams  is relatively new techniques used in 

many engineering fields, specially  marine construction for the major benefits  
provided by such structures. A derivations of three, four and five  layers 
composite simply supported beams based on Roberts' approach led to set of 
governing partial differential equations, using equilibrium and compatibility 
conditions, which can be solved by finite difference method with a proper 
boundary conditions  , No. of these equations depending on D.O.F in each layer. 
General formula was derived to obtained the governing equations for and layer 
composite simply supported beam under uniform loading. 
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NOTATION 
 a, b, and c= Subscript denotes different layers. 

aA , bA and cA = Cross-sectional area of different layers. 
A= Effective width of concrete slab. 

1d and 2d =Distance between the centroids of successive layers. 

1E  = Modulus of elasticity of concrete. 

2E  = Modulus of elasticity of steel.  

aE , bE and cE =Modulus of elasticity of  different layers .  

aF , bF  and cF =The axial forces in different layers. 

ah , bh  and ch = Thickness of  different layers. 

aI , bI and cI  =Second moment of area for the layer a. 

1I  and  2I = Moment of inertia of concrete slab and steel about its own centroid. 

1sk and 2sk =Shear stiffness of the joint per unit length between successive layers. 

1nk and 2nk =Normal stiffness of the joint per unit length between successive layers. 
L  = span length. 
M= External applied moment. 

aM , bM  and cM  =Moment for layer a. 

1P and 2P  =Normal force per unit length at the upper and lower interface.  

iρ =Live load. 
ρ =Live load and dead load. 

aρ  , bρ and cρ = Distributed self-weight of layer a. 

rR , lR =Reaction at the right and the left supports. 

abU  and  bcU = Slip between upper and lower layers. 

au , bu and cu =Displacements of the different layers in the x -direction.  
W= Point load. 

aw , bw  and cw =Displacements of the layer a, b and c  in the z -direction. 

baw , cbw =Separation at the interface between the upper and lower  layers. 
x.= Subscript denote differentiation. 

aiz , aiz and aiz =Z-coordinate of interface relative to local x-z axes in layers a, b and c. 

fε  =Free strain due to shrinkage, temperature etc. 

rε  = Strain induced during the construction sequence.    
        ε =Integration of strain function over cross section area of the material. 

aε , bε and cε =Strain in layers a , b and c. 

aσ , bσ and cσ =Stress in layers a, b and c. 
x∆ =Spacing between nodes. 

 
 
 
 
 
 

 


